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ABSTRACT

This paper is a survey on the source separation problem,
and on methods used for solving this problem. In a blind
context,i.e. without information about the sources but their
mutual independence, methods are based on Independent
Component Analysis (ICA). On the contrary, using priors
on sources, one can developed semi-blind approaches which
are very efficient and often much more simpler. Current ad-
vances aim to take into account various priors like positivity
or sparsity. This paper will finish with sketches of source
separation applications which will give practical examples.

1. INTRODUCTION

Source separation consists in retrieving unknown signals,
s = (s1(t), . . . , sn(t))T , which are observed through un-
known mixture of them. Denoting the observationsx(t) =
(x1(t), . . . , xp(t))

T , one can write :

x(t) = A(s(t)), t =, . . . , T, (1.1)

whereA(.) denotes the unknown mixture, a function from
R

n to R
p. If the number of observationsp is greater or equal

to the number of sources,n, the main idea for separating the
sources is to estimate a transformB(.) which inverses the
mixtureA(.), and, without extra effort, provides estimates
of the unknown sources.

Of course, without other assumptions, this problem can-
not be solved. Basically, it is necessary to have priors about

• the nature of the mixtures: it is very important to
chose a separating transformB(.) suited to the mix-
ture transformA(.),

• the sources: sources properties - even weak - are nec-
essary for driving theB(.) estimation.

This work has been partially funded by French Embassy in Tehran,
and by Center for International Research and Collaboration (ISMO) in the
framework of the GUNDISHAPUR cooperation program.

Because of the very weak assumptions, the problem is
referred as blind source separation (BSS), and the method
based on the property of source independence has been cal-
led independent component analysis (ICA) [1, 2].

In fact, one often has priors on signals. A natural idea
is then to add these priors in the model, for simplifying or
improving the separation methods.

This paper is organized as follows. In Section 2, we re-
call usual assumptions of blind source separation, and prin-
ciples of ICA. Section 3 is devoted to Gaussian non iid sour-
ces. In Section 4, we show that priors like discrete-valued
or bounded sources lead to simple geometrical algorithms.
In Section 5, we briefly present a few applications, before a
short conclusion (Section 6).

2. BLIND SOURCE SEPARATION

Source separation methods have been developed intensively
for linear mixtures, instantaneous as well as convolutive,
and more recently by a few researchers for nonlinear mix-
tures. In the most general case, the only assumption done on
the sources is that they are statistically independent. From
Darmois’s result [3], one deduces that this problem has no
solution for mutually independent Gaussian sources, with
temporally independent and identically distributed (iid) sam-
ples. Then, since the Gaussian iid model has no solution,
one must add priors, which are threefold [4]:

• Non Gaussian iid,

• Gaussian but non temporally independent (the firsti
of iid is relaxed),i.e. temporally correlated,

• Gaussian, but non identically distributed (id of iid is
relaxed),i.e. non stationary sources.

2.1. Existence of ICA solutions

Initially, even if it was not clearly stated [5], the problem has
been related to the non Gaussian iid model, and has been



refered to as blind source separation (BSS). The non Gaus-
sian property appears clearly in the Comon’s theorem [2]
for linear mixtures.

Theorem 2.1 Let x = As be ap-dimension regular mix-
ture of mutually independent random variables, with at most
one Gaussian,y = Bx has mutually independent compo-
nents iffBA = PD, whereP andD are permutation and
diagonal matrices, respectively.

This theorem is only based on the independence of ran-
dom variables. The independence criterion involves (explic-
itly or implicitly) higher order (than 2) statistics, but does
not take into account the order of samples. It means that the
iid assumption is not required, it is just a default assump-
tion: consequently, ICA methods can be applied for iid as
well as for not iid sources, but it does not work for Gaussian
sources.

Moreover, the theorem points out that the sources can-
not be exactly estimated, but only up to a scale and a per-
mutation. These are the typical undeterminacies1 of source
separation in linear mixtures.

2.2. Independence criteria

Assuming that the output signals have probability density
functions (pdf), mutual independence ofy means that:

py(y1, . . . , yp) =

n
∏

i=1

pyi
(yi), (2.1)

wherepY(y1, . . . , yp) denotes the joint density of the ran-
dom vectorY andpYi

(yi) denotes the marginal density of
the random variableYi. Of course, measuring independence
with Eq. (2.2) is not very convenient since it concerns multi-
variate functions. A classical (in statistics) divergence mea-
sure between two distributions,p andq, of the same random
variables,u1, . . . , up, is the Kullback-Leibler divergence:

KL(p||q) =

∫

p(u1, . . . , up)
p(u1, . . . , up)

q(u1, . . . , up)
du1 . . . dup.

(2.2)
One can shown that the Kullback-Leibler divergence is pos-
itive and equals to zero if and only ifp = q. Applying this
measure the the joint and the marginal density leads to an
independence measure:

KL(py||

n
∏

i=1

pyi
) = (2.3)

∫

py(y1, . . . , yp)
py(y1, . . . , yp)
∏n

i=1
pyi

(yi)
dy1 . . . dyp.

1it also means that the mixtureA cannot be blindly identified

In that case, the Kullback-Leibler divergence is positive and
vanishes if and only if the random vectorY has statistically
independent components. This measure is also related to the
mutual information (MI) usual in information theory [6]:

KL(py||
n

∏

i=1

pyi
) = I(y), (2.4)

which can be expressed using joint differential and marginal
entropies,H(y) = −E[log(py)] andH(yi) = −E[log(pyi

)]
respectively, as:

I(y) =

p
∑

i=1

H(yi) − H(y). (2.5)

The main drawback of MI is that it requires estimation of
joint and marginal densities. However, sincey = B(x)
whereB is supposed invertible, MI can be written as:

I(y) =

p
∑

i=1

H(yi) − H(x) + log |JB|, (2.6)

whereJB denotes the Jacobian of the transformB. With this
trick, sinceH(x) is a constant with respect of the inverse
transformB, one notes that, up to this constant, estimation
of I(y) requires only marginal pdf estimations in the terms
H(yi). The direct minimization of the MI, with respect of
the parameters of the transformB, equivalent to minimiza-
tion of I(y) − H(x) and based on accurate estimations of
marginal pdf (for instance, using kernel estimates) has been
used by a few authors [2, 7, 8, 9, 10]. This approach may
be shown to provide asymptotically a Maximum Likelihood
(ML) estimation of the source signals [11]. Moreover, as ex-
plained in the next subsections, many simple criteria can be
derived from MI, with approximate pdf estimates.

2.3. A few simple criteria derived from MI minimiza-
tion

2.3.1. Cancelling nonlinear cross-correlations

Indendence can also be expressed as suggested by Papoulis
[12], using nonlinear decorrelations [13, 14, 15, 16]. For in-
stance, in [13], source separation is achieved by cancelling
the cross-correlations:

E[f(yi)g(yj)], ∀i 6= j, (2.7)

wheref andg are different odd functions. In fact, for linear
mixtures (i.e. if A andB are matrices), deriving the MI
leads to similar estimation equations:

E[ψyi
(yi)yj ] = 0, ∀i 6= j, (2.8)

whereψyi
= −∂ log pyi

(u)/∂u is the score function. This
result gives the optimal nonlinear functions with respect to
MI minimization.



2.3.2. Expansion of pdf

Simpler estimates of pdf lead to simpler criteria, which, al-
though they only approximate independence, can also lead
to source separation. For instance,4-th order Gram-Charlier
or Edgeworth expansions provide criteria involving4-th or-
der cumulants [17, 18].

2.3.3. MI and non-Gaussianity

Finally, for linear mixtures, one can derive other families
of algorithms by considering particular factorizations of the
inverse transform, which is a matrixG. Due to the scale
indeterminacy, one can look for unit variance source and a
usual idea is to factorizeG = UW, whereW is a whiten-
ing matrix andU is an orthogonal matrix. After estimat-
ing W such thatE[(Wx)(Wx)T ] = I with second order
statistics, one can estimate (with higher order statistics)U

by minimizing MI. Denotingz = Wx, the MI becomes :

I(y) =

p
∑

i=1

H(yi) − H(z) + log |detU|. (2.9)

SinceU is an orthogonal matrix, the last term equals0, and
minimizing MI is equivalent to minimizing the marginal
entropy ofyi. For unit variance signals (as theyi’s), the
entropy is maximum for Gaussian sources: consequently,
minimizing the MI is equivalent to look for sources as non-
Gaussian as possible [19, 20].

2.3.4. Infomax

Applying nonlinear transformφj in the outputyj of the sep-
aration structureB so thatzj = φj(yj) are uniformly dis-
tributed2 in [0, 1], one can write:

I(z) = I(y) =
∑

j

H(zj)−H(z) = −H(z)+cte, (2.10)

since (1)φj(yj) are invertible and (2) the entropies ofyj ,
uniformly distributed in[0, 1], are constant. Then, minimiz-
ing I(y) is equivalent to minimizeI(z) or to maximize the
joint entropyH(z). It is the Infomax principles introduced
in [21].

2.4. Contrast functions

The concept of contrast function is another generic approach
for designing simple criteria. Inspired by Donoho’s work
on blind deconvolution [22], constrast functions for source
separation have been introduced by Comon [2].

Definition 2.1 A functionC(y) of the random vectory is a
contrast function if it satisfies the following conditions:

2φj(yj) is then the cumulative density function of the random variable
yj . Note also that this function is invertible

• C(Ay) ≤ C(y),

• C(Ay) = C(y), if and only ifA = DP whereD

andP are a diagonal matrix and a permutation ma-
trix, respectively.

As examples, the opposite of MI is a contrast, as well as
many criteria derived from MI:H(z), the opposite of non-
Gaussianity,i.e. −

∑

j H(yj), the joint entropyH(z) in
(2.10) are contrast functions.

2.5. Source separation in other mixtures

More complicated mixing systems have also been studied in
the literature.

For example, in (linear) convolutive mixtures, the mix-
ing model isx(n) = B0x(n)+B1x(n−1)+· · ·+Bpx(n−
p) = [B(z)]x(n), which has been shown [23] to be separa-
ble.

Nonlinear mixtures are not in general separable [24].
A practically important case of nonlinear mixtures is Post
Nonlinear (PNL) mixtures [25], in which a linear mixture
is followed by nonlinear sensors. It has been shown that
PNL mixtures are separable using statistical independence,
too [25, 26, 27], with the same undeterminacies than linear
mixtures.

However, if some weak prior information about the source
signals is available, then the performance of the source sep-
aration algorithms may be significantly improved. Thus,
these methods are not ‘Blind’ but ‘Semi-Blind’. In the next
sections of this paper, some of most frequently used priors
have been considered.

3. SEPARATION OF NON IID SOURCES

Suppose that we know that the source samples are not iid,
i.e. that sources are temporally correlated, or non stationary.

3.1. Separation of correlated sources

Several approaches have been proposed for separating cor-
related sources [28, 29, 30]. Pham and Garat [31] showed
that time-correlated Gaussian sources can be separated pro-
vided than their spectra are different. In that case, the sepa-
ration can be achieved by estimating a separation matrixB

which minimizes the criterion

C(B) =
L

∑

l=1

wloff(BR̂(τl)B
T ), (3.1)

wherewl are weighting coefficients,off(.) is a measure of
deviation from diagonality, which is positive and vanishes
iff (.) is diagonal and which satisfies:

off(R) = KL(R || diagR), (3.2)



whereKL(Ri || Rj) denotes the Kullback-Leibler diver-
gence of two zero mean multivariate normal densities, with
variance-covariance matricesRi andRj , anddiagR is the
diagonal matrice composed by diagonal entries ofR and
zeros elsewhere.

The criterion (3.1) involves a set of variance-covariance
matrices with various delaysτl : R̂(τl) = Ê[y(t−τl)y(t)T ],
whereÊ[.] is estimated using an empirical mean. Basically,
minimizing this criterion is equivalent to estimate the sep-
aration matrixB which diagonalizes jointly the set of the
variance-covariance matrices. This approach has a few ad-
vantages:

• it only requires second-order statistics,

• it can then separate Gaussian sources,

• there exist many very fast and efficient algorithms for
jointly diagonalizing matrices [32, 33].

3.2. Separation of nonstationary sources

Source nonstationarity has been first used by Matsuokaet
al. [34]. More recently, Pham et Cardoso developed a
rigourous formalization, and proved that nonstationary Gaus-
sian sources can be separated provided than the variance
ratiosσ2

i (t)/σ2

j (t) are not constant. In that case, the sepa-
ration can be achieved by estimating a separation matrixB

which minimizes the criterion

C(B) =
L

∑

l=1

wloff(BR̂lB
T ), (3.3)

where we use the same notations than in the previous sub-
section. In Eq. (3.3), matriceŝRl are variance-covariance
matrices estimated by empirical mean on successive sample
blocksTl. Among a few algorithms, the separation matrix
B can be computed as the matrix which jointly diagonalizes
the set of the variance-covariance matricesRl.

The method has the same advantages than the method
exploiting the temporal correlation.

Moreover, it can be easily extended to linear convolu-
tive mixtures, considered in the frequency domain. In fact,
after Fourier transform, in each frequency band the signal
tends to be close to a Gaussian signal, and consequently the
method based on non Gaussian iid model are not efficient.
Conversely, if the source is non stationary, one can extend
the above algorithm in the frequency domain. This idea pro-
vides a very efficient method for speech signal [35].

4. GEOMETRICAL METHODS FOR SOURCE
SEPARATION

4.1. Bounded sources

Suppose we know that all the sources are bounded. This
simple prior leads to simple geometrical interpretations and
methods for source separation (firstly introduced in [36]).

Consider, for example, separating two sources from two
mixtures. Because of the scale indeterminacy, the mixing
matrix may be assumed to be of the form:

A =

(

1 a
b 1

)

(4.1)

wherea and b are constants to be estimated from the ob-
served signals. Since the sources are bounded, the Proba-
bility Density Function (PDF) of each source has a bounded
support,i.e. pi(si) (the PDF of theith source) is non-zero
only inside an intervalαi < si < βi. Then, the joint PDF
ps(s) = p1(s1)p2(s2) is non-zero only in the rectangular
region{(s1, s2) | α1 < s1 < β1, α2 < s2 < β2}. Conse-
quently, if we have ‘enough samples’(s1(n), s2(n)) from
the sources, they form a rectangular region in thes-plane
(see Fig. 1.a). This rectangle will be transformed, by the
linear transformationx = As, into a parallelogram and the
slopes of the borders of this parallelogram determinea and
b (Fig. 1.b).

The above idea may be even generalized for separating
PNL mixtures [37]: in a PNL mixture, the parallelogram of
Fig. 1.b is again transformed, by ‘component-wise’ nonlin-
earities (corresponding to sensor nonlinearities), into a non-
linear region (Fig. 1.c). It has been proved [37] that if this
nonlinear region is transformed again into a parallelogram
by ‘component-wise’ nonlinearities, the sensor nonlineari-
ties have been completely compensated. An iterative algo-
rithm is then proposed in [37] for estimating the borders and
inverting them.

4.2. Sparse sources

Geometrical ideas are specially useful for separating sparse
sources,i.e. sources for which the probability of a sam-
ple to be large is very close to0. Consequently, for sparse
sources, the joint probability that a sample(s1(n), s2(n)) is
observed at the borders of the rectangular region of Fig. 1.a
is very low, and hence we cannot rely on estimating the bor-
ders of the parallelogram of Fig. 1.b for source separation.
However, for these sources, two ‘axes’ (parallel to the bor-
ders of the parallelogram) are easily visible, and their slopes
again determine the mixing matrix (see Fig. 2.a and 2.b, ob-
tained from synthetic sparse signals). Moreover, for sparse
sources, two new important advantages may be obtained:

1. Contrary to the traditional geometrical algorithm, it is
easy to generalize the above geometric idea to higher
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dimensions (i.eseparatingn sources fromn mixtures)
[38].

2. Sparsity enables to estimate the mixing matrix (and
even recovering the sources) in the underdetermined
case, that is, where there is less sensors than sour-
ces [39]. Consider, for example the case of 3 sour-
ces and 2 sensors (Fig. 2.c). Three ‘axes’ are visi-
ble in this scatter plot, and they correspond to the 3
columns of the mixing matrix. This is becausex =
s1a1+s2a2+s3a3, whereai’s are the columns of the
mixing matrix, and consequently the axes of Fig. 2.c
(which correspond to the instances where 2 among
the 3 sources are nearly zero) are in the directions of
ai’s. This idea can be directly generalized to more
number of sources and sensors.
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In that case, since the mixing model (the matrixA in
linear mixtures) is not invertible, note that source separa-
tion requires generally two distinct steps: identification of
the mixing matrixA and source restoration under the con-
straint of the mixing model. The second step is generally
much more complex and basic algorithms are based on lin-
ear programming. A main restriction of the above idea for
identifying the mixing matrix in underdetermined case, is
that it is implicitly assumed that, most of the times, there
is just one ‘active’ (i.e.high-energy) source. The expected
number of active sources at each instant isnP , wheren is
the number of sources, andP is the probability of a source
being active (small by sparsity assumption). WhennP is
large (e.g.because of a largeP ) the above idea fails. A
solution to this problem has been proposed in [40].

Moreover, from the above geometric ideas, it is visually
seen that for separating sparse sources, the independence



of source signals is of minor importance. In fact, even this
assumption may be dropped, leading to the name Sparse
Component Analysis (SCA).

4.3. Discrete-valued sources

Another prior used in some applications, especially in dig-
ital communications [41, 42, 43, 44] is that the sources are
discrete (e.g.binary ork-valued), and the observations are
continuous mixtures of them. Since the discrete sources are
also bounded, the methods for separating bounded sources
may be used for separating these mixtures, too. However,
they can be modified to gain more advantages (e.g.simplic-
ity, accuracy, or considering noisy mixtures). Moreover, for
underdetermined mixtures of discrete sources, it is possible
to identify and even recover the sources (much easier than
for sparse sources). This can be seen by having in mind
a geometrical interpretation like the previous section. Fur-
thermore, for discrete sources, even the independence as-
sumption may be dropped [42].

In [42], a geometrical approach (similar to what is pre-
sented in the previous section) is presented for separating
discrete (k-valued) sources, in which the independence of
the sources is not required. A Maximum Likelihood method
for separating these mixtures (which works for underdeter-
mined mixtures, too) has been proposed in [41], in which, it
is assumed that the source distribution, too, is known a pri-
ori. The case of binary valued sources has been considered
in [44] and a method based on creating virtual observations
has been proposed. The same authors have proposed a solu-
tion based on a polynomial criterion [45] for PSK commu-
nication sources. In [43] the underdetermined BSS problem
has been considered in a general case, and then a solution
has been proposed for the case of discrete sources. An ex-
tension to the case of Post-Nonlinear mixtures, where the
source alphabet (except its size) is not known a priori, is
considered in [46].

4.4. Sparsifying the observations

In the two previous subsections, sparsity is evidently a source
property. More generally, and it will be explained in details
in [47], we can apply a sparsifying transformS, which pre-
serves the linearity of the mixing model and transforms ob-
servationsx in new sparse (or sparser) observations:S(x) =
S(As) = AS(s), i.e. x̃ = As̃. Hence, in the trans-
formed domain3, methods exploiting sparsity can be used
for estimating the sources̃s. Then, applying the inverse of
the sparsifying transform,S−1, provides source estimation:
ŝ = S−1(s̃).

3e.g.wavelet or time-frequency domains

5. APPLICATIONS

In fact, the main interest of source separation problem is to
be relevant in many application domains, providing than we
have multi-dimensional observations. In the simplest case,
this diversity is spatial and is obtained by using many sen-
sors. Then, for providing efficient solutions, as for any esti-
mation problem, one has to choose carefully the following
ingredients:

• the model of mixture,i.e. what is the relationship
between the observations,x, and the sources,s,

• the criterion: is source independence relevant ? have
the sources other properties that could be used: tem-
poral coloration, non-stationarity, sparsity, discree val-
ues, etc.?

• the optimization algorithm.

In the following, we only consider the two first ingredients,
that we discuss briefly in the framework of a few applica-
tions.

5.1. Biomedical applications

In electrocardiogram (ECG), electroencephalogram (EEG)
or magnetoencephalogram (MEG) signal processing, one
uses a large set of electrodes (from10 in ECG to more than
100 in EEG and MEG), and the signals received on the elec-
trodes is related to the electric or magnetic fields due to the
electrical activity of heart or neurones. The propagation in
the biological tissues is very fast and linear instantaneous
mixtures are relevant models:

x(t) = As(t). (5.1)

Independence assumption is generally true, but the nature of
signals suggests to use other priors: for instance, ECG are
sparse signals, and most of the biological signals are tempo-
rally correlated and non-stationary. Results obtained show
that source separation is very efficient, for extracting arti-
facts [48, 49] or sources of interest, like ECG of the foetus
[50, 51, 52].

5.2. Communications

In digital mobile communications, received signals are cor-
rupted by multi-path propagation of a unique source, or by
sources in a multi-user context. Then, blind equalization or
source separation is an essential step in the signal process-
ing. Basically, the mixture model must take into account the
propagation, and is a convolutive model:

x(k) = [A(z)]s(k), (5.2)



wherek denotes discrete time andA(z) denotes the matrix
of filters in thez-domain. Signals coming from different
users can be assumed to be statistically independent, and the
iid assumption is relevant, too. However, it is very efficient
to take into account the discrete nature of signals [44, 53,
46], or cyclostationarity [54]: it allows (1) to achieve better
performance, even in noisy environments and (2) eventually
to separate more sources than sensors.

5.3. Audio and music

Basically, in audio (speech and music) applications, the mix-
ture model is convolutive for taking into account the sound
propagation. Generally, methods proposed in the time do-
main are very intricated [], especially since realistic filters
require a large number of taps. The most efficient approach
consider the problem in the frequency domain, after apply-
ing a short term Fourier transform on the observationsx(k).
Hence, the difficult convolutive problem in the time domain
is transformed in many simple instantaneous problems, one
for each frequency band . The main problem is to cancel the
permutation undeterminacy, which exists at each frequency
and corrupts the wide band source reconstruction [35].

Source separation has been used for speech enhance-
ment [55, 35] and for music separation, exploiting for in-
stance the music or speech sparsness in the time-frequency
domain [56, 57]. The general framework of Bayesian ap-
proaches can also be used for music instrument separation
even in mono recordings [56]. In this section, we show how
visual information can enhanced speech separation.

In the two next subsections, we show tha speech (linear
instantaneous or convolutive) mixtures,x(t) can be com-
pleted by the video recording of the speaker (of interest)
face,V (t′), sampled at20ms. Moreover, it allows to extract
one speech signal4, the one associated to the visual cue.

5.3.1. Extraction based on audio-video spectrum estima-
tion

The basic idea is to use the simple visual cue,V (t′) =
[h(t′), w(t′)]T associated to the height,h(t′), and the width,
w(t′), lip opening, for estimating a rough estimation of the
speech spectrum of the speaker. Since lip motions are re-
lated to sounds but present ambiguities, from a set of audio-
visual data, we first estimated (with learning) a probabilistic
audio-visual model. Then, by maximizing the audio-video
likelihood by the EM algorithm, we can extract the audio
source associated to the video. This method have been com-
pared to Jade [32] and is much more efficient. It has mainly
two advantages:

• it is very efficient for low SNR,

4instead separation of all the sources as usual in source separation

• it select the source of interest among all the sources.

The method can be extended for convolutive mixtures,
in the frequency domain. In that case, a similar approach
is done in each frequency band. Moreover, the video infor-
mation is also very efficient for cancelling the permutation
indeterminacies. [58, 59]

5.3.2. Extraction based on voice visual activity (VVA) de-
tection

Another idea is to use the video signal for detecting the
voice activity. As a simple idea, we claim that, on the frame
t′, there is voice activity if the lip motion is greater than a
threshold,i.e. if:

vva(t′) =

∣

∣

∣

∣

∂h(t′)

∂t′

∣

∣

∣

∣

+

∣

∣

∣

∣

∂w(t′)

∂t′

∣

∣

∣

∣

. (5.3)

For avoiding noisy estimations, the actual VVA is decided
after smoothing on theT previous frames:

VVA(t′) =

T
∑

k=0

akvva(t′ − k), (5.4)

whereak are the coefficients of a truncated first-order IIR
low-pass filter. This visual voice activity detector is very
efficient for cancelling permutation indeterminacies in fre-
quency domain source separation algorithms for convolu-
tive mixtures [60].

5.4. Sensor arrays

Any set of sensors receiving mixture of signals can be en-
hanced using source separation methods. This idea have
been applied in many domains. For instance, for monitor-
ing dam motion, one can measure the deviation to verticality
with plumblines distributed along the wall of the dam. The
model of observations assumes that the deviation is a linear
mixture of the water level, of the temperature and of other
unexpected signals (sismic motions, aging of the dam, etc.),
which can be separated using ICA algorithms [61].

Source separation can also be used for enhancing the
performance of sensors array. For instance, with Silicon
Hall effect sensor array, one can improve the selectivity of
the sensor and process simultaneously a few signals [62],
even with very close sensors (a few hundredths of microm-
eters) on integrated circuits.

Source separation can also be applied to chemical IS-
FET sensor array [63], usefull for environmental applica-
tions (water pollution). In that case, the mixture model is
much more complex, since the output (drain) current of each



ISFET sensor is a nonlinear mixture of the different chemi-
cal species:

Id = A + B ln
(

ai +
∑

j

kija
zi/zj

j

)

, (5.5)

whereA andB are constant depending of technological and
geometrical parameters of the ISFET transistor,kij is the
sensor sensitivity to secondary ions,ai andzi are activity
and valence of the ioni, respectively. Of course, parameters
A, B andkij vary from a sensor to another one, and source
separation methods can exploit this spatial diversity.

The mixture model (5.5) is nothing but a Post-Nonlinear
(PNL) mixture, in fact simplified since the nonlinearity is
known (log function with unknwon parameters). With these
priors, adaptation of algorithms for PNL mixtures is easy
and provides good separation performance [63].

5.5. Sparse decompositions

In many problems, observations are positive mixtures of
positive data [64]. It is for instance the case of nuclear
magnetic resonance spectroscopy of chemical compounds
[65], or of hyperspectral images [66, 67]. Moreover, in these
cases, the spectra of the different species are basically non
independent It is generally more or less sparse, too. Conse-
quently, using ICA for recovering the spectra generally fails,
or provides spectra with spurious peaks. Taking into ac-
count the positivity of the mixture matrix entries, improves
the solution, but is generally not sufficient (due to the spec-
trum dependence, ICA can fail). Currently, in such cases,
Bayesian methods, able to manage all the priors, especially
positivity and sparsity, are the most efficient [68].

Practically, in these examples, it is clear that indepen-
dence is wrong and ICA will fail. On the contrary, relevant
decompositions can be provided using positive and sparsity.

6. CONCLUSION

Now, it must be clear thatblind source separation does not
really exist. First, although this point has not been adressed
in this paper, it is important to have priors on the mixture
models, and to consider a suitable separation model. Sec-
ond, priors on sources are essential. From a statistical point
of view, since the problem has no solution for Gaussian iid
signals, 3 types of statistical priors are possible : sources are
non Gaussian iid, sources are Gaussian temporally corre-
lated, sources are Gaussian nonstationary. Remember that,
in the 2 former cases, Gaussian means that second order
statistics is sufficient, and that it is then possible to consider
Gaussian sources, but the methods works for non Gaussian
sources too.

Additionaly, other priors can provide original, simple
and efficient algorithms. For instance, bounded sources or

discrete sources leads to geometrical algorithms. It is also
possible to exploit other informations like positivity of sour-
ces or to add a visual cue to enhance speech processing.

Two very interesting approaches, which provide a gen-
eral framework, are the Bayesian ICA which is able to take
into account any priors, and the Sparse Component Anal-
ysis, which both exploits the data sparsity and looks for
sparse representations. These two approaches are explained
in details in the survey papers of A. Mohammad-Djafari
[69] and Gribonval and Lesage [47].
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