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Abstract—We consider the problem of direction-of-arrival
(DOA) estimation in unknown partially correlated noise envi-
ronments where the noise covariance matrix is sparse. A sparse
noise covariance matrix is a common model for a sparse array
of sensors consisted of several widely separated subarrays. Since
interelement spacing among sensors in a subarray is small, the
noise in the subarray is in general spatially correlated, while, due
to large distances between subarrays, the noise between them
is uncorrelated. Consequently, the noise covariance matrix of
such an array has a block diagonal structure which is indeed
sparse. Moreover, in an ordinary nonsparse array, because of
small distance between adjacent sensors, there is noise coupling
between neighboring sensors, whereas one can assume that non-
adjacent sensors have spatially uncorrelated noise which makes
again the array noise covariance matrix sparse. Utilizing some
recently available tools in low-rank/sparse matrix decomposition,
matrix completion, and sparse representation, we propose a
novel method which can resolve possibly correlated or even
coherent sources in the aforementioned partly correlated noise.
In particular, when the sources are uncorrelated, our approach
involves solving a second-order cone programming (SOCP),
and if they are correlated or coherent, one needs to solve a
computationally harder convex program. We demonstrate the
effectiveness of the proposed algorithm by numerical simulations
and comparison to the Cramer-Rao bound (CRB).

I. INTRODUCTION

The assumption of spatially white noise in an array of

sensors (antennas) is violated in many practical scenarios.

For example, when the antennas are closely spaced, the

small interelement spacing leads to strong mutual coupling

between array elements [1]. A consequence of this coupling

would be correlation between the noise of array elements.

It is known that the performance of conventional direction-

of-arrival (DOA) estimation methods degrades significantly

when the noise is spatially correlated (colored) [2]–[4]. Col-

ored noise in an antenna array can also be present due

to environmental conditions [5]. Nevertheless, the problem

of DOA estimation in an unknown spatially colored noise

is not solvable without some restrictions on the impinging

sources or on the noise field [4]. A popular solution is to

exploit some largely spaced subarrays in which due to large

distance between these subarrays, the inter-subarray noise is
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uncorrelated. These configurations for sensor arrays are also

known as sparse arrays.

Different algorithms have been proposed to use this type

of arrays to estimate the DOA that are mainly based on

the maximum likelihood (ML) criterion; see e.g., [6], [7].

However, ML approaches lead to solving some nonconvex

optimization problems which are generally very hard to solve

and there is no guarantee for convergence to the global

optimum solution. Moreover, the ML approaches are only

derived under the assumption of Gaussian data.

In this paper, we propose a new algorithm based on matrix

rank minimization and sparse representation techniques which

can effectively estimate the directions of possibly correlated

emitters in environments where the noise covariance matrix is

unknown but sparse by solving a convex optimization program.

Particularly, this algorithm can be used when a sparse array is

exploited, the noise field is nonuniform (the noise covariance

matrix is diagonal but every diagonal entry is arbitrary) [3], or

only there is noise coupling between adjacent sensors. Also,

it is worth mentioning that we do not impose any assumption

on the distribution of the noise and sources; we only assume

that they are zero-mean and stationary random processes.

The rest of this paper is organized as follows. After formu-

lating the problem in Section II, we introduce our method in

Section III and present some numerical examples in Section

IV. Section V concludes the paper.

II. PROBLEM FORMULATION

Consider an array of m antennas and assume that q

sources are impinging on this array. Further, assume that the

propagation time of the received signals across the array is

much smaller than the inverse of the signal bandwidth (the

assumption of being narrow-band). Samples at the output of

antennas can be formulated according to the model

x(n) = A(θ)s(n) +w(n), n = 1, · · · , N, (1)

where x(n) =
(
x1(n), · · · , xm(n)

)T
denotes the vector of

samples at time instant n from antenna 1 to m, N is the total

number of collected samples, A(θ) =
[
a(θ1), · · · ,a(θq)] is

the array manifold at unknown directions θ = (θ1, · · · , θq)T ,

s(n) =
(
s1(n), · · · , sq(n)

)T
designates the vector of source

signals at time instant n, and w(n) =
(
w1(n), · · · , wm(n)

)T
is the vector of noise at different antennas.
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III. THE PROPOSED APPROACH

First, we briefly review the concepts of matrix completion

(MC) and low-rank/sparse matrix decomposition which are

used in the derivation of our algorithm.

A. Introduction

In the matrix completion problem, we observe some entries

of a matrix and want to recover other unobserved elements

[8]. Generally, it is not possible to reconstruct a matrix from

a subset of its entries. However, if the matrix is low-rank and

the position of revealed entries follows a certain random law,

then using

min
X

rank(X) s.t. [X]ij = [M]ij , (i, j) ∈ Ω, (2)

in which M ∈ R
n1×n2 is the low-rank matrix to be recon-

structed and Ω ⊂ {1, · · · , n1} × {1, · · · , n2} is the index set

of observed entries, one can recover M with high probability

[8]. The convex relaxation of (2) leads to

min
X

‖X‖∗ s.t. [X]ij = [M]ij , (i, j) ∈ Ω, (3)

where ‖X‖∗ =
∑r

i=1 σi(X) denotes the nuclear norm of

matrix X in which σi(X) is the ith largest singular value

of X and r = rank(X). Under more restrictive conditions,

solving (3) results in obtaining the unique solution of (2) [8].

When the observations are contaminated by additive noise,

i.e., X = M+W, where W is a matrix modelling the additive

noise, (3) can be updated to

min
X

‖X‖∗ + λMC

∑

i,j∈Ω

(
[X]ij − [M]ij

)2
, (4)

where λMC > 0 is some constant to regularize between being

low-rank and consistency with noisy observations.

Now, suppose that we have a matrix X ∈ R
n1×n2 which

is equal to the sum of a low-rank and a sparse matrix. More

precisely,

X = L+ S,

where L is a low-rank matrix and S is a sparse matrix in which

only a few entries are nonzero. The problem of decomposing

X into L and S is underdetermined in general since the

number of unknowns is larger than the number of equations.

This task can be formulated as

min
L,S

rank(L) + γ1‖S‖0 s.t. X = L+ S, (5)

in which γ1 > 0 is a regularization parameter and ‖·‖0 denotes

the number of nonzero entries of a matrix.

It has been shown that, under some mild assumptions,

solving (5) recovers the matrices L and S [9]. Nonetheless,

this problem is NP-hard. The tightest convex relaxation of (5)

equals [9]

min
L,S

‖L‖∗ + γ2‖S‖1 s.t. X = L+ S, (6)

where ‖S‖1 =
∑n1

i=1

∑n2

j=1 |[S]ij |.
Under some mild deterministic or probabilistic conditions,

(5) and (6) share the same unique solution [9], [10]. When

X = L+S+W, where W is a additive noise, (6) is updated

to

min
L,S

‖L‖∗ + γD‖S‖1 + λD‖X− L− S‖2F , (7)

where, similar to (4), λD is some regularization parameter and

‖ · ‖F designates the Frobenius norm.

B. The main idea

The main idea of our approach to estimate the vector of

unknown directions θ relies on the decomposition of the

sample covariance matrix. To be precise, assuming sources

and noise are uncorrelated, from (1), we have

Rx = ARsA
H +Rw, (8)

where Rx = E{x(n)x(n)H}, Rs = E{s(n)s(n)H}, and

Rw = E{w(n)w(n)H} are covariance matrices.

It can be verified that rank(ARsA
H) ≤ q; thus, if the

number of sources is much smaller than the number of anten-

nas, then ARsA
H will be a low-rank matrix. Furthermore, we

assume that Rw is an unknown matrix but sparse. As discussed

in Section I, this assumption can be satisfied in a sparse array

of antennas or when there is noise coupling between adjacent

sensors.1 For instance, when a uniform linear array (ULA) is

exploited and the noise of neighboring sensors is correlated,

Rw may have the following structure

Rw =




σ2
1 σ1,2 0 0 · · · 0

σ2,1 σ2
2

. . . 0 · · · 0

0
. . .

. . .
. . . 0

...
... 0

. . .
. . .

. . . 0
0 · · · 0 σm−1,m−2 σ2

m−1 σm−1,m

0 · · · 0 0 σm,m−1 σ2
m




.

(9)

In summary, to estimate DOAs, we make the following

assumptions.

• A1: The noise and sources are zero-mean wide-sense

random processes and are uncorrelated with each other.

• A2: The radiated sources can be correlated or even

coherent.

• A3: The noise covariance matrix is arbitrary but sparse.

The support of this matrix, location of nonzero entries,

are known from, for example, the geometry of the array.

• A4: The number of sources is unknown and much smaller

than the number of antennas.

As a first solution, we can exploit program (7) to recover

ARsA
H and Rw from the matrix Rx. However, using

the above assumptions more efficiently, we can exploit the

information that we know the support of Rw to obtain better

results. Let Ω denote the support set of Rw and PΩc be a

projection to the set Ωc = {1, · · · ,m}×{1, · · · ,m} \Ω such

that

PΩc(X) =

{
0 (i, j) ∈ Ω,
[X]ij otherwise,

1
Rw = σ2

I and Rw = diag(σ2

1
, · · · , σ2

m
) are also sparse covariance

matrices and can be handled by the proposed algorithm.
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Applying PΩc on (8), we get

PΩc(Rx) = PΩc(ARsA
H).

Consequently, the task of estimating ARsA
H simplifies to a

MC problem,

min
X

‖X‖∗ s.t. PΩc(X) = PΩc(Rx).

However, in practice, only an estimate of Rx is available.

Let R̂x = 1
N

∑N

n=1 x(n)x(n)
H designate the sample covari-

ance matrix, then we have R̂x = ARsA
H +Rw +Q, where

Q is the disturbance term due to finite number of samples.

Particularly, when sources and noise have normal distributions,

Q has a recentered-Wishart distribution [11]. To mitigate the

effect of finite samples, we use the following program to

recover ARsA
H

L̂ = argmin
X

{‖X‖∗ + λ1‖PΩc(X)− PΩc(R̂x)‖F | X � 0},
(10)

where X � 0 means that X is a positive semidefinite matrix.

In (10) and other optimization programs that follow, the data

fidelity terms (e.g., ‖PΩc(X) − PΩc(R̂x)‖F in (10)) are

not squared. This lets us select the regularization parameter,

similar to [12], independent from the scaling of the covariance

of Q. If the support of Rw is not known, one can use

(L̂, R̂w) = argmin
(L,S)

{‖L‖∗ + γD‖S‖1

+ λD‖R̂x − L− S‖F | L � 0,S � 0}.

to estimate ARsA
H and Rw.

Given an estimate of ARsA
H , one can, in principle, apply

any available DOA estimation method depending on, e.g., ar-

ray geometry and level of signal correlation. Here, we proceed

by proposing a sparse-recovery-based approach that applies

to arbitrary array geometries and levels of signal correlation

(including coherent sources). Let Ã = [a(φ1), · · · ,a(φM )]
denote the sampled array manifold in which φ1, · · · , φM are

the grid directions and M is the number of grid points.

If the gridding is fine enough, then ARsA
H ≈ ÃR̃sÃ

H ,

where R̃s equals to Rs in rows and columns associated with

φk ≈ θi, 1 ≤ i ≤ q, and is zero in other locations.

As a result of this gridding, we use the following optimiza-

tion problem to estimate R̃s

R̂s = argmin
P

{‖P‖1 + λ2‖L̂− ÃPÃH‖F | P � 0}. (11)

After obtaining R̂s from the above program, diag(R̂s) desig-

nates the estimated spatial spectrum at the grid points.

Also, it is possible to combine (10) and (11) to solve directly

for R̂s, i.e.,

R̂s = argmin
P

{‖ÃPÃH‖∗ + α‖P‖1

+ β‖PΩc(ÃPÃH)− PΩc(R̂x)‖F | P � 0}. (12)

However, because we have to choose two regularization pa-

rameters at the same time, solving (12) may be harder than

estimating R̃s in two steps. In contrast, when sources are un-

correlated, P is a diagonal matrix and by letting p = diag(P),
(12) simplifies to

min
p

‖p‖1+λu‖PΩc((Ã∗⊙Ã)p)−PΩc(vec(R̂x))‖2 s.t. p � 0,

(13)

where Ã∗ denotes the conjugate of Ã, ⊙ is the Khatri-Rao

product (column-wise Kronecker product), vec(Rx) denotes

the vector with the columns of Rx stacked on top of one

another, ‖·‖2 is the ℓ2-norm, and p � 0 means that all entries

of p are non-negative.2

IV. NUMERICAL SIMULATIONS

In this section, the performance of the proposed algorithm is

numerically analyzed and is compared to the stochastic CRB,

which can be obtained by extending the stochastic CRB for

nonuniform white noise in [3]. In the simulations, we use a 10-

element ULA with half wavelength antenna spacing. Sources

and sensors are at the same plane. Signals and noise are iid

realizations of zero-mean complex Gaussian distributions with

covariance matrices Rx and Rw, respectively. Further, the

noise covariance matrix in all experiments has the structure

given in (9) with σ2
1 , · · · , σ2

m equal to 1, σ1,2, · · ·σm−1,m =
0.5j, and σ2,1, · · ·σm,m−1 = −0.5j.

In the first experiment, two uncorrelated sources at direc-

tions θ1 = 88.05◦ and θ2 = 91.95◦ impinge on the array.

[0◦, 180◦] is uniformly divided into 1800 points resulting

in a 0.1◦ gridding. To estimate θ1 and θ2, program (13),

which is indeed an SOCP problem [12], is solved by CVX

[14]. Since (13) is a square-root LASSO [12], though not

optimal, based on the criterion introduced in [12], we use a

fixed regularization parameter λu = 1

1.1‖s̃‖∞

√
m2−|Ω|

= 0.54,

where s̃ denotes a fixed vector defined in [12] and obtained

by a simple numerical simulation [12]. The root mean square

error (RMSE) in estimating unknown directions are reported as

a function of N and SNR with 500 Monte-Carlo simulations.

Fig. 1 shows the RSMEs of our approach as well as the

CRBs when N changes from 50 to 105 and SNR is fixed to

0 dB. As can be seen in this figure, the proposed approach

closely follows the CRB at small and medium number of

samples, yet the errors remain unchanged after reaching half

of the grid size. To obtain smaller errors at larger number

of measurements, one can use finer grids at the cost of an

increase in computational complexity. In Fig. 2, the RMSEs

and CRBs are plotted versus SNR when N = 500. Here, we

observe again a saturation in RMSEs at high SNRs which is

due to the limited accuracy of the gridding.

In the second experiment, the effectiveness of programs

(10) and (11) in estimating the DOAs of highly correlated

sources is verified. The regularization parameters λ1 and λ2

are numerically tuned to be 10 and 5, respectively. Two

sources are at directions θ1 = 84.75◦ and θ2 = 95.25◦

with cross correlation equal to 0.99, SNR = −2.5 dB, and

2After submitting this paper, we became aware that a special case of (13),
where Rw is diagonal, has been proposed in [13]. However, (13) applies to
a more general setting and includes an appropriate choice for λu.
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Fig. 1. RMSEs for estimation of θ1 and θ2 using the proposed program
(13) as well as corresponding CRBs are plotted as a function of number of
samples. True θ1 and θ2 are 88.05◦ and 91.95◦, respectively. 500 Monte-
Carlo simulations are run and SNR = 0 dB.
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Fig. 2. RMSEs for estimation of θ1 and θ2 using the proposed program
(13) as well as corresponding CRBs are plotted as a function of SNR. True
θ1 and θ2 are 88.05◦ and 91.95◦, respectively. 500 Monte-Carlo simulations
are run and N = 500.

N = 1000. Since (11) is computationally demanding, we first

use a coarse grid of 2.5◦ and after finding two peaks from the

estimated spatial spectrum, resolve (11) with a finer grid. To

be precise, let θ̂
(1)
1 and θ̂

(1)
2 denote the estimated directions

with the coarse grid, in the second step, we grid the interval

[θ̂
(1)
1 − 3◦, θ̂

(1)
2 + 3◦] with a fine grid of 0.5◦. Furthermore,

we also use program (13) with a grid resolution of 0.5◦ to

estimate DOAs and show the effect of source correlation on

its performance. We run 100 Monte-Carlo simulations, and

the histogram of estimated DOAs for the two approaches are

plotted in Fig. 3. As can be seen from this plot, ignoring the

correlation may cause large biases.

V. CONCLUSION

Based on some recent results in compressive sensing and

matrix rank minimization frameworks, we proposed a DOA

estimation algorithm which works well in conditions that the
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Fig. 3. Histogram of the estimated directions of two near coherent sources at
directions 84.75◦ and 95.25◦. Blue and red bars denote the results of using
programs (10) and (11), and black and magenta bars show the results of using
program (13). In this plot, SNR = −2.5 dB and N = 1000.

noise covariance matrix of the exploited array is sparse. If

the emitters are uncorrelated, our approach involves solv-

ing a rather simple convex program, and we suggested an

appropriate choice for the regularization parameter of this

program which effectively works for any SNR and number

of samples. However, when the emitters are correlated or

coherent, the proposed approach leads to a computationally

demanding convex optimization problem.
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