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Abstract. In this paper, we address the problem of dictionary learning
for sparse representation. Considering the regularized form of the dictio-
nary learning problem, we propose a method based on a homotopy app-
roach, in which the regularization parameter is overall decreased along
iterations. We estimate the value of the regularization parameter adap-
tively at each iteration based on the current value of the dictionary and
the sparse coefficients, such that it preserves both sparse coefficients and
dictionary optimality conditions. This value is, then, gradually decreased
for the next iteration to follow a homotopy method. The results show
that our method has faster implementation compared to recent dictio-
nary learning methods, while overall it outperforms the other methods
in recovering the dictionaries.
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1 Introduction

In recent years, it has been shown that sparse representation leads to promising
results in many applications of signal processing [3]. Sparse representation deals
with approximating a signal as a linear combination of a few known signals,
called atoms, chosen from a signal collection, called dictionary. The performance
of sparse coding for a particular class of signals is highly related to a dictionary
having the ability to represent all signals in the class by linear combinations of a
few atoms. Learning sparsifying dictionaries has also been shown to outperform
known and predetermined dictionaries in some applications for classes of signals
such as images [4] and audio [6].

A common approach to obtain the dictionary is to use alternating minimiza-
tion in an iterative procedure [5,13]. In the sparse coding stage, sparse coefficients
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are obtained while the previously found dictionary is fixed, and in the dictio-
nary update stage, the dictionary is found based on the obtained coefficients.
In the sparse coding stage, Orthogonal Matching pursuit (OMP) [10] and Itera-
tive Shrinkage Thresholding (IST) algorithm [12] have been used in Method of
Optimal Directions (MOD) [5] and Majorization Method (MM) [13] dictionary
learning, respectively. Among some examples of dictionary update stages, the
MOD used the observation matrix multiplied by pseudo inverse of representa-
tion matrix, and a Maximum A Posteriori (MAP)-based dictionary learning in
[7] used a gradient descent method, both followed by normalization of dictionary
columns. However, all methods proposed so far have not considered the adap-
tivity of uncertain parameters of the cost function, such as the regularization
parameter, to the data.

In this paper, we propose a dictionary learning method for sparse represen-
tations, which benefits from a homotopy (continuation) method. Generally, the
homotopy is a heuristic that, first, computes the solution of an initial simpler
problem, in which the global minimum can be easily found, and then, gradu-
ally deforms the initial problem to the desired one. The homotopy has also been
used in solving nonlinear equations [8], and in the optimization relating to sparse
representation with fixed dictionary [2,12]. Inspired by a homotopy approach,
we propose a method which starts solving the dictionary learning cost function
from a higher value of the regularization parameter, and adaptively decreases
this parameter along iterations. Although our method uses an alternating mini-
mization approach, as we explain through this paper, being capable of changing
the value of the regularization parameter enables us to choose a regularization
parameter such that it keeps the sparse representation solutions near the optimal
after updating the dictionary. Our method can also be seen as a method that
uses a homotopy approach with an adaptive regularization parameter selection.

In the following sections, the dictionary learning problem is first discussed in
Sect. 2. Then, Sect. 3 is devoted to the description of our proposed method. In
Sect. 4, we evaluate the performance and speed of our method in comparison to
other dictionary learning algorithms.

2 The Dictionary Learning Problem

Let {yl ∈ R
p}L

l=1 be the set of training signals, and {xl ∈ R
q}L

l=1 be the set of
corresponding representation coefficients over the dictionary D ∈ R

p×q. Forming
a training data matrix by Y � [y1 . . .yL], and the representation matrix by
X � [x1 . . .xL], the dictionary learning problem for sparse representations, as
used in [13], can be mathematically modeled by the joint optimization problem
of the form

argmin
D∈D,X

{‖Y − DX‖2F + λd‖X‖1,1} (1)

where ‖.‖F indicates the Frobenius norm, and ‖X‖r,s �
∑

i (
∑

j |xi,j |r)s/r.
Although other matrix norms (generally 0 < r < 1 and 0 < s < 1), pro-
motes sparsity in the representations in (1). ‖X‖1,1 is used for this purpose due
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to its convexity and also its separability into the absolute sum of the individual
entries of the matrix i.e. ‖X‖1,1 =

∑
i

∑
j |xi,j |. In (1), λd is the desired value for

the regularization parameter, and is set to achieve a suitable tradeoff between
the accuracy of the representations and the sparsity level in X. The desired value
of the regularization parameter depends on the application in which the dictio-
nary learning is employed. As an example in [4], this value is set proportional
to the variance of Gaussian noise for an image denoising application. Since solv-
ing the optimization problem in (1) tends to increase the norms of the atoms,
which unfavorably affects some sparse representation algorithms, it is desirable
to constrain the norms of the dictionary atoms by defining the admissible set of

D = {D ∈ R
p×q s.t ∀j ||dj ||2 ≤ 1}. (2)

3 Our Proposed Method

Using a homotopy approach, we start to solve the optimization problem in (1)
with a high value of the regularization parameter, and then decrease it along the
iterations adaptively until reaching the desired value of λd. The starting value
for the regularization parameter and the procedure of choosing its values along
iterations is discussed in Sect. 3.3. So our proposed method at the nth iteration,
instead of a fixed value of λd, solves the optimization problem of the form

argmin
D∈D,X

{‖Y − DX‖2F + λ(n)‖X‖1,1} (3)

where as n grows, λ(n) decreases adaptively.
In order to solve the minimization problem in (3), our algorithm alternates

among the sparse coding stage, the dictionary update stage and the update of
λ(n). Our method also uses X(n) and D(n) found in the optimization problem
with λ(n) as a warm-start for solving the optimization problem with the nearby
value of λ(n+1). Using a warm-start strategy has been previously shown to be
effective in improving the speed of dictionary learning algorithms [11,13].

3.1 Sparse Coding Stage

In our method, a sparse coding algorithm which belongs to the class of IST
methods is used. These methods benefit from a proper initialization enabling
us to use the warm-start strategy. At the kth iteration of the sparse coding
algorithm in the nth dictionary learning iteration, the sparse coding solves

X(k+1) = argmin
X

{‖X − U(k)‖2F +
λ(n)

c
‖X‖1,1} (4)

in which c should satisfy c > ‖DTD‖ where ‖.‖ stands for the spectral norm,
and U(k) � X(k) + 1

c (DT (Y − DX(k))) [12]. The global optimum of the convex
and non-smooth problem in (4), is the point with zero subgradient i.e.

2c(X − U(k)) − λ(n)P ∈ 0 (5)
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where P = ∇‖X‖1,1 is a set of matrices whose entries satisfy
⎧
⎨

⎩

pi,j = 1 if xi,j > 0
pi,j ∈ [−1 1] if xi,j = 0
pi,j = −1 if xi,j < 0.

The point that satisfies the optimality condition (5), is obtained by X(k) =
Sλ(n)

2c

(ui,j) which is a soft thresholding operator on entries of U with the thresh-

old value of λ(n)

2c . Using the soft thresholding operator there is one single matrix
P(k) from the set P which makes the condition in (5) turn into

2c(X(k) − U(k)) − λ(n)P(k) = 0. (6)

3.2 Dictionary Update Stage

The dictionary update stage is to find the minimization problem in (1), while X
is fixed with the value found in the previous sparse coding stage. Similar to [7],
we use the gradient descent algorithm. So in the kth iteration of the gradient
descent of the nth iteration of dictionary learning algorithm, our method updates
the dictionary by

D(k+1) = D(k) + ρ(Y − D(k)X(n))X(n)T (7)

where ρ is an appropriate constant and is set to .001 in our implementations.
Using the gradient descent has a fast implementation, and due to using a proper
initialization, enables us to employ a warm-start strategy, similar to sparse cod-
ing algorithm in our method. Then, our algorithm normalizes the atoms whose
norms are more than one to the unit norm and keep the other atoms intact.

3.3 Determining the Regularization Parameter

In many homotopy methods, decreasing the regularization parameter is done
heuristically by a linear or exponential decay [9]. However in this section, we
propose a more sophisticated choice for this value.

One of the disadvantages of the alternating minimization between the two
stages of dictionary learning algorithms is that each stage may not preserve
the optimality of the other one. So the solutions in an alternating minimization
approach might oscillate around an optimal point. To understand this, assume
without loss of generality that dictionary update is performed after sparse coding
stage at each iteration. Updating the dictionary may not preserve the optimality
condition derived for the sparse coding in (5) or equivalently in (6), since this
condition is not considered in the dictionary update stage. So updating D might
lead to a deviation from the optimality condition of sparse coding at end of
each iteration of dictionary learning algorithm. Being capable of changing the
regularization parameter in our method, in order to alleviate this, after the
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dictionary update stage we choose the regularization parameter in such a way
that it best preserves the optimality condition in (6) for sparse coding. The
criterion for optimality of sparse coding stage could be the Frobenius norm of
the term that is set to zero in (6). After the alteration of D, the value of U
changes, and the mentioned term might not be equal to zero. So we find the
value of the regularization parameter which minimizes the Frobenius norm of
the term set to zero in (6), after updating the dictionary, based on the current
estimate of D and X i.e.

λopt = argmin
λ

‖R(n) − λP(n)‖2F

= argmin
λ

{Tr(R(n)TR(n)) + λ2Tr(P(n)TP(n)) − 2λTr(P(n)TR(n))} (8)

where R(n) = 2c(X(n) − U(n)). The global optimum of the above least square
minimization problem can be found by setting its derivative to zero which leads

λopt =
Tr(P(n)TR(n))

Tr(P(n)TP(n))
. (9)

Having found the optimal value for λ(n) based on the current estimation of
X and D, in order to follow a homotopy, we gradually decrease this value by
a constant factor which leads to λ(n+1) = (1 − ε)λopt where ε is a small con-
stant. However, implementing some iterations of our algorithm without applying
λ(n+1) = (1 − ε)λopt is desirable, since it leads to equilibrium for a joint point of
(X,D, λ) (Note that the value of λ here is higher than the desired value). The
value of regularization parameter is also forced to be bounded to the desired
value of λd which makes final iterations be implemented with this value of reg-
ularization parameter. It is worth mentioning that the procedure of finding the
optimal value for regularization parameter and decreasing it by a constant factor
has been used in a homotopy based sparse coding (with fixed dictionary) in [12].
However the procedure of obtaining the optimal value is completely different
and novel in our method, and is adapted to the dictionary learning application.

The initial optimal value of the regularization parameter is set to ‖DT Y ‖∞,
where ‖.‖∞ returns the maximum absolute value of the matrix entries, since for
λ(1) > ‖DT Y ‖∞, the solution of zero is optimal in (5) [12], and consequently, no
update of initial dictionary is occurred in the dictionary update stage (Fig. 1).

It is worth mentioning that the performance of homotopy methods depends
on the tracing the optimal solutions while the value of the regularization para-
meter changes. As we discussed in this subsection, by the proposed optimal
choice for the regularization parameter, our algorithm tends to keep the optimal
solutions along iterations for both dictionary and sparse coefficients.

4 Simulations Results

In this section, we compare our method with other methods using synthetic
signals to evaluate the performance of algorithms in recovering the dictionary
that produces the data.
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– Initialization: Choose an initial dictionary D ∈ Rp×q

– For n = 1, . . . , N (main loop)
Sparse coding stage:
1. Initialize with D = D(n−1), X(k=0) = X(n−1)

2. For k = 1, . . . , Ks

U(k) = X(k−1) +
1

c
(DT (Y − DX(k−1))),X(k) = S λ(n)

2c

(U(k))

End For

3. Set X(n) = X(Ks)

Dictionary update stage:
1. Initialize with X = X(n), D(k=0) = D(n−1)

2. For k = 1, . . . , Kd

D(k) = D(k−1) + ρ(Y − D(k−1)X)XT

Normalize columns of dictionary whose norms are more than 1.
3. End For
4. Set D(n) = D(Kd)

Regularization parameter selection:
1. Obtain the optimum regularization parameter λopt by (9)
2. decrease the regularization parameter by λ(n+1) = max((1 − )λopt, λd)

– End For (main loop)

– Final answer is D = D(N)

Fig. 1. Our proposed dictionary learning algorithm

A dictionary of size 30 × 60 is randomly generated with independent identi-
cally distributed (i.i.d.) Gaussian entries, and its columns are normalized to have
unit norms. 4000 sample signals {yl}4000l=1 are produced by linear combination of
a few (precisely determined by Q in each experiment) number of atoms with the
coefficients which are i.i.d. Gaussian in random and independent locations. We
compare our method with MOD [5] and K-SVD [1] as two well-known meth-
ods, and also with the Majorization dictionary learning algorithm [13] which
has improved those methods and its sparse coding algorithm is similar to our
method. For other methods, the MATLAB codes published online by the authors
were used. All the experiments were done with core i5 CPU with 4 GB of memory
using Matlab 2011a under Microsoft Windows 7 operating system.

The percentages of recovered atoms are compared for different methods dur-
ing the execution time with data generated by Q = 4 number of atoms in Fig. 2.
The CPU time is considered in this experiment to roughly compare the compu-
tational complexity of the algorithms. The value of ε for homotopy decreasing
factor is set to 0.05 and applied every 4 iterations (to obtain an equilibrium point
for a higher value of the regularization parameter, as described in the previous
section). We found that this implementation leads to an appropriate tradeoff
between the speed and preserving the performance in our algorithm. The desired
value of λd in our algorithm and the value of the regularization parameter in MM
method are both set to 0.18. Figure 2 shows that our method converges faster
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and more accurate in this case. In order to better compare the speed of the algo-
rithms, the CPU times are reported for different algorithms while the sparsity
level Q varies from 3 to 6. Also, the percentages of the recovered atoms for this
experiment are shown in Fig. 3(a) to compare the performance of algorithms in
recovering dictionary atoms. The corresponding implementation times are shown
in Fig. 3(b). The values are averaged over three independent implementations of
algorithms. Based on this figure, our algorithm is more successful in recovering
the dictionary except for Q = 3, and is faster in all the cases, compared to other
methods.

Fig. 2. Comparison of the percentage of recovered atoms vs. the computational time
for different methods in Q = 4.

Fig. 3. Comparison of performance of dictionary learning algorithms for datasets with
different values of sparsity level Q: (a) Percentage of recovered atoms, (b) implemen-
tation time.

5 Conclusion

In this paper, we proposed a homotopy-based method for dictionary learning
for sparse representation in which the value of the regularization parameter
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decreases along iterations. We proposed an adaptive selection for the regulariza-
tion parameter which best preserves the optimality of sparse coefficients after
the dictionary update at each iteration. The results showed that our method is
more successful in recovering the dictionaries compared to other methods, and
it has faster implementation time.
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