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Abstract. We introduce a new iterative algorithm for Sparse Component Analysis (SCA). The
algorithm, which we call Iterative Detection-Estimation (IDE), is essentially a method to find
sufficiently sparse solutions of underdetermined linear systems of equations. In the SCA context,
this solves the source separation part of the problem. Each iteration of IDE consists of two steps. In
the detection step, starting with a previously known estimate of the sparse solution vector, we detect
which components of the solution are (possibly) active, i.e., having a considerable value. Then, in
the estimation step, we compute the new estimate by finding a solution of the system which is the
closest to the subspace specified by the detection step. This is called projection into the activity
subspace. We will compare the solution obtained by the proposed algorithm against the minimum
1-norm solution obtained by Linear Programming (LP). It is shown by experiment that, with proper
choice of parameters, the proposed algorithm is about two orders of magnitude faster than state-of-
the-art interior-point LP solvers, while providing the same (or better) accuracy. The algorithm may
then be considered as an alternative to the LP approach for large-scale problems.

Keywords: sparse component analysis, atomic decomposition, sparse representation, overcomplete
signal representation, sparse source separation, blind source separation.

INTRODUCTION

Obtaining sparse solutions of underdetermined linear systems of equations is of funda-
mental importance in signal processing and statistics. Despite recent theoretical develop-
ments [1, 2], the computational cost of the methods has remained as the main restriction.
In this article, we will propose an approach which provides a considerable reduction in
complexity. To introduce the problem in more details, we will use the context of SCA.
The discussions, however, may be easily followed in other contexts in which the problem
arises. For example, it can also be used to find ‘sparse decomposition’ of a signal in an
overcomplete dictionary, which is the goal of the so-called ‘atomic decomposition’ [1].

SCA can be viewed as a method to achieve separation of sparse sources. The general
Blind Source Separation (BSS) problem is to recover � unknown (statistically inde-
pendent) sources from � observed mixtures of them, where little or no information is
available about the sources (except their statistical independence) and the mixing sys-
tem. In linear instantaneous (noise-free) model, it is assumed that ���� ������ in which
���� and ���� are the ��� and ��� vectors of sources and mixtures and� is the ���

1 This work has been partially funded by French Embassy in Tehran, and by Center for International
Research and Collaboration (ISMO).
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mixing matrix. The goal of BSS is then to find ���� only by observing ����. The general
BSS problem is not easy for the case � � �. However, if the sources are sparse (i.e.,
not a totally blind situation), then the problem can be solved [2, 3] in two steps: (1) es-
timating the mixing matrix, (2) with � being known, estimating the sources. For sparse
sources, the first step may be done by a simple clustering [2, 3]. However, for the case
��� (that is, where there are fewer sensors than sources), determining � is not equiv-
alent to source separation: for each instant of time (�), an underdetermined linear system
of equations (���� ������) should be solved under the sparsity assumption [2, 3, 4, 5].

To obtain the sparsest solution we may search for a solution of � � �� having
minimal �� norm, i.e., minimum number of nonzero components. This, however, requires
combinatorial search which quickly becomes intractable as the dimension increases.
The �� norm is also sensitive to noise. However, it has been shown first empirically [6]
and then theoretically [1, 7, 8] that the minimal �� norm solution is (almost always)
the same as minimal �� norm solution (that is a solution which minimizes

�
�

���
����).

This minimization can be done using the Linear Programming (LP) techniques. By
using fast LP algorithms, specifically interior-point LP solvers, large-scale problems
with thousands of sources and mixtures will become tractable.

In this article, we will introduce a new method for sparse decomposition which we
call Iterative Detection-Estimation (IDE). The method performs typically two order of
magnitudes faster than interior-point LP and, with the proper choice of parameters,
produces results as accurate as those of LP.

MOTIVATION FOR ITERATIVE DETECTION-ESTIMATION

The idea of the IDE algorithm is as follows. At each iteration: (1) Starting with a previ-
ous estimate (or initial guess) of the source vector, ��, first (roughly) detect which sources
are ‘active’ and (2) Having the indices of ‘active’ sources, obtain a new estimate of � by
finding a solution of � ��� whose active indices better coincide with those predicted
by the detection step. This two step iteration continues until no further improvement is
possible (i.e. until a given level of accuracy is reached). The term ‘active’ is used to refer
to sources having ‘considerable values’.

To provide motivation for the detection step, we use a Mixtures of Gaussians (MoG)
to model sparsity. More specifically, let �� be the probability of �� being inactive (��� �
to insure sparsity) . Then, the value of an inactive source is modeled by � ���	�

�
�, and

an active source by � ���	�
�
�, where 	�

�
� 	�

�
. The probability �� is not used in the

development of the algorithm, but is a measure of sparsity in the experimental results.
The test for activity is carried for one source at time. To be specific, consider the

problem of detecting the activity of ��. We may formulate the problem in terms of a
binary hypothesis testing [9]. The vector � � �����

�
�

���
���� is observed, and we are

to decide which of the following two hypotheses has occurred :


� � �� �� ���	�
�
�


� � �� �� ���	�
�
��

It may be justified that the scalar quantity �
�

�
� � � has the same information as the
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vector �, regarding the discrimination of the two hypotheses, i.e., � is the sufficient
statistics [9]. Defining � �

��

��� ���
�
� �� we will have � � �

�
� � � ����. We consider

����
�
��� to be unknown (nuisance) parameters. Also, no prior probabilities are assigned to

the hypotheses. In other words, the detection problem will be approached in a Neyman-
Pearson (NP) framework. The equivalent test in terms of the sufficient statistics, �, may
now be stated as �� � ��� ������ � for �� ���.

The optimal test (in the NP sense) is the likelihood-ratio test. Its critical region can
be simplified to ����� � 	 �, with known parameters being absorbed into the threshold.
Since the critical region depends on the value of � (an unknown parameter), there is
no Uniformly Most Powerful (UMP) test. That is, no single test is optimal for all the
values of �. In fact, the performance of the test with the above critical region is highly
dependent on the value of �. Recalling the definition of �, it is seen that implementing
the optimal test for activity of �� requires the knowledge of all the other sources. Since
we don’t know the actual values, we will replace them with their estimates (obtained
from a previous iteration or from an initial guess). The resulting sub-optimal test is

������
�
� ��

��

���

����
�
� ��

������ 
�

This test is conducted separately for each of the � sources (with obvious modifica-
tions). After determining the activity status, we try to obtain (i.e., find a new estimate
of) the actual values of the sources. For the sake of discussion, assume that the first 
sources, ��������, have been found to be inactive by the detection step. The approximate
source vector is then obtained as the solution to the following optimization problem

minimize
��

���

��� subject to ����� (1)

The solution set of � ���, in variable �, defines an affine set in �� . The cost function
in (1) may be viewed as the distance between this affine set and the subspace generated
by the last �� standard unit vectors of �� , i.e., ����������. This subspace, which we
call activity subspace, is where the sparse solution of the system is believed to lie. By
minimizing the cost function of (1) we suppress those sources believed to be negligible
while leaving the active sources to change freely so that the overall vector is still a
solution of � � ��. This may also be viewed as a form of projection into the activity
subspace. It is intuitively plausible that if the actual active sources are among those
detected to be active, and if (1) has a unique solution, this solution coincides with the
actual (sparse) source vector. In the next section we will provide a solution for (1).

For now, we summarize an iteration of the IDE algorithm. To simplify notation, define

���������

������
�
� ��

�

� ���

��� �
�
� ��

�����

for � � � � �. This may be called the activity function of the �-th source given the
estimate ��. Also let ����� denotes the estimate of the source vector found at the -th
iteration. The DE-iteration may be summarized as
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Detection Step : Find indices of the inactive sources

� � ��� ��� � �������
����� �������

Projection Step : Find the new estimate as

������� � ��	
��
�

�
���

��
�
�s.t. � ����

Note that we have allowed the threshold (������) to vary across iterations. The thresholds
are usually chosen to form a decreasing sequence. We will use ����� � � as the initial
estimate when no (other) prior information is available, since the most probable value
for a source is zero.

SOLUTION OF THE ESTIMATION STEP

The optimization problem (1) is a special case of Quadratic Programming (QP) which
has been extensively studied in the literature [10]. In fact, the cost function in (1) may be
stated as the quadratic form �

�
�� with��

�
�� �

� �

�
where �� is the ��� identity matrix.

Among many numerically efficient approaches available [10, 11], here we consider
the direct solution of the so-called Karush-Kuhn-Tucker (KKT) system of equations as
a necessary condition for optimality [10], i.e., the optimal solution should satisfy

�
� �

�

� �

��
�

�

�
�

�
�

�

�

where � is the 	�� vector of Lagrange multipliers. For solving this system of equations
without calculating the inverse of an ��	�� ��	� matrix, let 
 � �� � be the
number of sources detected active (it is assumed that 
 � 	) and partition vectors and
matrices into ‘inactive/active’ parts

�
� �� � �

�

�

� � �
�

�

�� �� �

�
	
�
�����
�

�
	�

�
���
�

�
	 or


�
�

���
�

�
�� �

�
�

�
�� �

�������� � �

(2)

Calculating �� from the first equation and putting it into the two others, we obtain:
�
����

�

�
��

�
�

�
�

��
�

��

�
�

�
�

�

�
or


����

�

�
����� � �

�
�

�
�� �

(3)

The second equation shows that� is in the null space of��

�
. Let� be an 	� �	�
� ma-

trix whoes columns provide a basis for this null space (in MATLAB, Z=null(Aa’)).
Letting � � �� (where � is an unknown �	� 
�� � vector), and putting it in the first
equation of (3), we have ����

�

�
������ � �, which is a system of 	 equations and
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� unknowns (� and ��), and can be solved by inverting an ��� matrix. However, mul-
tiplying both sides of it by �� and noting ��

�� � ���

�
��� � �, gives a closed form

formula for � and hence ��. Then, multiplying both sides of the third equation of (2) by
�

�

�
results in a closed form fomula for ��. Finally:�

�� ��
�

�
����

�

�
�����

�

�� � ���

�
���

��
�

�

�
��������

where �� � �
�
��. For the case ������������, we can also write [12]:�

�� � ���

�
����

��
�

�

�
��

�� ��
�

�
���������

(4)

where �� ����
�

�
���. In the experiments of this article, we use (4).

COMMENTS ON THE CHOICE OF THRESHOLDS

As mentioned earlier, if the actual active sources are among those detected to be active
and if the solution to (1) is unique, then an IDE iteration will yield a close estimate.
This is best observed in the extreme case where actual inactive sources are (exactly)
zero, in which case the actual source vector will be the unique solution to (1), with
a cost function value of zero. The observation suggests that within the limits of the
two assumptions only a rough detection is sufficient. In other words, there are implicit
upper/lower bounds on the threshold. To ensure the first assumption, the threshold value
should be taken low enough so that the actual active sources are detected correctly. It
should however be high enough so that at least ��� number of sources are detected
to be inactive. This ensures the second assumption. These two bounds are not tight for
most problems. In fact, it is easy to find proper threshold values for families of problems,
as shown by the experimental results of the following section. A family of problems is
determined by the ��� ratio and the sparsity level ��.

Another notable observation is that when � obtained in a previous iteration is an
exact solution of � ���, then the activity function is simply the absolute value of the
respective source, i.e., ������� � ����. If we have bounds on the absolute values of the
sources, it is natural to choose a threshold satisfying those bounds.

EXPERIMENTAL RESULTS

We will use the Gaussian mixture model introduced earlier, with 	��	� � �
��, to create
(original) source vectors used in the first experiment. The model is fairly general and lets
us control the sparsity level through the choice of ��. We normalize the source vector
to unit �� norm. This restricts the absolute values of the sources, and consequently the
thresholds, to 	���
 interval. The ��� mixing matrix � is taken to be random. It will
be constructed column-wise by drawing �, ��� vectors from the uniform distribution
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������� �������������

FIGURE 1. The evolution of IDE toward the solution (Experiment 1) : �� ����, �� ������� ���,
�� � ���. Each plot shows the original source vector (black) and its estimate obtained after an iteration
(gray). The sources detected to be active are marked with a black square above each plot. Six iterations
were used with threshold values (form top to bottom) � � ���� ���� ���� ����� ����� ����. The top plot
corresponds to the first iteration.

on the unit sphere in �� . For the purpose of performance evaluation, Mean Square Error
(MSE) or Signal-to-Noise Ratio (SNR) will be used to judge accuracy and the CPU time
(in sec.) will be used as a measure of complexity. The MSE is defined as ������������

�
.

The CPU time is measured on a P4 PC under the MATLAB environment. The IDE
performance will be compared against that of LP. The LP algorithm used is the interior-
point solver implemented in the MATLAB’s optimization toolbox called LIPSOL.

Fig. 1 shows the evolution of the IDE algorithm toward the final solution. We
have taken � � ���� and � � ������ � ��	 which, at sparsity level �� � ��	, pro-
duces a relatively challenging problem. Six IDE iterations with threshold values � �
��
� ���� ���� ����� ����� ���� were used to obtain an MSE comparable to that obtained
by LP. The plots show the estimated source vectors, ��, obtained at each iteration along
with the original �. Also, the sources detected to be active are marked with a square
(above them). Note how the algorithm corrects the initial guess for active sources and
produces progressively better approximations. The threshold (�), the number of sources
detected active (detected #act), the CPU time taken in seconds (�� ), and the MSE ob-
tained at each iteration are summarized in Table 1. Comparison of the total simulation
times clearly illustrates the reduced complexity of IDE relative to that of LP.

The data used in Fig. 1 and Table 1 are for a single (typical) realization of the
experiment. The set of thresholds used, however, is found to produce similar results
(i.e., MSE of the order of ����) for other realizations of the problem as long as we have
��� � ��� and �� � ��	. For easier problems, where ��� is much closer to unity or
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TABLE 1. Progress of the IDE for a problem with ��

����, �� ������� ���.

itr. # � detected #act �� MSE

1 0.3 158 0.377 ���	���
2 0.2 47 0.297 �������
3 0.1 58 0.292 ��		���
4 0.05 73 0.293 �������
5 0.02 105 0.310 ������

6 0.01 107 0.315 ������


algorithm total time MSE SNR (dB)

IDE (6 itr.) ���� seconds ������
 30.28
LP interior ��� seconds ��
���
 26.25

sparsity (��) is much higher, even fewer iterations may be used. For example, at the same
sparsity level �� � ���, but with ���� ���, the threshold sequence �� ������������� is
found to be sufficient to reach MSE of ����. For ���� ���, even the two-iteration IDE
with �� �������� yields the desired MSE.

On the other hand, a relatively long threshold sequence may always be
used when problem difficulty is unknown. For example, the sequence � �
��	� �������� ��
� ���� ���� ���� ���	� ����� ���� is found experimentally to produce
slightly more accurate results than those of LP over a wide range of sparsity. To show
this, we use a different type of sparse source. More specifically, given the number of
active sources, ��	
, a source vector is generated with exactly ��	
 of its components
randomly selected to be unity. The rest of the components, which represent inactive
sources, are drawn from a zero-mean Gaussian with variance 0.01. This allows us
to control sparsity more accurately. To ensure the ‘uniqueness of sparsest solution’
property, the ��	
 should be less than ��� [1]. Thus, for this type of source, we may
use ��	
����� as a normalized measure of sparsity. To conduct the experiment (with
� � ����� � ���
�� � ���), we select 10 values of ��	
����� in the range �������.
For each ��	
, both IDE and LP methods are applied to � � �� realizations of the
problem and the average SNR (over the � experiments) obtained by each method is
determined. Fig. 2 illustrates the result. Note that the horizontal axis shows ��	
�����
in a logarithmic scale. It is observed that both methods perform very well before
��	
� ��
 and poorly after ��	
 � �����. The IDE exhibits slightly superior perfor-
mance over the range ��	
 � ��
. On the other hand, LP has the advantage of a more
gradual degradation, leaving it applicable over a (slightly) wider range of sparsity.

CONCLUSION

We developed a method of sparse decomposition based on a two-step iterative proce-
dure, namely: detection of active sources and estimation by projecting into the activity
subspace. For the detection step, comparison of an activity function against a threshold
was proposed. It was found by experiment that the algorithm is not too sensitive to the
choice of threshold sequence and (that) proper choices may be found for families of
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FIGURE 2. Average SNR versus normalized number of active sources, ���������� (in a logarithmic
scale), as a measure of sparsity. For each value of ����, the average SNR is computed over � � ��
realizations. In this experiment �� ��� and �� ���	��� ���.

problems. The overall algorithm was shown to be nearly two orders of magnitude faster
than LP interior-point solvers, while providing the same (or better) accuracy. The authors
believe that the algorithm is also an evidence that the sparse decomposition problem is
not computationally as hard as it is suggested by the LP approach. There are still issues
deserving further investigation, e.g., is it possible to (devise an algorithm to) systemat-
ically choose a threshold sequence? Are there other activity functions that may be used
in the detection step? How the algorithm will perform if we try to lower the complexity
by skipping some of the computationally intensive parts? For example, is it possible that
a low-complexity variant of the estimation step only computes the active portion of the
solution and estimate the inactive part to be zero? These issues are currently under study.
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