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ABSTRACT

Graph signal processing (GSP) have found many applications
in different domains. The underlying graph may not be avail-
able in all applications, and it should be learned from the data.
There exist complicated data, where the graph changes over
time. Hence, it is necessary to estimate the dynamic graph.
In this paper, a new dynamic graph learning algorithm, called
dynamic K-graphs, is proposed. This algorithm is capable
of both estimating the time-varying graph and clustering the
temporal graph signals. Numerical experiments demonstrate
the high performance of this algorithm compared with other
algorithms.

Index Terms— Dynamic K-graphs, dynamic graph
learning, graph Laplacian matrix, temporal graph signal clus-
tering, dynamic programming

1. INTRODUCTION

Developments in the field of data science enables us to ana-
lyze complicated data with irregular structures. Graphs are
one of the ubiquitous tools to model the relationship between
the elements of complex signals, and the need for representing
and inferring the data can be answered by the emerging field
of graph signal processing (GSP) [1, 2]. This new approach
has found various applications in different domains such as
sensor and brain networks [3, 4]. In many of these applica-
tions, applying the GSP-based techniques is only possible
when the underlying graph for the dataset is well-defined.
However, it is obvious that the graph structure may not be
available in all applications, and it should be computed from
the data. Thus, many graph learning algorithms have recently
been proposed to identify the topology of the underlying
graph in a dataset [5–7].

Probabilistic models can be used to learn a graph from the
dataset, and Gaussian Markov random field (GMRF) is one of
these models that represents the graph with precision matrix.
Then, the precision matrix can be estimated by the methods
like graphical LASSO [8]. However, the resulted graph may
not be easily interpretable due to the negative weights [5]. So
to prevent this problem, [9] restricts the precision matrix to

have a graph Laplacian shape. In [10], a stochastic model is
introduced that assumes the graph signals are smooth over a
graph, and a maximum a posteriori estimator used to obtain
the graph. Similar to [10], smoothness of the signals over the
graph is utilized in [11], but cases with different regulariza-
tion terms for the Laplacian matrix are also studied, and com-
putationally efficient algorithms are proposed in each case.
Authors in [12], based on diffusion process model, character-
ize the set of admissible diffusion matrices and select a graph
topology with desirable properties from this set.

In addition to single graph learning, there are other meth-
ods that consider learning multiple latent graphs from more
complicated data or finding a time-varying graph from the
temporal graph signals. In [13] based on the concept of Gaus-
sian mixture model (GMM), an algorithm called graph Lapla-
cian mixture model (GLMM) is proposed. This work assumes
the dataset consists of smooth graph signals over different
graphs, and tries to estimate the Laplacian matrices of the
graphs. K-graphs [14] is also another multiple graph learn-
ing algorithm inspired by K-means. Unlike GLMM and K-
graphs, which suppose the graph signals are independent in
different time stamps, there are other dynamic graph learn-
ing algorithms that consider the time dependency of signals.
In [15], a dynamic graphical LASSO algorithm is introduced,
and a precision matrix for each time stamp is computed. The
time-varying version of graph learning algorithm [11] is pro-
posed in [16]. In [17], another graphical LASSO based algo-
rithm, called TICC, is proposed that partitions the whole time
span into multiple segments, and assigns for each segment a
constant precision matrix. This algorithm can also be used for
multivariate time series clustering.

In this paper, we propose a dynamic graph learning algo-
rithm, called dynamic K-graphs, where unlike [15] and [16],
the underlying graph only should be chosen from a fixed num-
ber of different graphs. Similar to TICC [17], it can extract
the change points and the time intervals. Then in each time
interval, it finds a constant structure for the signals of that in-
terval. Moreover, dynamic K-graphs is also able to cluster
temporal graph signals. However, since our method works
with Laplacian matrices, it can offer more interpretable graph



structures, and as will be seen in simulations, our algorithm
has higher clustering accuracy compared with TICC.

2. GSP BACKGROUND

In this section, we introduce some necessary preliminaries of
GSP that are used in this paper. A weighted and undirected
graph G can be represented by a triple (V, E ,A) where V is a
finite set ofN nodes (or vertices), E ∈ V×V is a set of edges,
and A ∈ RN×N is the symmetric weighted adjacency matrix
with zero values for its diagonal entries. The (i, j)-th entry of
the matrix A is denoted by A[i, j], and the value of A[i, j]
(similarly A[j, i]) is the edge weight between the nodes i
and j. The weighted degree matrix D is a diagonal matrix
containing the degree of each node: D[i, i] =

∑N
j=1 A[i, j],

i = 1, . . . , N . Then, the graph Laplacian matrix is defined as
L = D − A, and the valid set of graph Laplacian matrices
becomes

L = {L ∈ RN×N :

L = LT ,L[i, j] ≤ 0 (∀i 6= j),L · 1 = 0
}
, (1)

where 0 and 1 are all-zero and all-one vectors, respectively,
and (·)T denotes matrix transposition.

A graph signal is a vector x, whose i-th entry x[i] assigns
a real value to the node i of the graph G. To measure the
smoothness of a graph signal x over a graph, we utilize the
following popular graph Laplacian quadratic form [1]

xTLx =
∑
i,j

A[i, j](x[i]− x[j])2, (2)

where a small value of xTLx indicates that signal x has small
variations across the strongly connected nodes. Moreover,
since the edge weights A[i, j] are non-negative, the equality
in (2) yields the Laplacian matrix to be positive semi-definite.

One of the important concepts for undirected graphs
is graph Fourier transform (GFT) obtained by eigende-
composition of graph Laplacian L = VΛVT [1], where
V is an orthonormal matrix containing the eigenvectors
V = [v1, . . . ,vN ], and Λ is a diagonal matrix with non-
negative eigenvalues, λ1, . . . , λN , on its diagonal entries.
These eigenvectors and eigenvalues are used as the basis and
the corresponding frequencies, respectively. The GFT of sig-
nal x is defined as x̂ = VTx, and the inverse GFT becomes
x = Vx̂.

To filter a graph signal x, similar to the procedure in
the classical digital signal processing, we can take GFT,
x̂ = VTx, modify the GFT coefficient, ŷ = g(x̂), and per-
form inverse GFT, y = Vŷ. For lowpass filtering, one
common choice is ŷ = Λ−1/2x̂ [10], where Λ−1/2 =
diag(h(λ1), . . . , h(λN )) with h(λ) = λ−1/2 for λ 6= 0,
and h(λ) = 0 for λ = 0. Then, the overall filtering is
equivalent to multiplying the input signal x by the matrix
L−1/2 , VΛ−1/2VT .

3. DYNAMIC K-GRAPHS ALGORITHM

Let the multivariate time series X = [x1,x2, . . . ,xT ] consist
of T temporal graph signals xt ∈ RN , t = 1, . . . , T , and the
whole time span {t}Tt=1 is divided into q + 1 different time

intervals Ti = {t}t
(c)
i

t=t
(c)
i−1+1

, i = 1, . . . , q+1, where {t(c)i }
q
i=1

is the set of q change points, t(c)0 = 0, and t(c)q+1 = T . The sig-
nals in each time interval {xt}t∈Ti comes from only one undi-
rected graph, but between the two consecutive time segments,
the topology of the underlying graph may change. More-
over, we assume that the dynamic graph at each time stamp
is chosen from one of the graphs G1,G2, . . . ,GK . Therefore
in each of the intervals T1, . . . , Tq+1, the underlying graph
must be one of theK different undirected graphs G1, . . . ,GK ,
which are not known at first. Hence, our goal in dynamic
graph learning is to jointly estimate the time intervals Ti’s (or
equivalently, the set of change points {t(c)i }

q
i=1) and the set

of graphs {Gk}Kk=1. In addition, we want to find that the sig-
nals in each interval correspond to which of the graphs. The
graph Gk is represented by its Laplacian matrix Lk, and the
criterion that a graph signal x comes from the graph Gk is the
smoothness of that signal over the graph using the Laplacian
quadratic form in (2).

To address the above problem, we propose a dynamic
graph learning algorithm, called dynamic K-graphs, which
is the modification of the K-graphs algorithm [14] in such a
way that the temporal dependency of the neighboring graph
signals also to be incorporated into the algorithm. The dy-
namic K-graph algorithm can be described as the following
minimization problem

min.
{Lk}Kk=1,

{nt}Tt=1

K∑
k=1

∑
x∈Xk

xTLkx +

K∑
k=1

f(Lk) +

α

T∑
t=2

1(nt 6= nt−1), (3)

s. t. Lk ∈ L, (1 ≤ k ≤ K),

nt ∈ {1, . . . ,K}, (1 ≤ t ≤ T ),

Xk = {xt : t ∈ {1, . . . , T}, nt = k}, (1 ≤ k ≤ K),

where the set L is the set of valid graph Laplacian defined
in (1) and 1(nt 6= nt−1) is an indicator function that equals
to 0 if nt = nt−1 and 1 otherwise. The graph signals that
come from the graphs G1, . . . ,GK are collected in clusters
X1, . . . ,XK , respectively, and each cluster Xk consists of
graph signals in one or more time intervals T1, . . . , Tq+1.
For the graph signal xt, the variable nt determines the clus-
ters 1, . . . ,K, to which the signal belongs to. The first two
terms of the objective function (3) is the same as in K-
graphs algorithm [14] where xTLkx is for measuring the
smoothness of x on Lk, and f(Lk), as described in [11],
contains the regularization terms to eliminate the trivial so-
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Fig. 1. Dynamic programming for finding the minimum cost
path for the optimization problem in (5).

lution of all-zero matrices for Lk’s and also to control the
sparsity of the off-diagonal elements of Lk’s. The last term
α
∑T

t=2 1(nt 6= nt−1) is similar to the “temporal consis-
tency” term used in TICC algorithm [17] and encourages
adjacent graph signals to be generated from the same graph.
It imposes a cost of α for each change point and results in
creation of larger and more integrated time segments. In
practice, this parameter can be chosen by cross-validation,
or in the case of existing prior knowledge about the size of
the time segments or the temporal dependency of the graph
signals, the proper value of α can be selected accordingly.

In dynamic K-graphs, we adopt an alternating minimiza-
tion for {Lk}Kk=1 and {nt}Tt=1 to solve the problem of (3).
For the initialization of the algorithm, each graph signal is
randomly and independently assigned to one of K clusters,
X1, . . . ,XK .

In the first step of the algorithm, fixing nt’s in (3) yields
the following optimization problem for Lk

Lk = argmin
L∈L

∑
x∈Xk

xTLx + f(L), (4)

where many single graph learning algorithms [5, 11] can be
expressed as the form of (4). Therefore, Lk’s can be updated
by a single graph learning from the graph signals in Xk.

In the second step of the algorithm, the Laplacian matrices
Lk’s are fixed and the graph signals are assigned to one of K
graphs G1, . . . ,GK , that is, we intend to solve the following
minimization problem for {nt}Tt=1

min.
{nt}Tt=1

K∑
k=1

∑
x∈Xk

xTLkx + α

T∑
t=2

1(nt 6= nt−1), (5)

s. t. nt ∈ {1, . . . ,K}, (1 ≤ t ≤ T ),

Xk = {xt : t ∈ {1, . . . , T}, nt = k}, (1 ≤ k ≤ K).

Similar to the TICC algorithm [17], we can solve (5) through
a dynamic programming method as shown in Fig. 1. Equiv-
alently, it is the same as finding the minimum cost path in
Viterbi algorithm [18]. At time t, the cost of choosing nt = k

is xT
t Lkxt and the transition cost for changing nt is also

α. The path with minimum cost is the answer for the op-
timization problem (5). The dynamic programming is able
to find the optimal solution in O(KT ) operations [17], and
the size of the graph, i.e., N , is only involved in the cal-
culation of xT

t Lkxt. The set of change points is equal to
{t : t ∈ {1, . . . , T − 1}, nt 6= nt+1}, and the time intervals
can be calculated by the change points. As in other cluster-
ing methods like K-means, to escape from local minima, it is
better to run the algorithm with different initialization points.

The single graph learning and dynamic programming
steps are alternately performed until the algorithm converges.
Since both of these steps do not increase the objective func-
tion of (3), after each assignment of T graph signals to K
clusters, the objective function decreases or does not change.
Moreover, the total number of assignments is finite and equals
KT . Therefore, the algorithm converges in a finite number of
iterations. The convergence occurs when the two consecutive
assignments of graph signals are identical.

4. SIMULATION RESULTS

In this section, the performance of dynamic K-graphs is nu-
merically compared with four other algorithms: TICC [17],
K-graphs [14], GLMM [13], and dynamic K-means (aK-
means like algorithm that considers the temporal dependency
in the same way of the proposed method in Section 3). We use
the gsp sensor command from GSPBOX toolbox [19] to
create K different random graphs, G1, . . . ,GK . To generate a
synthetic graph signal x from a graph G, a white noise w ∼
N (0, I) is lowpass filtered by L

−1/2
G , i.e., sG = L

−1/2
G w.

Then, the filtered signal sG is corrupted by a white Gaussian
noise n ∼ N (0, σ2

nI) independent of w, i.e., x = sG + n,
where LG is the Laplacian matrix of graph G, I denotes the
identity matrix, and σ2

n is the variance of the additive noise.
In the following experiments, the time series X consists

of T = 1000 temporal graph signals xt ∈ R30, t = 1, . . . , T .
The number of change points, q, is randomly selected from
the integer set {K + 1, . . . , 3K} to include signals from all
the K graphs. The q unique change points t(c)1 , t

(c)
2 , . . . , t

(c)
q

are also randomly chosen from the integer set {1, . . . , T −1}.
Thus, there would be q+1 time intervals with random length,
where the signals in each interval come from one graph, and
the graphs are periodically assigned to each of the time inter-
vals, i.e., G1,G2, . . . ,GK ,G1,G2, and so on. For a given sig-
nal to noise ratio (SNR) in dB, the variance of additive noise
σ2
n is chosen such that we have SNR = 10 log10(EsG/σ2

n),
where EsG is the empirical mean of graph signals, i.e., EsG =∑T

t=1 ‖sG(t)‖22 /(NT ).
For single graph learning in (4), similar to K-graphs

and GLMM methods, we utilize the graph learning algo-
rithm proposed in [11]. The implementation of the algo-
rithm is done in GSPBOX toolbox [19] with the command
gsp learn graph log degrees. Then, the resulting
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Fig. 2. Comparing clustering accuracy of dynamic K-graphs,
TICC, GLMM, and dynamic K-means for a) different num-
ber of clusters (K) and b) for different values of SNR, with
N = 30 and T = 1000.

Laplacian matrices Lk’s are normalized by dividing to their
traces to eliminate the dependency of xT

t Lkxt on the scale of
the Laplacian matrix Lk. The cost parameter in the proposed
algorithm is set to α = 2. In TICC, parameters of λ = 0.11,
β = 50, and w = 1 are chosen in order to maximize the
performance of the algorithm.

For initializing the algorithms, K-graphs has the same
initialization as dynamic K-graphs described in Section 3,
GLMM starts with K random Laplacian matrices, TICC per-
forms GMM-based clustering for the graph signals in the be-
ginning, and k-means++ [20] is used for initialization of dy-
namic K-means. All the algorithms are run with 30 different
random starting points in each realization. Among 30 runs,
the final output is the one that minimizes the objective func-
tion

∑K
k=1

∑
x∈Xk

xTLkx forK-graphs and GLMM, the ob-
jective function of (5) for dynamic K-graphs, and the over-
all objective function of [17, Eq. (1)] for TICC. For dynamic
K-means, we use the objective function of (5) with the first
term replaced by

∑K
k=1

∑
x∈Xk

‖x− ck‖22, where ck’s are
the cluster centers. Each point in the figures is the average of
100 independent realizations.

In Fig. 2, the clustering accuracy of temporal graph sig-
nals is evaluated for dynamicK-graphs algorithm with differ-
ent number of clusters and different values of SNR. To find
the optimal mapping of the calculated cluster labels to the
true cluster labels, we use the Hungarian method proposed
in [21], and the clustering accuracy is the ratio of the num-
ber of matched labels to the total number of graph signals.
It can be seen from Fig. 2a that the accuracy of dynamic K-
graphs is close to 1, and TICC has lower accuracy. The higher
performance of dynamic K-graphs can be explained by the

2 3 4 5 6

5

7

9

11

13

number of clusters (K)

S
N
R

L
[d

B
] using L

(oracle)
k ’s

dynamic K-graphs
K-graphs
GLMM

(a) different number of clusters for SNR = 15dB

5 10 15 20 25

5

7

9

11

13

SNR [dB]

S
N
R

L
[d

B
] using L

(oracle)
k ’s

dynamic K-graphs
K-graphs
GLMM

(b) different values of SNR for K = 5

Fig. 3. Comparing graph learning performance for dynamic
K-graphs, K-graphs, and GLMM for a) different number of
clusters (K) and b) for different values of SNR, with N = 30
and T = 1000.

better graph representation of Laplacian matrices compared
with precision matrices used in TICC algorithm. However,
dynamic K-graphs and TICC both have higher clustering ac-
curacy thanK-graphs and GLMM, since the latter algorithms
do not consider time dependency of graph signals. The worst
performance belongs to dynamicK-means due to its inability
to model the structure of graph signals. Figure 2b shows the
clustering accuracy for different SNRs.

In the second experiment, the graph learning capability
of dynamic K-graphs is compared with two other algorithms
that provide Laplacian matrices, i.e., K-graphs and GLMM.
Our performance criterion is SNRL defined in [14, Eq. (11)],
which measures the similarity between the estimated Lapla-
cian matrices and the true ones. Moreover, we compute
SNRL for oracle matrices L

(oracle)
k ’s which are learned from

the truly clustered graph signals, i.e., X (true)
k ’s. Calculating

SNRL with L
(oracle)
k ’s provides a good upper bound for the

performance of our proposed algorithm.
Figure 3 demonstrates SNRL for dynamic K-graphs,

K-graphs, and GLMM along with the one obtained using
L
(oracle)
k ’s. We can see that for different number of clusters

(Fig. 3a) and different values of SNR (Fig. 3b), dynamic
K-graphs closely follows the ideal case (obtained from the
matrices L

(oracle)
k ’s).

5. CONCLUSION

In this paper, we proposed a dynamic graph learning algo-
rithm, called dynamicK-graphs. In this algorithm, the Lapla-
cian matrix of the underlying graph does not take arbitrary
values at each time stamps, instead it divides the time into



different segments, and assigns one of the K graphs to each
segment. This property of the algorithm enables to cluster the
temporal graph signals. Numerical simulations show that dy-
namic K-graphs has a high clustering accuracy and achieves
a good performance in graph learning.

6. REFERENCES

[1] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and
P. Vandergheynst, “The emerging field of signal process-
ing on graphs: Extending high-dimensional data analy-
sis to networks and other irregular domains,” IEEE Sig-
nal Process. Mag., vol. 30, pp. 83–98, May 2013.

[2] A. Sandryhaila and J. M. F. Moura, “Discrete signal
processing on graphs,” IEEE Trans. Signal Process.,
vol. 61, pp. 1644–1656, Apr. 2013.

[3] A. Ortega, P. Frossard, J. Kovacevic, J. M. F. Moura, and
P. Vandergheynst, “Graph signal processing: Overview,
challenges, and applications,” Proc. IEEE, vol. 106,
no. 5, pp. 808–828, May 2018.

[4] W. Huang, T. A. W. Bolton, J. D. Medaglia, D. S. Bas-
sett, A. Ribeiro, and D. V. D. Ville, “A graph signal pro-
cessing perspective on functional brain imaging,” Proc.
IEEE, vol. 106, no. 5, pp. 868–885, May 2018.

[5] X. Dong, D. Thanou, M. Rabbat, and P. Frossard,
“Learning graphs from data: A signal representation
perspective,” IEEE Signal Process. Mag., vol. 36, pp.
44–63, May 2019.

[6] G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro,
“Connecting the dots: Identifying network structure via
graph signal processing,” IEEE Signal Process. Mag.,
vol. 36, no. 3, pp. 16–43, May 2019.

[7] G. B. Giannakis, Y. Shen, and G. V. Karanikolas,
“Topology identification and learning over graphs: Ac-
counting for nonlinearities and dynamics,” Proc. IEEE,
vol. 106, no. 5, pp. 787–807, May 2018.

[8] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse in-
verse covariance estimation with the graphical lasso,”
Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

[9] B. Lake and J. Tenenbaum, “Discovering structure by
learning sparse graphs,” in Proc. 32nd Annu. Meeting
Cogn. Sci. Soc. (CogSci’10), Portland, OR, Aug. 2010,
pp. 778–784.

[10] X. Dong, D. Thanou, P. Frossard, and P. Vandergheynst,
“Learning laplacian matrix in smooth graph signal rep-
resentations,” IEEE Trans. Signal Process., vol. 64, pp.
6160–6173, Dec. 2016.

[11] V. Kalofolias, “How to learn a graph from smooth
signals,” in Proc. Int. Conf. Artif. Intell. Statist. (AIS-
TATS’16), vol. 51, Cadiz, Spain, Jun. 2016, pp. 920–
929.

[12] B. Pasdeloup, V. Gripon, G. Mercier, D. Pastor, and
M. G. Rabbat, “Characterization and inference of graph
diffusion processes from observations of stationary sig-
nals,” IEEE Trans. Signal Inf. Process. Netw., vol. 4,
no. 3, pp. 481–496, Sep. 2018.

[13] H. P. Maretic and P. Frossard, “Graph laplacian mixture
model,” arXiv:1810.10053v1 [cs.LG], Oct. 2018.

[14] H. Araghi, M. Sabbaqi, and M. Babaie-Zadeh, “K-
Graphs: An algorithm for graph signal clustering and
multiple graph learning,” IEEE Signal Process. Lett.,
vol. 26, no. 10, pp. 1486–1490, Oct. 2019.

[15] D. Hallac, Y. Park, S. Boyd, and J. Leskovec, “Net-
work inference via the time-varying graphical lasso,”
in ACM Int. Conf. Knowl. Discovery Data Mining
(SIGKDD’17), Halifax, Canada, Aug. 2017.

[16] V. Kalofolias, A. Loukas, D. Thanou, and P. Frossard,
“Learning time varying graphs,” in IEEE Int. Conf.
Acoust. Speech Signal Process. (ICASSP’17), New Or-
leans, LA, Mar. 2017, pp. 2826–2830.

[17] D. Hallac, S. Vare, S. Boyd, and J. Leskovec, “Toeplitz
inverse covariance-based clustering of multivariate time
series data,” in ACM Int. Conf. Knowl. Discovery Data
Mining (SIGKDD’17), Halifax, Canada, Aug. 2017.

[18] A. Viterbi, “Error bounds for convolutional codes and
an asymptotically optimum decoding algorithm,” IEEE
Trans. Inf. Theory, vol. 13, no. 2, pp. 260–269, Apr.
1967.

[19] N. Perraudin, J. Paratte, D. Shuman, L. Martin,
V. Kalofolias, P. Vandergheynst, and D. K. Hammond,
“GSPBOX: A toolbox for signal processing on graphs,”
arXiv:1408.5781v2 [cs.IT], Aug. 2014. [Online]. Avail-
able: https://epfl-lts2.github.io/gspbox-html/index.html

[20] D. Arthur and S. Vassilvitskii, “K-means++: The ad-
vantages of careful seeding,” in Proc. 18th Annu. ACM-
SIAM Symp. Discrete Algorithms (SODA’07), New Or-
leans, LA, Jan. 2007, pp. 1027–1035.

[21] H. W. Kuhn, “The Hungarian method for the assignment
problem,” Naval Research Logistics Quarterly, vol. 2,
no. 1-2, pp. 83–97, Mar. 1955.


