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Abstract. In this paper, we firstly propose an adaptive method based
on the idea of Least Mean Square (LMS) algorithm and the concept of
smoothed l0 (SL0) norm presented in [1] for estimation of sparse Inter Sym-
bol Interface (ISI) channels which will appear in wireless and acoustic un-
derwater transmissions. Afterwards, a new non-adaptive fast channel
estimation method based on SL0 sparse signal representation is proposed.
ISI channel estimation will have a direct effect on the performance of the
ISI equalizer at the receiver. So, in this paper we investigate this effect
in the case of optimal Maximum Likelihood Sequence-by-sequence Equal-
izer (MLSE) [2]. In order to implement this equalizer, we propose a new
method called pre-filteredParallel Viterbi Algorithm (or pre-filtered PVA)
for general ISI sparse channels which has much less complexity than ordi-
nary Viterbi Algorithm (VA) and also with no considerable loss of
optimality, which we have examined by doing some experiments. Indeed,
Simulation results clearly showthat theproposed concatenated estimation-
equalization methods have much better performance than the usual equal-
ization methods such as Linear Mean Square Equalization (LMSE) for ISI
sparse channels, while preserving simplicity at the receiver with the use of
PVA.

1 Introduction

An sparse channel is a channel whose impulse response has only a few significant
coefficients. More precisely, in the framework of digital communication there are
special scenarios in which one can model the overall channel as a Finite Im-
pulse Response (FIR) sparse filter which will produce interference with previous
samples. Such channels may be encountered, for example, in wireless multipath
fading channels, acoustic underwater channels, etc. In such scenarios, the oper-
ation of estimating the channel and equalizing the produced ISI is an important
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task of the receiver. Considering the problem of estimating the channel, many
efforts have been done to design batch estimation algorithms [3,4,5]. Most of
these algorithms try to exploit the sparsity of the channel or detecting the lo-
cations of non-zero taps of the Channel Impulse Response(CIR). In addition to
these, adaptive algorithms are also presented in the literature which are based
on iterative estimating of the sparse filter [6]. At the other side, the problem
of equalizing the output of sparse channel is in the point of interest. Specially
optimal Viterbi equalization is desired [7].

In this work, we try to investigate these two problems (which are so related to
each other) in the case of ISI sparse channels with a novel approach. According
to the best knowledge of the authors, all of the works around the problems of
estimating the channel and equalization have considered ISI channel as ‘FIR
causal filter’ with no constraint on the taps. The first contribution of our work is
to solve these two problems in the case of using a matched filter structure at the
receiver. In this situation, the resulting sparse FIR channel can be assumed to be
minimum phase [2] (the reason of this assumption is described in Sect. 2). This
assumption can make our problem much easier to solve (as will be shown in Sect.
3 of this work). So, by the use of this assumption we develop our algorithms in
order to find the solutions to both of the estimation and equalization problems.
Followed by these, we experimentally examine the efficiency of the proposed
algorithms in a concatenation of estimation and equalization.

In the first section of this paper, motivated by Smoothed l0-norm (SL0) algo-
rithm [1] which is known as a fast sparse representation technique, we propose
two new approaches for sparse channel estimation problem. Firstly, by modify-
ing LMS algorithm introduced by Widrow and Hoff [8], we propose an adaptive
algorithm similar to the algorithms proposed in [6] (which are named as Zero-
Attracting LMS (ZA-LMS) and Re-weighted Zero-Attracting LMS (RZA-LMS)
in [6]) called SL0-LMS. We show that by exploiting the sparsity information and
using the concept of Smoothed l0-norm we can improve the filtering performance.
The second proposed algorithm is a non-adaptive algorithm which uses SL0 in a
direct manner to estimate channel coefficients by finding the sparsest solution1

of an under-determined system of linear equations [1]. Although this algorithm
is non-adaptive, it uses the speed of SL0 while preserving enough accuracy for
the act of equalization. It is important to mention that none of the proposed
algorithms in this section depends on the assumption of modelling the channel
as a minimum phase filter and can be used in the cases when we do not use the
matched filter structure at the receiver.

In the next section, efficient equalization based on Maximum Likelihood
Sequence-by-sequence Equalization (MLSE) will be described. In conventional
ISI sparse channels, implementation of MLSE using ordinary VA is almost impos-
sible (because of the fact that computational complexity of the receiver grows
exponentially with the channel memory [2]). However, in some special cases
known as zero-pad ISI channels, Parallel Viterbi Algorithm (PVA) is used in-
stead of ordinary VA [9] which has much less complexity. In the case of general

1 Solution with minimum l0-norm, i.e. minimum number of non-zero coefficients.
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ISI sparse channels, at our best knowledge, no such solution is yet presented in
the literature. So, we propose a new method for using PVA in general ISI sparse
channels based on the modelling of the ISI channel with a minimum-phase FIR
filter. Our idea is based on the usage of a pre-filter at the receiver. In fact, this
filter will re-shape the channel structure to a zero-pad channel which is presented
in [9] and so, applying the PVA method will be possible afterwards. Although
this method is not optimal, as we will see in experimental results, we do not
have considerable amount of loss in optimality in most practical cases.

In the last section, simulation results will verify the efficiency of the presented
algorithms in both fields of estimation of the channel and equalization of the
produced ISI. It is important to note that the overall performance of the receiver
system (as a concatenation of channel estimation and ISI equalization) depends
on both of these parts which will be evaluated in these simulations and it is
considered as the overall measure of efficiency of the proposed algorithms for
both estimation and equalization tasks.

2 ISI Sparse Channel Estimation

In this section, we would like to estimate the ISI sparse channel coefficients while
transmitting digital bits through this channel using Binary Phase Shift Keying
(BPSK) modulation. Including the BPSK modulator and de-modulator with the
channel and assuming that we are using matched filter structure at the receiver,
the total ISI channel can be modelled as an FIR minimum-phase filter f =
[f0, · · · fM−1]T , which has only a few non-zero coefficients, followed by an additive
white Gaussian noise (v(n)) which is independent of the input [2]. To show that
this assumption is reasonable, we note that by sampling at the output of the
matched filter with a suitable period, it is convenient to model the overall channel
as a symmetric non-causal FIR filter with taps equal to {x(n) : −M ≤ n ≤ M}
and an additive coloured noise z(n) with spectral density of X(z) = Z {x(n)} in
which Z {.} denotes the Z-transform operator [2]. This model of describing an ISI
channel is called the “X” model in the area of communication [2]. Additionally,
we force the sparsity constraint on the taps of x(n) which is a valid constraint in
the scenarios that were mentioned in the previous section. Although this model
is very common in the literature, we did not use this model in our work. Instead,
we use a simpler model called “F” model [2] which can be made by decomposing
the Z-transform of channel impulse response into a minimum phase filter and its
conjugate reciprocal (X(z) = F (z)F ∗( 1

z∗ ))2. So by concatenating a whitening
filter G(z) = 1

F∗( 1
z∗ )

to the end of sampler, the equivalent discrete channel would
be a minimum phase FIR filter with taps equal to {f(n) : 0 ≤ n ≤ M} and
F (z) = Z {f(n)} = G(z)X(z).

According to the relation between x(n) and f(n) in the frequency domain,
we have x(n) = f(n) ∗ f∗(−n) in which ∗ denotes the convolution operation.
So according to this relation, when x(n) is very sparse it is very unlikely that

2 The possibility of this decomposition is due to the symmetry of x(n).
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f(n) would not be sparse. Although we have currently no mathematical proof
for this, it can heuristically seen from the convolution sum in which it is very
unlikely that the convolution of two non sparse signal produces an sparse signal.
It can also be experimentally verified. According to all of these, we use the above
mentioned minimum phase sparse FIR model for the ISI channel which will make
our problem much easier to solve.

Now, let d(n) be the last observed sample of the noisy output signal of the
channel and let u(n) be a vector that contains the last M samples of the input
signal of the ISI sparse channel, that is:

u(n) = [u(n), u(n − 1), · · · , u(n − M + 1)]T . (1)

Consequently, we have the following input-output relation for the channel:

d(n) = fT u(n) + v(n) . (2)

In order to estimate the channel, we use a semi-random training sequence (which
is known to the receiver) that is generated by producing a random block of 0,
1 bits with length equal to M and transmitting it periodically (note that the
BPSK modulator will map these bits to ±1 symbols).

2.1 Adaptive Sparse Channel Estimation

Review of ZA-LMS and RZA-LMS. In the state of transmitting the training
sequence, the standard LMS, which is based on iteratively minimizing the cost
function J(w(n)) = E{e2(n)}, adaptively estimates f by the following recursion:

w(n + 1) = w(n) + μe(n)u(n) . (3)

where w(n) is the estimated adaptive filter at the nth iteration, μ is the step
size parameter and e(n) = d(n) − w(n)T u(n) [8]. Then, in ZA-LMS, the cost
function is modified by adding a penalty term based on l1 norm to enforce some
sparsity on w(n) which is an estimation of the sparse vector f :

J1(w(n)) =
1
2
E{e2(n)} + γ‖w(n)‖1 . (4)

Using steepest descent, the channel coefficients update equation will then be [6]:

w(n + 1) = w(n) + μe(n)u(n) − μγ sgn(w(n)) . (5)

In RZA-LMS the new cost function is defined as [6]:

J2(w(n)) =
1
2
E{e2(n)} + γ

M∑

i=1

log(1 + ε|wi|) . (6)

The log-sum term has been used because it behaves more similarly to the l0
norm than ‖w(n)‖1. So, the update equation will be

wi(n + 1) = wi(n) + μe(n)ui(n) − μγε
sgn(wi(n))
1 + ε|wi(n)| . (7)
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The New Smoothed l0-LMS Algorithm (SL0-LMS). Inspired from the
idea of the SL0 algorithm [1], we propose replacing the above mentioned cost
function by:

J3(w(n)) =
1
2
E{e2(n)} + γ‖w(n)‖0 , (8)

in which, ‖w‖0 is replaced by its smooth approximation as [1] in order to exploit
the sparsity nature of the estimated channel, i.e. we use this approximation:

‖w‖0 ≈ M −
M∑

i=1

e−w2
i /2σ2

. (9)

So, the update equation will be

wi(n + 1) = wi(n) + μe(n)ui(n) − ργ

σ2
wi(n)e−w2

i (n)/2σ2
. (10)

As shown in [1], (9) tends to equality when σ → 0. Consequently, we expect
the SL0-LMS have a better performance than RZA-LMS and the experimental
results prove this. Unfortunately, this algorithm requires adjusting the parameter
σ, which involves nested loops and thus increases the computational complexity.

2.2 Non-Adaptive SL0 Based Sparse Channel Estimation

In this section, we propose a non-adaptive channel estimation algorithm which
will estimate the channel coefficients after observing m � M successive samples
of the output signal of the channel. The relation of theses observation to the
input sequence can be described in the matrix form as follows :

dm×1 = Am×M .fM×1 + v . (11)

in which, v is a vector including samples of the Gaussian noise, d is the vector of
observations, f is the vector of channel taps and A is a Toeplitz random matrix
known to the receiver whose rows are circular shift of q = [q0, · · · , qM−1]T and
q is a M -length random block of ±1s (see Sect. 2). Consequently, if we start
observing the channel output after l transmissions, then A can be expressed as
the following matrix:

A =

⎡

⎢⎢⎢⎣

ql ql−1 ql−2 . . . q0 qM−1 . . . ql+1

ql+1 ql ql−1 . . . q1 q0 . . . ql+2

...
...

...
...

...
...

. . .
...

ql−1 ql−2 ql−3 . . . qM−1 qM−2 . . . ql

⎤

⎥⎥⎥⎦ . (12)

Now, (11) is a noisy under-determined system of linear equations which has to be
solved under the sparsity constraints. Now, we want to find the sparsest solution
of (11) while having a constraint on square error, i.e. we are trying to solve the
following optimization problem:

argmin ‖f̃‖0 s.t ‖Af̃ − d‖2
2 ≤ ε . (13)
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in which we assume that in (11), ‖v‖2
2 ≤ ε. There are many methods for finding

the sparsest solution of a noisy under-determined system of linear equations such
as Basis Pursuit De Noising (BPDN) [10], Least-Absolute Shrinkage and Selec-
tion Operator (LASSO) [11] and Robust SL0 [1,12]. By the use of simulations,
we have seen that there is not much difference in the accuracy of Robust SL0,
LASSO and BPDN in our application and so, we use Robust-SL0 according to
its speed in comparison to the other two algorithms. So, in our experimental
results we just mentioned the results of Robust-SL0 algorithm.

3 Pre-Filtered PVA Equalization in General ISI Sparse
Channels

After estimating channel coefficients using one of the methods of the previous
section, in this part, efficient equalization in general ISI sparse channels will be
investigated (in which the channel has a large amount of memory while having
a few number of significant coefficients). In these channels, implementation of
the optimum ISI equalizer (MLSE) by the use of Viterbi algorithm is almost
impossible (because computational complexity of the receiver grows exponen-
tially with channel memory [2]). PVA which uses parallel trellises can be used
in a special case of such channels known as the zero-pad channel [9] in which
channels have equally spaced coefficients. Assume that w is a zero-pad channel
with the length M = K.L + 1, then it has a structure as follows:

w = [w0 0 0 . . .︸ ︷︷ ︸
K coefficients

wK 0 0 . . .︸ ︷︷ ︸
K coefficients

w2K 0 0 . . .︸ ︷︷ ︸
K coefficients

. . . 0 0 wL.K ] . (14)

As in [9], it is evident that received symbols {u0, uK , u2K . . .} will have in-
terference between themselves while having no interference on any other sym-
bols and they will generate output symbols {d0, dK , d2K . . .}. Similarly, symbols
{u1, uK+1, u2K+1 . . .} have ISI between themselves and have no interference with
any other symbols and so on. So, we can equalize this channel using K parallel
trellises each using Viterbi algorithm for a channel with coefficients as:

w′ = [w0 wK w2K . . . wL.K ]T . (15)

and the input of the jth trellis are symbols {di.k+j : ∀i ∈ N}. So, this PVA
structure will have less overall complexity than a single trellis in these channels.
In fact, the complexity of a single trellis is of O(2M ) and the complexity of PVA
is of O(K.2L) which is much less than the single trellis case (for example, in
our experiment K = L = 64 and hence, implementation of normal Viterbi al-
gorithm which requires 264 states is impossible. But having 8 trellises each with
28 = 64 states is practical and possible). In the case of general ISI sparse chan-
nels, reducing the complexity of Viterbi algorithm is much more sophisticated
and according to the authors’ best knowledge, no exact solution has been pre-
sented in the literature [9]. To find a solution for the case of general ISI sparse
channel, firstly we use the matched filter structure at the receiver and so, as was
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mentioned before, we can use the “F” model of the channel in which the channel
impulse response can be assumed to be an FIR minimum-phase sparse filter. In
this way, we can change the channel to be similar to the comb shape channel
described above. Precisely, our idea is based on a pre-filtered equalization. This
pre-filter will re-shape the channel impulse response to a zero-pad channel which
has coefficients similar to the original channel, but they are moved so that the
coefficients of the resulting channel will be equally spaced. In order to build
such a filter, we use an IIR filter structure which has the estimated channel as
its denominator and re-shaped channel as its numerator. In other words we use
the following filter:

Wpre(z) =
F̃ (z)
F (z)

. (16)

in which F (z) and F̃ (z) are the Z-transforms of the channel impulse response and
its reshaped version, respectively. According to the fact that the channel impulse
response is minimum-phase, this IIR filter will be stable and causal. So, PVA
can be implemented afterwards using a few number of trellises which will cause
a great amount of computational complexity reduction, but the equalization
structure will be the dependent to the CIR which is somehow impractical.

4 Experimental Results

In this section, firstly we compare the performance of channel estimators men-
tioned in Sect. 2.1 which are SL0-LMS (Eq. 10), ZA-LMS (Eq. 5), RZA-LMS
(Eq. 7) and standard LMS. In this experiment, the input signal is an equiprob-
able random vector of ±1 with length 5000 and additive noise is white Gaussian
random sequence of length 5000 and variance 10−3. The channel has 256 taps
where only 28 of them are non zero (which are selected random). The result
of various estimation methods with equal step-sizes is shown in Fig. 1. It is
clear that for this long sparse channel, the SL0-LMS is drastically better than
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Fig. 2. Comparison of the BER-SNR curves for our estimation/equalization methods

the other algorithms, both in steady-state and convergence rate behaviour while
needs a pre-adjustment of parameter σ.

After that, concatenation of the proposed channel estimation methods with
PVA will be applied in two experiments in order to test the efficiency of the
proposed channel estimation algorithms and pre-filtered PVA. In these exper-
iments, our equalization method will be compared to adaptive LMS Equalizer
(LMSE) and approximate Bit Error Rate (BER) bounds for MLSE introduced
in [2]. Channel taps for these two experiments are chosen at random, but with
the constraint that the channel is minimum-phase according to our model. So,
we generate random channels and select two of those which are minimum phase.
In the case of LMSE, we have used an adaptive filter that it has the same number
of taps comparing to the actual channel. Additionally the one for experiment 1 is
so close to the comb shape, while the one for experiment 2 is not. The resulting
BER vs Signal to Noise Ratio (SNR) per Bit is shown in Fig. 2(a) and Fig. 2(b).
It is important to note that the derivation of the optimum MLSE’s BER curves
is impossible during the simulation (according to its complexity), and so we use
approximate bounds for “Optimum MLSE” curves in these figures instead of
using the exact curves. Advantages of our estimation methods and the proposed
pre-filtered PVA equalizer could be seen in these results.

5 Conclusion

In this paper, we showed that with the use of proposed estimation/equalization
methods, we benefit the speed of adaptive filtering, the optimality of ML equal-
izer and the complexity reduction of PVA. According to that, we have no sig-
nificant loss of performance at the receiver while having much reduction in
complexity. In fact, pre-filtering may increase the noise power, but as we have
shown experimentally, the performance of our method is not much less than
MLSE bound and so is appropriate in the sense of error performance.
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