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Abstract. Spectral manifold learning techniques have recently found extensive 
applications in machine vision. The common strategy of spectral algorithms for 
manifold learning is exploiting the local relationships in a symmetric adjacency 
graph, which is typically constructed using -nearest neighborhood ( -NN) 
criterion. In this paper, with our focus on locally linear embedding as a 
powerful and well-known spectral technique, shortcomings of -NN for 
construction of the adjacency graph are first illustrated, and then a new 
criterion, namely / -nearest neighborhood ( / -NN) is introduced to 
overcome these drawbacks. The proposed criterion involves finding the sparsest 
representation of each sample in the dataset, and is realized by modifying 
Robust-SL0, a recently proposed algorithm for sparse approximate 
representation. / -NN criterion gives rise to a modified spectral manifold 
learning technique, namely Sparse-LLE, which demonstrates remarkable 
improvement over conventional LLE through our experiments. 
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1   Introduction 

In the recent years, several algorithms have been developed to perform dimensionality 
reduction of low-dimensional nonlinear manifolds embedded in a high-dimensional 
space. In particular, due to technical advantages, local linear embedding (LLE) has 
found widespread applications in real-world problems [1, 2]. LLE is based on eigen 
decomposition of a special Gram matrix, which is designed to preserve the local 
structure of data. This local structure is typically defined using nearest neighborhood 
criterion in the Euclidean space by constructing a symmetric adjacency graph, in 
which the nodes represent the training samples and any pair of nodes are connected iff 
the corresponding data points are adjacent. Indeed, successful recovery of the low-
dimensional structure of data highly depends on the construction of an accurate 
adjacency graph that gives a faithful representation of the local geometry of data [3]. 
In this regard, though widely used, -NN criterion suffers from major drawbacks. In 
fact, since each sample is connected to its  direct nearest neighbors, -NN rule is 
generally unable to exclude noisy samples or outliers in the neighborhood. In 
addition, -NN criterion considers a fixed neighborhood size about each sample on 
the manifold.  In this paper, with our focus on LLE, -NN criterion is first represented 
as an optimization problem, which is then modified to yield / -nearest 



neighborhood ( / -NN) criterion. As was the case in -NN, new criterion searches 
for a small subset of samples in the neighborhood of each data point. However, unlike 

-NN, this subset is not limited to -nearest neighbors of each sample, but instead 
belongs to a larger neighborhood within the roughly linear patch on the manifold 
centered at that sample. Furthermore, size of this subset is chosen adaptively to 
include the minimum required samples among   nearest neighbors of each 
data point, which is often believed to give a more reliable representation of the 
manifold [4]. The proposed criterion involves finding the sparsest approximate 
representation of a sample in the dataset, and is realized by modifying the recently 
proposed Robust-SL0 algorithm for sparse approximate representation [5]. The 
modified spectral method, namely Sparse-LLE is then experimentally validated on 
several datasets, demonstrating remarkable improvement over the conventional LLE. 
The rest of this paper is organized as follows. Section 2 is devoted to a review of the 
LLE. In Section 3, shortcomings of -NN are studied and / -NN criterion is 
introduced and justified. Implementation details are then discussed in Section 4 and, 
finally, experimental results are presented in Section 5. 

2 Locally Linear Embedding 

LLE, the local properties of the manifold are expressed by writing each sample as a 
linear combination of its nearest neighbors. LLE then attempts to preserve these local 
relationships in the low-dimensional space [6]. To be more specific, LLE first 
constructs the adjacency graph , , whose nodes  and edges  represent the 
data samples and neighborhood relations among samples, respectively. Denoting each 
sample by x , we will use x ~x  to indicate that samples x  and x  are adjacent 
by some criterion, i.e. x x . Similarly, x x  will indicate x x . 
Furthermore, for each sample x , the subset of samples x  satisfying x ~x  will be 
denoted by x . In particular, for -NN criterion, we have x x , where 

x  denotes the subset of -nearest neighbors of x . Additionally,  would 
denote the corresponding subset of indices of x .  

Once the adjacency graph is constructed, each sample x  is written as a linear 
combination of its  nearest neighbors. This is achieved by solving:  

: min x Xw s. t. Supp w , wT 1 
(1)

where w  contains the reconstruction weights and Supp η  denotes the support 
of η, i.e. subset of all indices , for which  is nonzero. In addition, 1, … ,1 T

. The weight matrix W w , … , w  is then constructed and the 
embeddings are found by computing the eigenvectors associated with the bottom 
nonzero eigenvalues of M I W I WT , where I is the identity matrix. To be 
more specific, denoting the resulting modal matrix by V v , … , v , rows 
of V contain the embeddings y  . In fact, up to a scaling factor that depends on 
the algorithm, the embedding of x , namely y , is a vector with , , , . 
 
 
 



3 / -Nearest Neighborhood Criterion  

-NN criterion implies that x ~x  iff x x , and is justified based on the notion 
that local geometry of the manifold at x  is best represented by x  rather than by 
any other subset x  with # . In this section, with our focus on LLE, 
shortcomings of this notion are discussed. / -NN criterion is then introduced, 
which, to some extent, overcomes the shortcomings of -NN.  

As shown in the [11], (1) is asymptotically equivalent to: 
: min lim  x Xw , x x  

s. t.  w , wT 1, w , 0 
(2)

where ·  is the step function and η  is the ℓ -norm of the vector η, i.e. number of 
nonzero elements of η. It is observed that solving  primarily minimizes the second 
term of the functional by choosing x x . Then, keeping x  fixed,  
minimizes the reconstruction error x Xw  by solving the linear system x
Xw  subject to Supp w , where x  is the projection of x  onto Span x . 
It is observed that, despite its importance, minimizing the reconstruction error does 
not contribute to the choice of x  in . Furthermore, # x  is fixed to  in , while it 
is generally better to let the algorithm automatically decide on # x  by selecting only 
necessary samples for representation of x  [4]. To overcome these drawbacks, the 
following optimization problem is introduced: 

min  x Xw , x x w  

s. t. wT 1, , 0 
(3)

where ,  are finite positive scalars. By choosing ∞, we ensure that, in 
contrast to , minimizing the reconstruction error x Xw  contributes to our 
choice of x . Moreover, (3) uses the minimum required number of samples to best 
represent x , and hence adaptively selects # x  on the manifold. Note that for every 
pair  and , there always exist a pair  and , for which (3) is equivalent to: 

min w  

 s. t. x Xw , ∑ , x x , wT 0 , , 0 
(4)

Furthermore, we notice that ∑ w , x x  sets an upper limit on 
x x  for x x  and hence there exists some 0, for which the second 

constraint in (4) can be safely replaced by x x , x x  [7]. A closer 
look reveals that this in turn could be safely replaced by Supp w  , for 
some integer . Therefore, we can rewrite (4) as follows: 

: min w  

s. t. x Xw , Supp w , wT 1 
(5)

  



Let w  and x  denote the solution of  and the subset of samples corresponding to 
the nonzero elements of w , respectively. Note that, as a result of the second 
constraint in , x . In order to preserve the computational advantages of 
working with highly sparse matrices, we further limit # x  to , for some integer 

. This is achieved by keeping at most  top nonzero elements of w  and setting 
others (if any) to zero. x  is also modified by discarding the corresponding samples. 
The new criterion will be referred to as / -NN rule and is summarized in Fig. 1. 
Notice that, in -NN, x  is the subset of first  nearest neighbors of x , whereas in 

, x  is the best subset x  with # , that contains the minimum 
required samples to achieve a reconstruction error less than the error tolerance . 
When compared to -NN, / -NN criterion is able to exclude noisy neighbors and 
outliers, which is achieved by the constraint on the reconstruction error in . On the 
other hand, when compared to -NN, / -NN criterion adaptively selects # x  
( ) to best represent x  with the minimum required number of samples. Now, using 

/ -NN criterion to construct the adjacency graph, LLE is modified to obtain an 
improved spectral algorithm, dubbed Sparse-LLE. Note that the only difference 
between LLE and Sparse-LLE lies in the construction of the adjacency graph. 
 

Figure 1. / -NN criterion for construction of the adjacency graph.

4 Implementation 

In Section 3, / -NN criterion for construction of the adjacency graph was 
introduced and justified. In order to apply this criterion, we shall study the following 
optimization problem: , , : min s s. t. b As  and Supp s , where 
b  and  is a given subset of indices of s , … , T . Our 
implementation assumes , which fairly happens almost always in real-world 
situations. As the starting point, we first consider the well-known sparse approximate 
representation problem , :  min s s. t.  b As . Among available 
approaches, we opt for the recently proposed Robust-SL0 as a fast and accurate 
algorithm [5]. Briefly speaking, Robust-SL0 solves a sequence of problems of the 
form , : max ∑ /  s.t. b As  , decreasing  at each step, and 
initializing the next step at the maximizer of the previous (larger) value of . Each 

,  is solved approximately by few iterations of gradient ascent. Convergence 
analysis of Robust-SL0 has been thoroughly considered in [5] and it was shown that, 
under some mild conditions, the sequence of maximizers of ,  indeed converges to 
the unique minimizer of , , whenever such answer exists. Moreover, Robust-SL0 
runs significantly faster than the competing algorithms, while producing answers with 
the same or better accuracy [5]. The idea is now to modify , ,  in a way that enables 

Given integers  and , with , solve  for each sample x x , and denote 
the answer by w . Then, nodes  and  in the adjacency graph  are connected iff ,  is 
among the top  nonzero elements of w . 



using Robust-SL0 algorithm to solve , , . This necessitates proper modification of 
the second constraint in , , , i.e. Supp s . While this may be achieved by, for 
instance, setting 0 for  at each iteration, we prefer to preserve the studied 
convergence properties of Robust-SL0 by replacing Supp s  with a term in 
functional that smoothly favors small values for  when . Therefore, , ,  is 
modified to:  

lim max 1 / 1 /  

s.t. b As
(6)

where we take 0 , 1. Convergence properties of (6) are obtained by minimal 
modifications in the proof presented in [5]. Note that Robust-SL0 algorithm is now 
applicable to (6) by merely using the gradient of the functional of (6) in the algorithm. 
The interested reader is referred to [5] for details. 

5 Experiments 

The objective of this section is to experimentally assess the merits of the proposed 
/ -NN criterion for construction of the adjacency graph. To this end, the 

performance of LLE and Sparse-LLE are compared on several datasets. In each 
experiment,  (and if available ) are experimentally tuned for the best results. Other 
parameters of Sparse-LLE are fixed to: 0.05, 0.9. As our first 
experiment, we compare the performance of  LLE and Sparse-LLE for visualizing the 
Frey face dataset, which consists of 1965 gray-level images of a single individual 
acquired under different expression and pose conditions [2]. Few images in this 
dataset are depicted in Fig. 2(a). Fig. 2(b) depicts the first two components of these 
images discovered by LLE. Depicted in Fig. 2(c) are the visualization results obtained 
by Sparse-LLE, which may be interpreted as follows. We can recognize four pair of 
opposite branches in the embedded space, labeled from 1 to 4. It is observed that the 
main trend in branches 1 and 2 includes left pose or slightly left pose images, whereas 
images in branches 3 and 4 are mainly either right pose or slightly right pose. In 
particular, while containing opposite poses, both branches 1 and 3 are similar in that 
one of their ends includes happy faces and the other end includes either sad faces or 
faces with visible tongue. The main trend of images in each branch is represented in 
Fig. 3. It is observed that the main trend in branches 1 and 2 includes left pose or 
slightly left pose images, whereas images in branches 3 and 4 are mainly either right 
pose or slightly right pose. In particular, while containing opposite poses, both 
branches 1 and 3 are similar in that one of their ends includes happy faces and the 
other end includes either sad faces or faces with visible tongue. 

As our second experiment, the performance of LLE and Sparse-LLE is compared 
in face recognition task on the extended Yale face database. The dataset includes 
2432 cropped frontal images of 38 individuals under expression and illumination 
variation [8], where the first 16 images of each individual are considered in this 
experiment. After vectoriation, using LLE and Sparse- LLE, dimension of image data 
is reduced to 10. Subsequently, motivated by the well-designed experimental setup in 



[6], quality of the resulting low-dimensional representations is evaluated by 
measuring the classification errors of 1 nearest neighbor classifiers trained on the 
low-dimensional representations using leave-one-out cross-validation. In other words, 
class of each sample is predicted by its nearest neighbor in the embedded space and 
the overall classification error is reported in Table 1.  

Retinal biometrics refers to identity verification of individuals based on their 
retinal vessel tree pattern. Our third experiment is conducted on VARIA database 
containing 153 (multiple) retinal images of 59 individuals [9]. To compensate for the 
variations in the location of optic disc (OD) in retinal images, a ring-shaped region of 
interest (ROI) in the vicinity of OD is used to construct the feature matrix. To extract 
the ROI, using the technique presented in [10], OD and vessel tree are extracted. 
Then, a ring-shaped mask with proper radii centered at OD is used to form the feature 
vectors X  by collecting the pixels along 8 beams of length 6 originating from 
OD. A special case is depicted in Fig. 4. After vectorization of feature matrices, 
dimension is reduced to 10 using LLE and Sparse-LLE. The performance of the 
resulting low- dimensional representations is then evaluated similar to the second 
experiment (Table 1). 

Conclusions 

LLE is a well-known and powerful spectral dimension reduction algorithm. For 
successful recovery of the low-dimensional structure of data, however, LLE requires 
an adjacency graph, which is typically constructed using -NN criterion. In this 
paper, deficiencies of -NN for construction of the adjacency graph were first studied 
and / -NN criterion was then introduced to overcome the drawbacks. 
Implementation of / -NN involved a variant of Robust-SL0 algorithm for sparse 
approximate representation. The modified spectral method, namely Sparse-LLE, is 
experimentally validated on several datasets, demonstrating remarkable improvement 
over the conventional LLE. 
 
Table 1. Generalization errors of 1-NN classifiers for different dimension reduction algorithms. 

 Yale face database VARIA database 

Algorithm Parameters Generalization 
error of 1-NN Parameters Generalization 

error of 1-NN 
PCA - 35.5263 - 59.4771 
LLE 12 29.9342 4 61.4379 

Sparse-LLE 5 
12 23.5197 5 

7 56.2092 

 

(a) 



(c) (b) 
Figure 2. A few samples of Frey dataset used in the first experiment (a). Images of faces 
mapped into the embedding space described by the first two coordinates of LLE with 12
(b), and sparse-LLE with 5 and 12 (c). 
 

  

 

 

 

  
Figure 3. Further study of the embedded space obtained by sparse-LLE in Fig. 2(c). Outer 
boxes are positioned similar to the distribution of branches in Fig. 2(c), where label of 
corresponding branches are indicated by the arrows. Each outer box contains few samples of 
the corresponding branch, which are selected to represent the main trend of the images inside
the branch. 
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Figure 4. (a) Retinal image; bright area is OD. (b) Vessel tree (in white) and mask (in blue). (c)
Feature matrix obtained from 300 beams of length 100 pixels (images (a) and (b) are cropped). 
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