
A NOVEL PRUNING APPROACH FOR BAGGING ENSEMBLE REGRESSION BASED ON
SPARSE REPRESENTATION

Amir Ehsan Khorashadi-Zadeh? Massoud Babaie-Zadeh? Christian Jutten†

?School of Electrical Engineering, Sharif University of Technology, Tehran, Iran
†Grenoble INP, CNRS, GIPSA-lab, University Grenoble Alpes, Grenoble, France

Email: a.e.kh.1374@gmail.com, mbzadeh@yahoo.com, christian.jutten@gipsa-lab.grenoble-inp.fr

ABSTRACT

This work aims to propose an approach for pruning a bagging
ensemble regression (BER) model based on sparse represen-
tation, which we call sparse representation pruning (SRP).
Firstly, a BER model with a specific number of subensem-
bles should be trained. Then, the BER model is pruned by
our sparse representation idea. For this type of regression
problems, pruning means to remove the subensembles that do
not have a significant effect on prediction of the output. The
pruning problem is casted as a sparse representation problem,
which will be solved by orthogonal matching pursuit (OMP)
algorithm. Experiments show that the pruned BER with only
20% of the initial subensembles has a better generalization
compared to a complete BER.

Index Terms— Bagging Ensemble Regression, Machine
Learning, Sparse Representation.

1. INTRODUCTION

Ensemble regression [1, 2] is a method for generating a pre-
diction based on the aggregation of the predictions of several
regressors. An important advantage of ensemble models is
that the performance of the model is more consistent than a
single regressor because of using aggregation of several re-
gressors [2].

Bagging is one of the most effective [3] methods for ag-
gregation of the subensembles in both regression and classi-
fication tasks. For regression problems, this aggregation cal-
culates the average of the ouputs of these subensembles [2].
Each subensemble should be independently trained on a dif-
ferent bootstrap samples of original training data [3]. Boot-
strap samples have the same number of samples of the origi-
nal training data, but are obtained by sampling with replace-
ment from original training data. This method is especially
useful for high dimensional dataset problems [3].

One of the important disadvantages of ensemble models
is that because of using several subensembles, these models

This work has been partially supported by Research Office of Sharif Uni-
versity of Technology.

need large memories [4]. In addition, it takes too much time
for the prediction of a test data [4] because all subensembles
should predict this test data and finally compute their aver-
ages [4]. A method to tackle this problem is to prune the en-
semble model. For this problem, pruning means to remove
the subensembles that do not have significant role in final
prediction. Not only pruning reduces the size of ensemble
models, but also, it improves model generalizations over test
dataset [4].

In [5], an algorithm for pruning a neural network ensem-
ble has been proposed. This algorithm, called GASEN, uses
genetic algorithm in order to prune the model. Firstly, it
trains all subensembles independently. Then it assigns ran-
dom weights to subensembles and uses genetic algorithm in
order to improve assigned weights. Finally it selects the ef-
fective subensembles based on their weights.

Another related work is made in [6]. In this paper a prun-
ing method for bagging ensemble classification is introduced,
and is called ordering pruning (OP). This algorithm is also
used in [7] for bagging ensemble regression (BER) pruning.
This method is a greedy algorithm that selects one subensem-
ble in every iteration such that the selected subensembles have
the minimum mean square error (MSE) for the training data.
Although this algorithm improves model generalization con-
siderably, this pruning method is rather time consuming as
will be seen in our experiments.

In this paper, we propose a novel method for pruning the
BER model by using sparse representation [8]. This algo-
rithm uses orthogonal matching pusrsuit (OMP) [9] to solve
a sparse representation problem. As it will be seen in our
simulations, our algorithm is faster than the method of [7],
while its generalization on test data is almost in the same or-
der as [7] (and still better than unpruned model). It should
also be pointed out that sparse representation has already been
used for neural network pruning [10, 11] and for LS-SVM
pruning [12].

The paper is organized as follows. In Section 2, the back-
ground of the BER model is reviewed. In Section 3, the prob-
lem is formulated as a sparse representation, which will be
solved by OMP algorithm. Our method for pruning the BER



model is proposed in Section 4. Finally, the experimental re-
sults of our pruning method and the method of [7] are pre-
sented in Section 5.

2. NOTATIONS AND BACKGROUND

In this section, the background of the BER model is very
briefly reviewed. Consider the dataset {xi, yi} for i ∈
{1, 2, ..., N}. The goal of a regression problem is to find
a function that can model the relation between the inputs
{xi} and the outputs {yi} for i ∈ {1, 2, ..., N}. There are al-
ready many regression methods in the literature [13]. Ensem-
ble regression [2] is an approach for combining the results
of several regressors (subensembles), where the regression
methods of the subensembles are chosen arbitrarily.

In order to evaluate a regression model, the dataset is usu-
ally divided into training and test data. Now, consider a re-
gression problem in which we want to train an ensemble re-
gression model that can predict yi ∈ R based on xi ∈ Rp for
i ∈ {1, 2, .., Ntrain}. Moreover, suppose that our ensemble
model consists of L subensembles, each of which provides
its own prediction for yi. So, every subensemble is indepen-
dently trained on different bootstrap samples of the training
data. After training all subensembles, a method is deployed
in order to generate a final output based on the outputs of all
subensembles. Bagging method calculates the average of the
outputs of all subensembles in order to provide a good esti-
mate for yi. This model is called bagging ensemble regres-
sion (BER).

3. SPARSE REPRESENTATION

In this section, sparse representation [8] is very briefly re-
viewed. In sparse representation, a signal y ∈ Rn is to
be represented as a linear combination of several signals
d1,d2, ...,dm where m > n , and ∀i,di ∈ Rn. After [14],
signals d1,d2, ...,dm are called atoms and their collection is
called dictionary, which is denoted by D ∈ Rn×m. Sparse
representation tries to find the minimum number of atoms
that can approximately represent y. In other words, sparse
representation aims to solve

min ‖x‖0
s. t. ‖y −Dx‖22 < ε, (1)

where x ∈ Rm and ‖x‖0 stands for the ‘l0 norm’ of x, that
is, the number of nonzero entries of x. For the case ε 6= 0, the
above problem is better to be called ‘sparse approximation’
rather than ‘sparse representation’. Moreover, for ε 6= 0, the
condition m > n is not necessary, and the problem can be
expressed equally also for the case n ≥ m.

The optimization problem (1) has been solved by OMP
in [9]. OMP is a greedy algorithm that in each step, selects an
atom from the dictionary D that is most similar to the error.

Although OMP has been proposed in [9] for m > n, this
algorithm also can be used where n ≥ m. The algorithm
stops when a constraint is fulfilled. The constraint can be
either ε (as in (1)), or a maximum of selected atoms (sparsity
size). So OMP gets D, y and sparsity size (k) or ε as inputs
and returns a sparse vector x as output.

4. SPARSE REPRESENTATION PRUNING
ALGORITHM

In this section, our method for pruning the BER model is pre-
sented. Consider a BER model that consists of L subensem-
bles. Suppose that all subensembles have been trained on
the training data {xi, yi}, i ∈ {1, 2, ..., Ntrain}. So, for one
train sample xi ∈ Rp, we have L predictions {yi1, yi2, ..., yiL}.
Now, we put these L values in a vector and call this vector
di ∈ RL. Then, all these vectors for all training samples
are put in a matrix D ∈ RNtrain×L. So D contains the
predictions of all subensembles on all Ntrain samples. Ac-
cording to this notation in BER, the final prediction y∗ =
(y∗1, y∗2, ..., y∗Ntrain)T is obtained from

y∗ = Dv, (2)

where v = 1
L1, in which 1 is the all-one vector. As it can

be observed, the number of subensembles is a parameter that
should be determined before training. This paper aims to
choose the subensembles that play the most important role
in generating the desired outputs.

It is crucial that the BER model has an acceptable per-
formance on the test data (not only on the training data). If
it works well just on training data and not on the test data, it
means that the final regressor has a weak generalization. Lack
of generalization happens especially when the model has too
many parameters. So, the BER is pruned to avoid poor gener-
alization.

Our pruning method aims to remove as many as subensem-
bles such that the MSE on the training data does not change
too much compared to the unpruned model. Here, we cast
this problem as a sparse representation problem. Suppose
that the estimated y∗ on complete and selected subensembles
are called respectively as y∗

bp and y∗
ap (‘bp’ and ‘ap’ stand

for ‘before pruning’ and ‘after pruning’). Our method tries
to select the subensembles such that y∗

ap and y∗
bp are nearly

equal. Mathematically, we minimize the number of nonzero
indices in v in order to ‖y∗

bp − y∗
ap‖22 is close to zero:

min ‖v∗‖0
s. t. ‖y∗

bp −Dv∗‖22 < ε. (3)

We solve the optimization problem (3) by using OMP. As
stated in Section 3, the constraint of OMP algorithm can be
expressed either based on ε or sparsity size (k). Hereafter,
we use sparsity size (k) for the stopping criterion. So we de-
termine the number of atoms (subensembles) that should be



selected by OMP and then OMP tries to find the k most im-
portant subensembles.

Note that after solving (3), for each selected subensem-
ble, there will be also an associated weight, meaning that the
final prediction would be a weighted sum of the predictions
of the selected subensembles. We call this pruning method
as weighted sparse representation pruning (Weighted SRP).
However, as it will be seen in our simulations, if we forget
their weights, and provide the final estimation by just an un-
weighted averaging of the selected subensembles, the model
results in better predictions than weighted model (especially
for the test data).

The final unweighted pruning algorithm is shown in Al-
gorithm 1, and is called sparse representation pruning (SRP).

Algorithm 1 SRP method

Input: {xi, yi}Ntrain
i=1 , k

Output: S (the set of indexes of the selected subensembles)
1: Train all subensembles with training data {xi, yi}Ntrain

i=1

2: Put predictions of all subensembles for all training data
in D

3: y∗
bp = Dv where v = 1

L1, in which 1 is the all-one
vector.

4: v∗ = OMP(D,y∗
bp, k)

5: S = {i|v∗i 6= 0}

As it is said before, by pruning the BER model, it is ex-
pected that the model generalization is enhanced and MSE on
test data will be reduced. It is also obvious that by pruning the
BER model, the model performance on test data will become
faster than the unpruned model.

5. EXPERIMENTAL RESULTS

In order to assess the performance of SRP, some experiments
have been done over 5 popular datasets, all from [15]. These
datasets have been selected from real world problems in or-
der to evaluate SRP in a challenging context. Table 1 demon-
strates the number of samples and attributes for each dataset.
In order to report more reliable information, 10-fold cross-
validation is repeated 5 times randomly and the average of all
MSE’s is reported. In addition, we deploy decision tree re-
gressor [16] as our subensembles. All trees have depth 2 and
have been independently trained on different bootstrap sam-
ples of the training data. The BER model was trained with
Scikit-learn Python package [17]. All the computations have
been implemented on Python programming language. For im-
plementing SRP, we used OMP that also exists in Scikit-learn
Python package [17].

Now we describe our experiments in more details. At
first, for each dataset, we repeat for 5 times a 10-fold cross-
validation and compute the average of their MSE’s in order to
report a good approximation of the error. Each 10-fold cross-

Table 1. Properties of the Datasets used in Experiments
Dataset Instances Attributes

Diabetes 442 10
Fetch California Housing 20640 8

Boston 506 13
Airfoil self noise 1503 5

Abalone 4417 9

validation is selected from the dataset randomly. To sum up,
the steps that are done for experiments are as follows:

1. Shuffle the dataset,

2. Generate 10 partitions for 10-fold cross-validation,

3. For each division, train L subensembles independently
on different bootstrap of the training data,

4. Use our SRP pruning method in order to select the k
subensembles that produce smaller errors,

5. For each division, compute the test error on the pruned
BER model,

6. Compute the average of these 10 test errors,

7. Repeat these steps 5 times and finally compute the av-
erage of these 5 test errors and report as final MSE.

In addition, the experiments are done for L = 100, 200 in
order to analyze the effect of initial number of subensembles
on SRP.

Now, we compare SRP with ordering pruning (OP) [7] al-
gorithm, in both testing error and pruning speed. In our exper-
iments, the number of selected subensembles (pruning size)
is set to 20% of the initial subensembles (although different
pruning sizes can be used in both SRP and OP algorithms).

Table 2 shows train MSE of the BER model in three cases:
before pruning, BER pruned by SRP, BER pruned by OP,
and test MSE in four cases: before pruning, BER pruned by
Weighted SRP, BER pruned by SRP, BER pruned by OP, all
with L = 100 initial subensembles on different datasets. The
first column specifies the datasets that have been used. Three
next columns contain the MSE of the training data over three
models. The next four columns contain the MSE of the test
data over four models. Note that for each dataset, the bold
value indicates the best test MSE, and the underlined value
shows the second best test MSE. Table 3 has the same infor-
mation of Table 2 but for L = 200 initial subensembles.

As it can be seen from Tables 2 and 3, both SRP and OP
algorithms improve MSE on training data. It is because, these
algorithms remove the subensembles that do not have a signif-
icant role in reducing error. However, the main performance
criterion is MSE on test data, not training data. It is clear from
Tables 2 and 3 that both SRP and OP algorithms reduce the



Table 2. Average train and test MSE for before pruning, SRP and OP [7] with L = 100 initial subensembles. Bold and
underlined values show, respectively, the best and the second best MSE’s on the test data.

Train Test
Dataset Before pruning SRP OP [7] Before pruning Weighted SRP SRP OP [7]

Diabetes 2971.92 2950.14 2843.53 3409.18 3407.96 3364.59 3366.14
Fetch California Housing 0.7137 0.7089 0.7012 0.7195 0.7196 0.7141 0.7070

Boston 19.55 18.49 17.25 22.92 23.01 21.87 21.02
Airfoil self noise 26.00 25.41 24.89 27.15 28.94 26.43 25.98

Abalone 6.20 6.17 6.12 6.33 6.34 6.28 6.24

Table 3. Average train and test MSE for before pruning, SRP and OP [7] with L = 200 initial subensembles. Bold and
underlined values show, respectively, the best and the second best MSE’s on the test data.

Train Test
Dataset Before pruning SRP OP [7] Before pruning Weighted SRP SRP OP [7]

Diabetes 2966.11 2947.33 2827.70 3421.54 3425.36 3378.04 3388.50
Fetch California Housing 0.7137 0.7093 0.7009 0.7189 0.7189 0.7141 0.7062

Boston 19.55 18.49 17.09 22.91 23.00 21.67 20.87
Airfoil self noise 25.97 25.35 24.80 27.02 28.33 26.20 25.81

Abalone 6.20 6.17 6.11 6.32 6.32 6.28 6.23

Table 4. Pruning time (in seconds) for SRP and OP for L =
200 initial subensembles

Dataset SRP OP [7]

Diabetes 0.0045 0.3465
Fetch California Housing 0.0496 0.3659

Boston 0.0040 0.3307
Airfoil self noise 0.0078 0.3528

Abalone 0.0131 0.3270

MSE on test data as well. This means these two algorithms
improve the generalization of the BER model. Although in
some datasets, the test data MSE of the SRP is better than
OP, the OP algorithm works better in some other datasets. As
well, as it can be seen, test MSE on Weighted SRP is more
than SRP. So SRP is much more beneficial than Weighted
SRP. To sum up, both these SRP and OP algorithms have near
performances in MSE sense.

Table 4 indicates pruning time for both SRP and OP algo-
rithms. For this experiment, the initial number of subensem-
bles is set to L = 200. It is clear that, the SRP exhibits ex-
tremely better performance than OP in speed sense. The effi-
ciency of SRP comes from using OMP algorithm for pruning
the BER model. Our simulations were performed in Python
3.7.3 environment on a system with 3.6 GHz CPU, and 16 GB
RAM, under Microsoft Windows 10 64-bit operating system.

6. CONCLUSION

In this paper, a novel idea for pruning the BER model by using
sparse representation is proposed. By increasing the number
of subensembles in a BER model, it needs a large memory
to predict a test sample. In addition, prediction procedure
will become time consuming. Model generalization also de-
creases by increasing the number of subensembles. In order
to tackle these problems in this paper, the SRP method was
used in order to select the subensembles that have the most
significant role in correct prediction. Our SRP method uses
OMP in order to solve a sparse representation problem. The
experiments showed that SRP improves model generalization
for the test data. In addition, because of using OMP, SRP
prunes the BER model faster than OP.

7. REFERENCES

[1] Robert A Jacobs, Michael I Jordan, Steven J Nowlan,
Geoffrey E Hinton, et al., “Adaptive mixtures of local
experts.,” Neural computation, vol. 3, no. 1, pp. 79–87,
1991.

[2] Leo Breiman, “Bagging predictors,” Machine learning,
vol. 24, no. 2, pp. 123–140, 1996.

[3] Peter Bühlmann, Bin Yu, et al., “Analyzing bagging,”
The Annals of Statistics, vol. 30, no. 4, pp. 927–961,
2002.

[4] Gonzalo Martı́nez-Muñoz and Alberto Suárez, “Prun-
ing in ordered bagging ensembles,” in Proceedings of



the 23rd international conference on Machine learning.
ACM, 2006, pp. 609–616.

[5] Zhi-Hua Zhou, Jianxin Wu, and Wei Tang, “Ensembling
neural networks: many could be better than all,” Artifi-
cial intelligence, vol. 137, no. 1-2, pp. 239–263, 2002.

[6] Gonzalo Martı́nez-Muñoz, Daniel Hernández-Lobato,
and Alberto Suárez, “An analysis of ensemble pruning
techniques based on ordered aggregation,” IEEE Trans-
actions on Pattern Analysis and Machine Intelligence,
vol. 31, no. 2, pp. 245–259, 2008.

[7] Daniel Hernández-Lobato, Gonzalo Martı́nez-Muñoz,
and Alberto Suárez, “Pruning in ordered regression bag-
ging ensembles,” in The 2006 IEEE International Joint
Conference on Neural Network Proceedings. IEEE,
2006, pp. 1266–1273.

[8] Michael Elad, Sparse and redundant representations:
from theory to applications in signal and image process-
ing, Springer Science & Business Media, 2010.

[9] Joel A Tropp and Anna C Gilbert, “Signal recovery
from random measurements via orthogonal matching
pursuit,” IEEE Transactions on information theory, vol.
53, no. 12, pp. 4655–4666, 2007.

[10] Jie Yang, Abdesselam Bouzerdoum, and Son Lam
Phung, “A neural network pruning approach based on
compressive sampling,” in 2009 International Joint
Conference on Neural Networks. IEEE, 2009, pp. 3428–
3435.

[11] Jie Yang and Jun Ma, “Feed-forward neural network
training using sparse representation,” Expert Systems
with Applications, vol. 116, pp. 255–264, 2019.

[12] Jie Yang, Abdesselam Bouzerdoum, and Son Lam
Phung, “A training algorithm for sparse ls-svm using
compressive sampling,” in 2010 IEEE International
Conference on Acoustics, Speech and Signal Process-
ing. IEEE, 2010, pp. 2054–2057.

[13] Trevor Hastie, Robert Tibshirani, Jerome Friedman, and
James Franklin, “The elements of statistical learning:
data mining, inference and prediction,” The Mathemati-
cal Intelligencer, vol. 27, no. 2, pp. 83–85, 2005.

[14] Stéphane G Mallat and Zhifeng Zhang, “Matching pur-
suits with time-frequency dictionaries,” IEEE Transac-
tions on signal processing, vol. 41, no. 12, pp. 3397–
3415, 1993.

[15] Catherine L Blake and Christopher J Merz, “Uci repos-
itory of machine learning databases, 1998,” 1998.

[16] Leo Breiman, Classification and regression trees, Rout-
ledge, 2017.

[17] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel,
B. Thirion, O. Grisel, M. Blondel, P. Prettenhofer,
R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duches-
nay, “Scikit-learn: Machine learning in Python,” Jour-
nal of Machine Learning Research, vol. 12, pp. 2825–
2830, 2011.


