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Abstract—Network forensic analysts employ Payload Attribu- to search in traffic, looking for the initial source of infamt,
tion Systems (PAS) as an investigative tool, which enables them tothe pattern in which infection had propagated, infectedshos
store and summarize large amount of network traffic, including within the network, and possible vulnerabilities in netkor
full packet payload. Hence an investigator could query the system def N h ’I inal full K dhetia
for a specific string and check whether any of the packets etenses. i evert gess .Storlng ull pac et, t_races’ he ]
transmitted previously in the network contained that specific €xtended time periods, is an extremely difficult, and at §me
string. As a shortcoming, the previously proposed techniques are impossible, task given the volume of network traffic present
unable to support wildcard queries. Wildcards are an important  even at the organizational level, let alone in the case gefar
type of query that allow the investigator to locate strings in the  atyorks such as a service provider network. In fact, sgorin
payload when only part of the string is known. In this paper a full ket t Id ire 10TBVt f dail ’ ¢
new data structure for payload attribution, named Character ull-packe raF:eS wou req'UIre ytes ol aally s Orage
Dependent Multi-Bloom Filters, will be presented which, in for @ 1Gbps link. Thus storing data for a few month will
addition to improving the previously proposed techniques, is able push the storage requirements into the order of Peta-Byies a
to support wildcard queries as well. additionally, given such large data sets, querying for ggec

To this end, a theoretical study of the proposed method was jnqrmation would be quite costly, and with large overhead.

conducted in order to evaluate its false positive when responding | der t inimize the st - t hil |
to queries and subsequently the theoretical analysis is verified n order o minimize the storage requirements, while col-

through a number of experiments. Furthermore, comparisons l€cting full packet traces, Kulesh et al. [1] proposed a pagil
are made between the proposed method and the state of theattribution technique based on bloom filters [2] with bowhde

art attribution techniques presented in the literature. The results  fa|se positive rate. Therefore, one could submit a query and
suggest that, using the Character Dependent Multi-Bloom Filters, find out if a specific byte pattern was seen in the network

one can obtain a data reduction ratio of about 265:1 opposed . . : S .
to 210:1 as obtained by the previously proposed state of the traffic and identify the source and destination of the traffic

art techniques assuming a similar false positive rate. More Following their work, there have been other proposals [3],
importantly, the results indicate that a wildcard query with seven  [4], [5] which have improved upon the data reduction ratio
unknown characters would take approximately less than 1 second while lowering the false positive rate. For a general survey
to process, using the propc_)sed metho_d; Whllg given the previous related techniques, see [6].
techniques, as an exhaustive search is required, the same query . I .
takes about 4500 years to process. quever, the current technlque_s are limited in thg type of
queries they could respond to. This is an extremely impbrtan
issue given the current trend in network attacks and the
complex signatures required to investigate such attacks [7
[8], [9], [10]. One example could be the increasing number
. INTRODUCTION of polymorphic worms in the wild. These worms change
Network forensic analyst is responsible for a difficultheir appearance as much as possible before re-trangnittin
task. Unlike non-virtual crimes, where the criminal oftemhemselves to the next victim. This change in appearance is
leaves a trail of evidence, in the cyber world not muchsually done by re-encrypting the malware code by a differen
evidence is left behind by the cybercriminal. For examplencryption key every time which results in a different byte
assume that a new worm has spread in your organizatiogable for the malware. However as noted in [7], some invariant
network. How would you go about finding the nodes infectegarts can be extracted from the worm payload, which are
within your network? Who was the source of infection? Wagen separated by random characters (i.e. parts of the malwa
he an insider? If not, did you have proper defenses install@ghich were re-encrypted). Hence the signature of intemst f
at the edge of your network? the worm would be in the form of “A*B”, where “A” and
In such cases, one approach would be to capture and st®e are two invariant strings separated by a set of unknown
full packet traces for any possible future forensics investandom characters.
gation. This way, next time a worm is propagated in the To the best of our knowledge, the current state of the art
network, the forensic analyst could use the worm signatuggchniques are only able to query for A and B independently
, _ o _and are not able to handle the more generalized queries noted
H Copyright () 2013 IEEE. Personal use of this material is peteti above. In what follows, a new data structure for payload
owever, permission to use this material for any other purposest be 1
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introduced, abbreviated as CMBF, specifically the contribimportant characteristic of HBF was its ability to storegar
tions are: amounts of data for a long duration through the data reductio

« CMBF is able to support wildcard queries, where gatio obtained by employing bloom filters. Neverthelesssit i
limited number of unknown characters are present in tf@teworthy that HBF suffers from the offset collision and
query excerpt, as opposed to the earlier techniques whigfgnment problems as noted in [4], [5]. This issue arises
require exhaustive search in order to respond to sugien HBF concatenates an offset number to each block before
queries. To clarify the issue, later in the manuscript it wilnserting it into the bloom filter in order to preserve the
be shown that with CMBF, a query with seven unknowArder of the blocks in a packet. However, it should be noted
characters would take approximately less than 1 secofii@t inserting more than one packet into the bloom filter,
to process; while using exhaustive search to process #euld mean keeping more than one block with the same
same query would require 4500 years. offset number, which leads to the offset collision problem.

« A theoretical study of the proposed method is conductefidditionally, when we want to process a query, it is necgssar
in order to calculate the false positive rate of the CMBH find the correct alignment of the blocks, which, in turn,
Furthermore, the optimal parameters which minimize trgcreases the query response time.
false positive rate while maximizing the data reduction To solve the HBF alignment problem, Cho et al. [3] pro-
ratio are calculated. posed RBF which considers all possible alignments at once.

« CMBF is able to achieve a data reduction ratio of abolft essence, RBF employs several bloom filters each with
265:1 as Compared to the reduction ratios of about 21N assigned fixed size window. It then slides the fixed size

obtained with the state of the art technique propos&¢ndows through the payload in order to insert the blocks int
earlier, having the same false positive rate. the corresponding bloom filter. However, the reported tesul

The remainder of this paper is organized as follow i'wdicate that RBF achieves a data reduction ratio similar to

Section 1l a brief overview of related work is presented. | e best case of HBF with the same false positive rate.
Section Ill, we introduce the Character Dependent Multi- Alterpatlvelyr,] Ponec et al.l[4]’h[5] proposed a number of
Bloom Filters. Subsequently, a theoretical evaluationlgBE ~ attribution techniques, namely, the VBS, WBS, and WMH,
is conducted in Section IV, and in Section V the proposdf Order to solve the alignment and offset collision probsem

technique is evaluated through a number of experimentsibal 2ddition, these techniques yield better data reductio r
on collected traffic traces. Finally, the paper is concluided and accuracy rates when compared to the previously proposed
Section VI. techniques. VBS determines block boundaries using Rabin

fingerprinting [13] method. It slides a window through the
payload and calculates the fingerprint value for each mositi
of the window. The block boundary is set when the fingerprint
There have been a number of techniques proposed fapdm is equal to zero, wheren can be any arbitrary value.
payload attribution with the goal of determining infornuati Similarly, VBS fixes the alignment problem by specifying
such as the packet source, flooding source, or connectigBck houndaries based on the payload, however, this causes
chains. In general, these techniques could be categotized iy pew problem. Large blocks maybe constructed, which, in
header and payload based techniques. Header based tehniglin, would not allow the investigator to query for smaller
focus on the packet headers to create audit clues. In tE'B?cerpts. Similarly, there is also the possibility that egéa
respect, Snoeren et al. [11] proposed SPIE with which packgimper of small blocks could be constructed, with which the
digests (i.e. hash) are calculated from the header as wellgsom filter will fill up quickly, where the latter problem is
the first eight bytes of the payload. These digests are &tbertesolved by defining a minimum threshold for the block size.
into a bloom filter for a short time duration. When a third A|ternative|y in WBS, boundaries are determined using the
party device such as an IDS or a firewall detects a suspiciay;nowing technique [14], which guarantees that the block
activity, SPIE could be utilized to trace back the packet i§ze could not exceed a specified value. Similar to VBS, a
the source of the connection. As another example, Demir\@indow is slid through the payload and fingerprint values
al. [12] proposed SBL, with which TCP connection duratiofyr each position of the window are calculated. Subsequentl
based on SYN and FIN packets as well as its source agflother window (winnowing window) is slid through the
destination IP addresses are stored (i.e. essentially@iBed  fingerprint values and the block boundary is set before the
netflow). This information is later used for IP trace back anghaximum value of each position of the window. Lastly, the
investigation of malicious network activities. WMH method operates by running multiple instances of WBS
With regards to the payload based techniques, around whiglih different parameters in order to decrease the systésa fa
the present study revolves, full packet payload is prockard positive.
stored. The first work in this area was presented by KuleshThe payload attribution systems discussed above, provide
et al. [1] in 2004, which introduced HBF. In HBF, packeq facility to store a large amount of data for a long period

payloads are blocked and sampled using a fix sized slidigg time, yet they are unable to respond to wildcard queries.
window, and then inserted into a hierarchical bloom filten. A

II. RELATED WORK

Rolling Bloom Filter
Source Path Isolation Engine Variable Block Shingling
Session Based Logging Winnowing Block Shingling
Hierarchical Bloom Filter Winnowing Multi Hashing



In what follows, an alternative to the previously propos: [2[blalc|d[a[bla[d]v]c[c[d] fingerprint  Aggregated fingerprint
technique is presented, which is able to accept wildci 2/ Z z j - 3107:861 o 17aeesrosrorsn
gueries. Furthermore, a better data reduction ratio is ¢ alcldlalb 1130
obtained, in comparison to the previously proposed tecigsig cldlalbla 091
while maintaining a similar false positive rate. dlalblald 6001 &“—> 77657656454
alblald|v 1704
[1l. CHARACTER DEPENDENTMULTI-BLOOM FILTERS bla|d|v|c 966
Similar to the previously proposed techniques, CMBF e a j vicje 3l ézgg —>  876543232132768
V|C|C

ploys bloom filters [2], a simple and efficient data structuic
as an essential building block. A bloom filter consists of akig. 1: In this example the string “abacdabadvccd” is preeds
m bits array andk different hash functions of range:, in resulting in the calculation of the aggregated fingerprints
which, each maps an element into a bloom filter cell. At firstyhich are in turn inserted into the CMBF. The window size
the array is set a8. In order to insert an element, one shoulds set to 5, and an aggregation factor of 3 is used.

hash it, using thesg functions to get thé& positions and set

the corresponding cells tb To query a value, the value should

be hashed by the hash functions and should be checked totﬁ%ecorresponding bloom filters or not. Note that CMBF has

eE Seops ot e oo e e 0 el Grment proem, i to HBF [, because n T
pioy . ; ._Used character in the aggregated fingerprint calculatiorfs
a one-to-one way mapping for each possible byte to a unigue

. . qc éar and all possible alignments should be tested.
bloom filter. For example, bloom filter number O corresponds In order to support wildcard queries. CMBE uses fingerorint
to character fiull” or number 65 corresponds to charactér.” bp q ! gerp

In addition, it should be mentioned that, we use only one hagbOdUIo €) in the fingerprint calculation, which maps each

function for inserting values in the bloom filters. The CMBI—s fing byte to a valye (class) petwe@randq — 1. Therefore
) ) . : } the query space size is restricted as one should use a value
insertion phase consists of the following steps:

o . _ _ between the range d6, ¢ — 1] for calculating the fingerprint
1) Sliding a window of sizav through the string. _instead of all possible values between 0 to 255. As an example
2) Computing the fingerprint for each position of the W'n'suppose string “abcd?eghi” is queried with= 4. The query
dow as below: is processed by constructing four sub-excerpts: (“abdai0eg
“abcdleghi”, “abcd2eghi”, “abcd3eghi”). Each sub-exterp
is queried independently and if either results in a positive
0 response then the response to the original query would be
(Citw—1 mod g) x p @) positive as well. In section V, we will study the effect of
in which ¢ and p are two random numbers and ardlifferent modulo values on the response time when condictin

smaller than 256 ang < p. Note thate; is the ith @ wildcard query search. _
character of the string. It should be noted that this ItiSt0 be noted that CMBF is able to handle more complex

fingerprinting step results in a false positive, although ifueries as well. For example if the query excerpt is *abcde[m
contribution to the total false positive value is negligibl PIfghij” with ¢ = 8, then the sub-excerpts are created by map-
as shown in Section IV. ping each of the 4 possible unknown characters (i.e. m,n@, a
3) Aggregating g calculated fingerprints using a pre—p) into the proper class:.betweérandq—_.l. These sub-e_>_<cerpts
considered aggregation functidn (hereafter we caly Would be “abcdesfghif”, “abcde6fghif”, "abcde7fghi, an
as the “Aggregation Factor”). For example one coulc@PcdeOfghij”. Similarly, other queries could be procebsy
simply concatenate the calculated fingerprints. CMBF. In the following section we will evaluate the accuracy
4) Finding the corresponding bloom filter according to thef the proposed CMBF technique through theoretical anglysi

first byte that was involved in the aggregated fingerprint

fingerprint(c;, Ciy1, -, Cipw—1) =

(c; mod q) X p“ ! + (cip1 mod q) X p¥ 2 4 +

calculation. IV. THEORETICAL ANALYSIS
5) I.nsertlng the aggregated fingerprint in the chosen bloom,, general, the system accuracy is measured based on the
filter. false positive and false negative rates. A false positiveurs

As an example, suppose that we want to insert “abacghen a query string not inserted into the system is incdgrect
abadvced” into the bloom filter as shown in Figure 1. Wetated as present in the system. Alternatively, a falsetivega
consider a window of size 5 and slide it through the stringccyrs when a string inserted into the system earlier, tedta
Then we compute the fingerprint for each position of thgs apsent from the system when queried. False negatives are
window. Afterward, we aggregate each 3 fingerprints angesent in the payload attribution systems which employ a
finally insert the results in the appropriate bloom filterg(e. fixed size block to sample the packet payload (i.e. CMBF,
the second aggregated fingerprint is inserted in the bloden filygF, etc.). For instance, suppose that striagcdefghi” has
responsible for character c). been inserted into the CMBF with window size of 4 and

In order to process a query, one should execute stepgdgregation factor of 3. Therefore, two aggregated fingetpr
to 4 from the above list on the query string and then check

whether the resulted aggregated fingerprints were insémted Character m would be mapped to class 548CTI(m)mod 8 = 5



are constructed by considerifigbcdef” and“defghi”, which each bloom filter,gy be the aggregation factor, aridbe the
in turn are inserted in the bloom filters. Now if we querngexcerpt length. Then,
for the excerpt'cdefgh” CMBF will respond that the excerpt o
was not found, which is incorrect. It is noteworthy that éals FPpp, < (1+255 l\/&) ! (5)
negative in CMBF would occur only for the small excerpts, 256 _ )
betweenw + g — 1 bytes (i.e. the minimum required length for ~ Proof: Suppose the excerg, which was not inserted
creating an aggregated fingerprint) apd+ g — 1) + (g — 1) e queried anq a false positive oceurs because of a sffing
bytes. Calculating the false negative rate is beyond thpescghat had been inserted before. This could happen when there
of this work, as it greatly depends on the length of the qseri@®i humber of non-equal bytes betwesrand 5’, hence all
submitted to the CMBF. Therefore we will focus only orP0SSible values fof ranging from1 to / should be considered
calculating the false positive rate in the remainder of thi§ the false positive calculation:

manuscript. Lemma 2:Let FPgp, , be the bloom filter false positive
There are two types of false positives with CMBF. First, ant} the case that' and S’ differ in 7 bytes, then,

as (_ZMBF employs bloom filt_ers, th_ere is thivom fiIFer false (i) x (255 x ¢/a)i

positive Secondly, by mapping string characters into classes FPgp, , < (6)

between[0] to [¢ — 1] for computing the fingerprints, there is ) ) 256¢
the possibility of collision between two different chamrst, ~ 1N€ existence of different characters betweesi and S'
and hence false positive, which is calldidigerprint false Creates at leasf ] different aggregated fingerprints. The
positive Interestingly, and as shown later in the manuscrigt/oom filter false positive occurs in CMBF when there are
the fingerprint false positive rate is negligible compared faSe positives for all of the considered aggregated fingep
the bloom filter false positive rate. In what follows we willOn the other hand, according to relation 3, the false pesitiv

conduct a theoretical study of the noted false positive gype 'at€ of each bloom filter is, which is less than one. Thus,
the upper bound of the bloom filter false positive in this case

is:
A. Bloom Filter False Positive il < Vo @)

Bloom filter reduces the required space size, however com-,
pressing data without incurring any cost is impossible alet,f
there is the possibility of a false positive, where the bloo ‘
filter may state that a specific string was inserted into ithe () x 255° 8
it was not. On the other hand, a bloom filter does not have any 256! (®)
false negative, in other words, it will never respond ne@#i As a result, the bloom filter false positive in the case where
to a query for an inserted string. Li Fan et al. [15] showeg anq .’ differ in i bytes is:
that the probability of false positive in the bloom filter che (l> ( oy
computed using the following relation: Pp i) % (255 x {/a)’ 9

BFn,'i < 256l ( )

FP=(1—-(1- l)k‘N)’“ ) O
m Given the above, the bloom filter false positive can be

wherem is the bloom filter length,V is the number of computed by the summation dF Pgp, . over all possible
inserted items, and is the number of used hash functions. \51yes ofi. Therefore: "

Lemma 1:let n be the total number of stored characters in .
CMBF, m be the length of each of the 256_ _bloom filters, and FPpp = ZFPBFn,i
g be the aggregated factor. The false positive for each bloom =

filter in the CMBEF is: zl: (i) « (255 x W)i

n addition, the probability that and S’ differ in i bytes
r%an be calculated by:

1, <
= — — — ) 2569 l
a=(1-(1 m)2 5 ) (3) p 256
As described earlier, CMBF uses only one hash function 1 Lo g
but employs 256 bloom filters. Therefore, if we assume that ~ 956l X ([Z i x (255 x ¥/a) } o 1)
the characters are distributed uniformly in the string, the =0 ;
insertion ratio of each bloom filter will béV = 5z, where _ (14255 x ¢/a)’ —1 (10)
g is the aggregation factor and is the total number of 256!
inserted characters in the CMBF bloom filters set. As a result u
according to relation 2, the false positive rate of each oo
filter is: 0 1 )L) @ B. Fingerprint False Positive
a = — . — ) 2569
m As noted earlier, when all aggregated fingerprints of non-

O inserted stringS are seen in the appropriate CMBF bloom
Theorem 1:Let FPpr, be the bloom filter false positive filter, we mistakenly state that the string was seen before.
based om inserted characterg, be the false positive rate of More generally, this situation could happen in two distinct



from the querying phase. In order to simplify the discussion
we assume that all characters of the query string would be
used in the computation of the aggregated fingerprints.

Accordingly, the string could be divided into two parts, as
] [ ] shown in Figure 2; one with length-w — g+ 1 bytes and the

: : : : otherw + g — 1 bytes. The characters in the second part create
|4ﬁi’ R the final aggregated fingerprint, as a minimumuof- g — 1
' E:!:l l::[ characters are required to create an aggregated fingerprint
T R A OO T A In the first part, the bytes indexed by the multiples gof
' determine the proper bloom filter from the 256 possibilifas
insertion, as shown in the example earlier in this subsectio

Hence these characters #hand S’ should be equal respec-

Fig. 2: A sample string could be divided into two parts. Thﬁvely. The total number of characters fhand S’ which have
break point is selected so that the characters in the se@md g, pe equal is:

create the final aggregated fingerprint for the string. Faurth l—w—g+1
more, characters used in creating each aggregated fingterpri 1 q ]
are shown.

w+g-1
bytes

[
:4— w———»l :
l 1
I wg-1 :

12)

As a result,Py, is the probability that these corresponding
characters are equal:

scenarios of fingerprint collision and fragmentation. Inaivh Py, = (L)U’“’%“J (13)
follows each of the mentioned scenarios will be analyzed, an 256
afterward the fingerprint false positive is computed. On the other hand, the other bytes in the first part are only

1) Probability of Fingerprint Collision:Suppose tha' and  involved in the aggregated fingerprints calculation, anddb
S" are two different strings. A fingerprint collision occurseffect the bloom filter selection, hence they should only fal

when: with in the same class. This probability is denoted /3s,
« The aggregated fingerprints 8fand.S” are equal. which is calculated by:
« The corresponding aggregated fingerprints frérand S’ 2567 R
are inserted in the same bloom filter. In other words, the P, = (=% )(l*w*g“)ﬂﬁl
first byte of each aggregated fingerprint is equal $or %56 ) R
and S’, which results in selecting the same bloom filter < ((7 + 7)9—1)L T (14)
from the set of 256 available bloom filters. q 256

As an example, assume that = s;s25354558657 and Therefore, the probability of collision in the first pay,
S' = s\shshsysysgsy, and that the window size and ag-is obtained by:
gregation factor have been set to 4 and 2, respectively. TheP

fingerprints collision occurs when: = PpxPy
/ ’ 1 | Lmw=gtl | 1 1 g et
e 51 =s] andss = s4 < (fﬁ) 3 x ((=+ ﬁ)9 ) g
o [s2] = [sh], [sa] = [sh], [s5] = [sE], [s6] = [s5), and ¢ 26
(5] = [s] _ (L o (1 n L)gfl)p oy 15
256 ‘g = 256

Lemma 3:Let S and S’ be two random strings each with
lengthi, and let the window length be denoted f#ythe num- As for the second part of the string, with a length of
ber of classes (fingerprint modulo) ly and the aggregation , + ¢ — 1, the final aggregated fingerprint 6f and S’ must
factor by g. The following relation provides an upper bounthe equal. Accordingly, the first corresponding byte of these
on the fingerprint collision probability based aninsertions: strings should be equal and the rest have to be in the same

1 1 1, gy [ lowsetl class. Therefore, we have:
Po, < [(g0e x G +50 )7
On (256 . (q * 256) ) 1 (236
111 , 1 Py = o X ()2
X—— X (= 4 — w92 ] xn (11) 256 256
256 g 256 256! 1 1 1 iges 16
< JRN— -
In order to prove lemma 3, one should first identify the 256 % (q + 256) (16)

characters which determine the proper bloom filter for in-
serting the aggregated fingerprints. The reason is thaEth%?
characters have to be equal so that the aggregated fingsrprin

Consequently the probability that the aggregated fingetspri
S andS’ are equal is:

. . . . 1 1 1 l—w—g+1
are |n§erted mto the same blogm.fllter, where this is a psseur Py=P;xP, < (s=x(-+ 7)5,_1) [ =5
to a fingerprint collision. It is important to note that the 256 g 256

characters at the end of the excerpt with which an aggregated XL % (} i)w+g—2
fingerprint may not be calculated due to the minimum number 256 q 256

of characters required for its calculation, should be igdor a7



fingerprint  E&"CE~ed Definition 1: Let S = ;52 andS” = 515} be two inserted
strings, thenS” = S CSY is the merge ofS and S’ if:

[0 [a, [as | a 1) S collides with S7
a, |a; |a, | az} - 2) S’ collides with C'Sy.
i g g Note that definition 1 can be generalized using the
S merge operator, recursively (e.gmerge(A,B,C) =
s tbs by 1bs be merge(merge(A, B),C)).
[a [ba [bs 31} B For example, and as illustrated in Figure 3, assume that
i [Da |bs bs | B2 S = ajasasas and S’ = bsbsbsbg are two inserted strings
s ¢ g into the CMBF, withw = 3 andg = 2. Accordingly, o and
1 V92 . . .
, A —A— B are the aggregated fingerprints §fand S’ respectively.
S a o G 165 ‘o ConsideringS” = merge(S, S’) = cicaczeqcscs, then if one
ICI 2 |C3 ' al} s« gueries forS”, the system responds with an answer of “yes”
2 €3 |Ca a, as the aggregated fingerprints f8f would consist ofa and
€3 |€4 |Cs ﬁi} s 3, resulting in a false positive.
Cq [C5 |Ce | B2 It is worth noting that, and as mentioned earligr,and c3

: should be equal ta; andbs; respectively, in order for false

Fig. 3: Assume that only strings and S’ are inserted into the positive to happen (because of the CMBF insertion procgdure
CMBF with w = 3 and g = 2. The stringS” = c1cacscacscg  DESIES, all other bytes if” must be in the same class with
is constructed bymerge(S, S’), wherec, andc; should be the corresp(?nd|ng bytes ifi and 5. o

equal toa; and by respectively. Also all other bytes ig” ~ Lemma 4:Let Py, , be the probability ofi fragmenta-

must be in the same class with the corresponding bytes inflons occurring for stringS with the length ofl based on.
and . Therefore, when a query is submitted 6, a false insertions, whergy is the aggregation factogy the window

positive occurs. size, andg the number of classes. Then:
) —w—+1 -1
Pfragn,i < nH—l X (L g . J )
(3

We should note that in case the aggregated fingerprints of X(L « (} n i)gq)tl’w;g“J
two random strings are equal, then there will be a collision, 256 q 256
except for the time when all the bytes in the string are truly XL y (} n i)wﬂ],z " (1 n L)Z-(w,l)
equal. As a result, relation 17 is negated with; . 256 “q @ 256 q 256

Furthermore, the fingerprint collision is directly relattx 19

the number of insertions in the bloom filters. In fact, as )

more aggregated fingerprints are inserted in the bloom filter!n Order to prove lemma 4, first assume that the stishg
set, the chance of collision with the next insertion incesas 'S constructed by merging+ 1 sub-strings. We can simplify
In lemma 3, we assume that the total number of insertd3e Problem by dividing it into the following sub-problems.
aggregated fingerprints is, where there could be collisions/NOte that lemma 4 can be computed by the multiplication of
among different insertions. In other words, the bloom filtderoPabilities for these items.

set stores at most different elements. Therefore, the upper 1) How many possibilities are there to selégtl sequence

bound on the probability of collision based eninsertions of contiguous aggregated fingerprints?
would be: 2) How many possible points are there in the string at
1 which ¢ fragmentations could occur?
Po, = [Peq— ﬁ] X1 3) What is the probability of+1 sub-strings being merged,
1 1 RN PSS which results ini fragmentations?
< [(ﬁ (= + =) ) . .
q 256 At first, one should choose the sequence of contiguous
1 1 L lwigoo 1 aggregated fingerprints. As there arénsertions, then at most
* 956~ (a + ﬁ) - ﬁ} xn (18) independent contiguous aggregated fingerprints would pos-

sibly be available. Therefore, one may chodésel aggregated

2) Probability of Fragmentation: As noted earlier, the fingerprints from the set of possible aggregated fingerprints,
which is stated by:

second contributing factor to the fingerprint false positiv
is fragmentation. In essence, fragmentation occurs wheen al n i1
fragments of a query string, with certain alignments, atstb (Z + 1) <

in the CMBF. From another perspective, when two or more
inserted stringsnerge and a query string is submitted to th
system which consists of these two or more strings, then fﬂ
system rephe; ‘yes” incorrectly to the query. We defined theCOntiguous aggregated fingerprints are a set of aggregatgérfirints,
merger operation as: which are in sequence and have originated from the same edssiring.

(20)

It has to be noticed thati*! is considered as an upper
gund in order to simplify the proof of lemma 4.



The second item refers to the number of possible fragmeran be computed by:
tation points. The total humber of aggregated fingerprigts i —
|I=2+L1]  and in turn the number of possible fragmentation e
g ! FPFn = PC + E Pf""agn,i

points is | =%+1] — 1, wherel is the length ofS. As i =1
fragmentation points are to be selected, therefore: 1 )
11, g\ 1 1 1 ywtg2
(Ll_ngJ_1> 21) <n. (256(q+256) ) X 755 (3 + 356)
i l—w—g+1
. . . - —a l—w—g+1 l—w—g+1
Finally, when it comes to computing the probability of S [(ij).(zgfs_(;Jr ﬁ)gﬂ)LﬁJ
i + 1 fragments that are being merged, all the aggregated i=1 ' w
fingerprints ofS are required to be seen in the bloom filters, 4 ‘
where this probability can be computed B,, relation 17. X 55 (g T 255) T + fﬂa)l(’”—l).n”l}
Furthermore, the merge operator requires that the secamnd pa
of the first operand of the merge operafy; collides with the < g (b4 Lywke=2 o (L (L4 L)g_l)wwgﬂJ
first part of the second operarf], as illustrated in Figure 3, 256 ¢ ' 256 256 q " 256
where each has a length af — 1. Therefore, it is sufficient N
that thew — 1 corresponding bytes in the two fragments be in [1 + (n < (L4 2})6)10_1)}[ raa
the same class, so that we have: 1 (26)
[29] i(w—1) 1 1 itw— u
Py, = (72;6 ) < (64'%)( Y (22) As highlighted earlier in this section, the CMBF false

) ) _ positive originates in both bloom filter and fingerprint fals
Accordingly, the following relation represents the proibab positives, respectively denoted byPgzy and FPp , and

ity of merging i+1 sub-strings: can be computed by the summation of relations 5 and 25.
1 1 RNy A notable point in these relations is that the growth rate of
Feq X Pu; < (ﬁ x (g + ﬁ) ) the bloom filter false positive is much faster than that of the
1 1 1 g 1 1 i(w_l)fingerprint false positive. More specifically, the number of

“ 556 (g + 56 x (5 +5:6) insertions,n, appears as a multiplier in thE Py, relation,

(23)Whereas theF'Pgp, is an exponential function ofi. As a
result, raising the number of insertions in CMBF leads to

Consequently, the following relation expresses the frag-much sharper increase in thePgr, than the FPr, . To
mentation false positive, resulting from the occurrence; ofvalidate this observation, the two false positive ratesewer

fragmentations, with respect toinsertions: calculated using different values fer as illustrated in Figure
‘ L=t 4, whereFP_BFn i_ncregses and approachgs one shqrply as the
Plrag,, < n'tlx < g ) number of insertions increases. BHPr rises steadily to a
) ) L ) R value near10~%° for a similar value ofn. As such one can
x (== x (= + 7)g—1)LT'J ignore F' P, and assumé Poypr ~ FPpr, .
256 ‘g 256
1 1 1 1

1 w+g—2 (w—1 mi H
X355 % (a + ﬁ) 972 x (a + ﬁ) (w=1)  C. thlm|zat|on ) o |
4) . Given the false p_os!tlve forr_nulatlon in the previous subsec
tion, one could optimize the involved parameters in order to
J obtain the minimum false positive rate. As Mitzenmachef] [16
Based on relations 11 and 19, one can compute the fingghows, the number of hash functions used effects the false
print false positive now. positive rate of the bloom filter. Increasing the number afrha
Theorem 2:Let n be the number of insertiong, be the functions results in an increase in the system’s resolusioth

number of classesy be the window length] be the excerpt consequently decreases the false positive. On the othet, han

false positive is upper bounded by: in the number of insertions in the bloom filter, which incresis

the chances of collision and in turn the false positive rate.
In the proposed CMBF technique, the aggregation fagtor
plays the same role as the number of hash functions used for
. . | oot insertion in the bloom filter. Decreasing the aggregatiatdia
x {1 + (” x (g + ﬁ)w_l)} Xn results in increasing the number of insertions in the bloom
(25) filters and in turn brings about an increase in the false pesit
Proof: Suppose that excerg, which was not inserted rate. Similarly, when the aggregation factor is increasess
earlier into CMBF, is queried and a fingerprint false positivresolution is used when processing a query, which results
occurs due to the fingerprint collisioR,,, and fragmentation, in a higher bloom filter false positive. To find the optimum
Ptraq, ;- Therefore, the probability of fingerprint false positivevalue of g, with which the false positive rate of the CMBF is

lfwfgﬁ»lj

1 /1 1 —2/(1 1 1 vg—1\L
FPp, < gi5(5 +356)" " 2 (ggg ¥ (3 + )’ ™') 7




‘ ‘ Having relation 30, the bloom filter length and the number

[N

10

oe of insertions for the expected false positive can be contpute
107 1 by:
0.8
o o \1/2561XFPCAJBF+1—1
£ o7 £ o ] m o= In( 255 ) (31)
3 06 A 256 x (In2)2
50 £ 256 In2)>2
2 E — X m X (In
Lo4 g n = : ( ) (32)
S 2 107% 1 V256! x FPoypr+1—1
203 £ In( 255 )
02 107 ] wherel is the excerpt length anfl P, g is the CMBF false
01 positive.
o ; . . 10 . . . Moreover, one could calculate the data reduction ratio for
Number ofnserions, Number of insetions 1 CMBF, using the optimum value for the aggregation factor. As
a,

noted earlier, 256 distinct bloom filters are employed, Wwhic

Fig. 4: (a) The bloom filter false positive of CMBF with oceypyas56 x m bits of the storage to store bytes. Thus, the
different number of insertions between 50000 to 5000000 BF data reduction ratio. in short DRR. is:

charactersw = 8, g = 3, ¢ = 8, m = 25000, and! = 150. (b)

The fingerprint false positive of CMBF with the same noted DRR = 8xn
parameters. As observed, the fingerprint false positiveigb) 256 x m )
negligible with respect to the bloom filter false positive. (a — —8x (In2) (33)

!
256! X F' P, +1-1
ln( vV CMBF )

255

In the next section, an evaluation of the proposed CMBF
minimized, one should find the root of the false positive ratéechnique will be offered, based on a number of experimental
as defined by relation 5, with respect to the aggregatiomfacstudies.
as below (note that is the single bloom filter false positive
as specified in relation 3):

1
OF PoyBr 3(%) In this Section, we evaluate CMBF with the help of captured
dg = dg =0 network traces. This evaluation serves a number of purposes
First, validity of the theoretical analysis conducted ie fire-
(1 + 255 x {/a) vious section is examined, second, the CMBF performance is
dg =0 studied when using wildcard queries, and last, CMBF is com-
pared in terms of accuracy, data reduction, and performgnce
A(1 + 255 x ¥a) the previously proposed techniques in the literature. ¢, ia
dg =0 addition to implementing CMBF, we have implemented the
state of the art techniques introduced by Ponec et al. [4],
8((1 —(1- L)ﬁ)§> [5] which include FBS, VBS, WBS, and WMH, in order to
m -0 make a fair and accurate comparison between these different
dg @7) technigues. Furthermore, we have verified the correctness o
. . N ! our implementation by comparing the obtained results in our
Replacmg variabley with 5, we would be able to find the experiments with those reported by the authors in [4], [H. A
optimum value forg as below: for the data set, 5 GBytes of network traces were collected

V. EXPERIMENTAL EVALUATION

= x (14255 x ¢a) =t x

L
256/

_k? x 3((1 —(1- i);gkﬁ)k> from our Department’s core switch, which consist of TCP and
— m -0 UDP packets. This traffic was then stored using the different
ok attribution techniques noted.
o((1-a-7)#)")
= =0 (28) A. False Positive Validation

Ok

Relation 28 is the single bloom filter false positive deiiwat N Order to compare the experimental false positive rates
with -2 insertions, which was computed in [16] as: with the theoretical I|m_|ts_, calculated earlle_r, we firstrsi the _

256 captured network traffic into the CMBF using a data reduction

[ 256 x m n 2 (29) ratio of 100:1. Subsequently 20000 different random sfing

n were queried from the CMBF for each possible lengths of

Therefore, the following relation computes the optimur@5, 50, 75, 100, 150, 200, 250, and 300 bytes. As random
value for the aggregation factor: strings were used, the probability that the strings actuadire
n inserted into the data seP(.) is less thari0~46 for an excerpt

9 T e xmxIn® (30)  of size 25 bytes, and this probability would be even smaller



for larger excerpts. For more details on how to calculate thi 16418 1 —&—q=4
value, see Appendix A. s BB a=8
Using relation 5, the false positive rate was also computed, 4~ *#12 —x—q=16
with excerpt sizes ranging from 25 to 300 Bytes. Both exper- 5 1609 1 o) x-q=32
imental and theoretical results are summarized in Tablad, a £ 1000000 - g ast) q=64
as observed, the two sets of numbers closely follow eactrothe 3 1000 7 /X/* 1o
for excerpts larger than 100 Bytes. However, given excerpts & 1 S ‘ 47
of size smaller than 100 Bytes experimental results indieat g o000 M a=2%6
much higher false positive rate. This can be attributed & th 0 2 4 6 8 10
fact that, for small excerpt sizes, the number of constrlicte Number of question marks

aggregated fingerprints is quite small, giving a rather po®ig. 6: The CMBF response time to wildcard queries for
guery resolution, and consequently, a higher false pesitite. different number of wildcard characters and different ealu
of ¢, where the response time is shown in logarithmic scale.

TABLE |: CMBF False Positive Evaluation The parameters used wette= 8, andg = 3.
CMBF |
Excerpt Length| Theoretical Result] Experimental Resulf
25 43.15 87.4 can estimate that the previously proposed techniques mdspo
50 18.62 33.1 to the same query in more than 4500 years, as they employ
75 8.03 17.91 q = 256 as the fingerprint modulo. In the rest of this work
100 3.47 4.56

we have seyy = 8, as this is the largesj value for which

;gg g'ig 8'3; we still obtain a reasonable response time for large number o
‘ ' unknown characters.

250 0.02 0.01

300 0.004 0

C. Accuracy
The comparison between the theoretical false positive tesabitained in . L . .
Section 1V, and the experimental results. Where in the experiaheesults As discussed earlier in this section, 20000 random query

5GBytes of network traces were inserted into the CMBF anch tb@000 excerpts were used for each of the eight possible lengths,
o s B s S s 1aNGING 10 25 0 300 bytes, {0 evaluate the false posive o
werew = 8, g = 3, andq = 8. CMBF. The same procedure was carried out for the FBS, VBS,
WBS, and WMH techniques, the results of which are summa-

It is also noticeable that the window size and aggregatidtzed in Table Il. With all of the above mentioned techniques
factors have a major impact on accuracy value as illustratét® data reduction ratio is set to 100:1. As discussed before
in Figure 5. In fact, with these two parameters, the CMBWith a probability practically equal to 1, the response to al
accuracy could be worse than FBS or, contrarily, better th@R000 queries should be an answer of “No”. If a query results
WMH. A more detailed comparison of these techniques i8 an answer of “Yes”, then a false positive has occurred.
presented in Section V-C. Furthermore, the maximal CMBflternatively, if the system is unable to respond to a query,
accuracy rate is obtained whem= 8 and ¢ = 3, and thus, results in an answer of “N/A".
these values are used in the experiments conducted in thif is observable, that, CMBF is the only method with
study. no instances of a “N/A’ answer, while the other studied
technigues are unable to handle small queries quite wednEv
FBS, WBS, and WMH were unable to answer 25 byte query
excerpts. These results could be explained by the fact that

Another important feature of CMBF is its ability to respondn the case of CMBF, given the chosen data reduction ratio,
to wildcard queries in a reasonable time. In order to evaluamall values for the window size and aggregation factoraoul
the response time, we inserted a string in the system ame selected, while in WBS and WMH, larger window sizes
consecutively used the same string to query the systemewhikve to be selected. Additionally, as for VBS, due to its bloc
replacingb random bytes of the excerpt with question markisoundary selection procedure, more than 8000 excerpts with
(i.e. unknown characters). We measured the response timetfe size of 25 bytes, were remained unanswered.
different values ob. Moreover, this process was repeated for On the other hand, and unlike the other methods, CMBF is
different values of; (fingerprint modulo), the results of whichfound to be capable of answering 300 byte queries with no
are shown in Figure 6. false positive. As described in section Ill, it uses 256idett

As an example, CMBF answers the excerpt with sevdrloom filters and only one hash function. Thus the aggregated
unknown characters (i.eh = 7) in less than one second,fingerprints are distributed across bloom filters and onlg on
using ¢ = 8; however, it responds to the same query ibloom filter is affected with each insertion, which redudes t
about 600 seconds if we set = 16. The reason is that false positive rate. In contrast, FBS provides the wor. rkt
for ¢ = 8, about two million different strings are checkeccreates fixed sized blocks, hence it suffers from the aligime
in the bloom filter set. Yet fory = 16, the search spaceproblem. In fact, the best accuracy for the FBS, through our
increases to more than 200 million strings. Consequently, oexperiments, was achieved when a fixed block size of about

B. Supporting Wildcards
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100
—— excerpt length = 50

excerpt length =75
——excerpt length = 100
—*— excerpt length = 150

excerpt length = 200

excerpt length = 250

accuracy (percent)
wv
o

CMBF window size and aggregation factor

Fig. 5: The figure shows the impact of the window size and agien factor parameters on the CMBF false positive (the
fingerprint module is set to 8). The results were obtained $ipgi120000 random queries for each possible excerpt length,
where the excerpt lengths ranged between 50 to 250 byte, fange of window size and aggregation factors noted on the
figure.

TABLE II: The wrong answer detalil

Query CMBF FBS VBS WBS WMH

Length Yes N/A No Yes N/A No Yes N/A No Yes N/A No Yes N/A No
25 17480 0 2520 0 20000 0 8001 8334 3665 O 20000 0 0 20000 0
50 6619 0 13381| 19514 0 486 | 8908 1373 9719 | 5937 6067 7996 | 9800 3912 6288
75 3582 0 16418| 19998 0 2 5978 181  13841| 5343 0 14657| 5412 0 14588
100 911 0 19089| 18386 0 1614 | 3511 13 16476| 2122 0 17878| 2035 0 17965
150 101 0 19899| 6121 0 13879| 1248 0 18752| 353 0 19647| 323 0 19677
200 14 0 19986| 884 0 19116| 448 0 19552| 51 0 19949| 61 0 19939
250 2 0 19998| 90 0 19910 174 0 19826 12 0 19988| 4 0 19996
300 0 0 20000 14 0 19986| 57 0 19943 1 0 19999 1 0 19999

The obtained responses when querying for 20000 differec¢érets using CMBF, FBS, VBS, WBS, and WMH. All the studied téghes store the data
set with data reduction ratio 100:1 and they should answe” ‘fd all queries. A “Yes” response would results from a fatgesitive, and a “N/A’ response
would mean that the system was unable to provide a responke tpuery (i.e. small query excerpt length). The experimenteaased out using 8 different
excerpt lengths, ranging between 25 to 300 bytes. The pagssnased werev = 8, g = 3, andq = 8.

100 7S —

30 Bytes was used. Therefore, for a query excerpt, all |
30 possible alignments of the first blocks should be test
which dramatically increases the false positive rate. éutfh

the CMBF method suffers from the alignment problem as we
only all possible aggregated fingerprint positions are irequ
to be checked, where this is 3 possible positions when CM
operates optimally. This results in a less false positive r:
for the CMBF method when compared to the FBS techniq
Figure 7 represents the calculated true positive ratesdon e
of the studied methods based on 20000 different queries :
each of the eight studied lengths. 0 50

90

80

70 +

60

50

40 - —e— CMBF

Accuracy (percent)

—=®—VBS
WBS

—»—WMH
FBS

30
20

10 4

150 200 250 300 350

Excerpt Length
D. Data Reduction Ratio Fig. 7: The true positive rate of CMBF, FBS, VBS, WBS,

Another important characteristic of any payload attribnti @nd WMH techniques which is computed based on 20000
technique is its ability to reduce the volume of data storefindom queries for each possible excerpt length, havingea da
In order to compare CMBF to the other noted techniques, tfRduction ratio 100:1. The parameters used were 8, g = 3,
accuracy rate (i.e. true positive rate) was set to 90%. Th@Rdq = 8.
we found the proper reduction ratio, given a query length and
based on 20000 queries, where the query lengths ranged from
50 to 300 bytes. Figure 8 depicts the detailed results.

According to Figure 8, CMBF can store the data set in @se that the excerpt length is 300 bytes, while CMBF achieve
very small space given the noted accuracy, while WMH, as theaeduction ratio of about 265:1 given the same excerpt kengt
state of the art technique falls noticeably shorter. Falaimse, It should be noted that due to memory space constraints, we
WMH achieves a data reduction ratio of about 210:1, in theere unable to evaluate the WBS and WMH techniques for

100
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300 + . . . .
—o—CMBF point of the aggregated fingerprint calculation. In CMBF,

different alignments should be tested, where as in FBS,
different alignments had to be consideredq the block size).
Therefore, this problem is not as serious as in the FBS, since
generallyg < s.

250

200

150 -

100 -

Data Reduction ratio

50 VI. CONCLUSION

In this paper we presented a new data structure for payload
attribution, called Character Dependent Multi-Bloom i,
which uses 256 bloom filters to store the full packet payload

Fig. 8: The figure shows the data reduction ratio for CMBRith small storage requirements. The main contribution of

VBS, WBS, and WMH methods when the true positive rate\BF s its ability to respond to wildcard queries in a

ha; been fixed at 90%. The true positive was obtained Pé/asonable time. In fact doing exhaustive search in regpons
using 20000 excerpts for each noted length. The parametgys, | ..qcard query, which is done by prior techniques, is

used werew =8, g = 3, andg = 8. practically infeasible.

Moreover, a theoretical analysis of the proposed CMBF
method was conducted and the validity of this analysis was
50 byte queries, requiring a 90% accuracy. ensured through a number of experiments based on actual
network traffic. Additionally, comparisons were made betwe
the proposed CMBF method and the state of the art techniques
previously proposed in the literature, in terms of theinaecy,

A payload attribution technique with a great accuracy anghta reduction ratio, and performance. It was shown that
data reduction ratio will not be useful if it is not able toéns cMBE is able to achieve a data reduction ratio of about
and respond to queries in a timely manner. This becomggs:1 while previously proposed techniques obtained a dat
important specially given the higher bandwidth links beingaqyction ratio of around 210:1 in the best case, assuming
deployed. If the system can not keep up with the data inpginilar test scenarios. As part of the future work, we are
rate in the insertion phase, then packets will be lost ansl tm/orking on applying the proposed CMBF data structure to
directly affects the accuracy of the system. Therefore, thgner security applications such as signature based malwar

system performance plays an essential role in the paylogétection and intrusion detection systems to name a few
attribution systems. examples.

0 50 100 150 200 250 300 350
Excerpt Length

E. Performance

TABLE IlI: The insertion and querying costs

APPENDIXA
CMBF _VBS WBS WMH FBS
Inserting cost  n n 2n 2ni n The probability of a random string was previously inserted
Querying cost  ng n__2n 2 ns into the CMBF bloom filter set, can be calculated by the

The insertion and querying costs of CMBF, VBS, WBS, and WMH, rehe following relation:
n is the string lengthg is the CMBF aggregation factor, arids the number

of WBS instances employed in WMH, andis the FBS window size. n X #queries

256!

_ Table Il shows the insertion and querying costs of the \herey is the excerpt length andis the number of inserted
listed methods in detail. It can be viewed that CMBF, FBQjements. In order to calculate an upper bound, it is assumed
and VBS have the least insertion costs as they process {fig: each byte of data inserted in the CMBF results in an
string of characters only once. WBS uses the Winnowingqreqgated fingerprint insertion. Therefore, as 5GBytetatd
window technique to determine the boundaries, which forc%sused’ there will b& x 230 inserted elements in the CMBF.
the system to process the string twice. WMH us@sstances Tapje |v represents the calculated value /. for different
of WBS and therefore the cost of insertion will betimes query lengths.
more than WBS.

When responding to queries, VBS has to process the excerpt
only once. On the other hand, WBS requires the excerpt to be ACKNOWLEDGMENTS

processed twice and accordingly WMH requireimes the ) _
We would like to thank Fereshteh Razmi and Fatemeh

WBS processing on the excerpt. In the case of CMBF, though, . e ! .
the response time is a function of the string length as wellggé‘maw for their help in implementing some of the techniques

the aggregation factoy. This is as the first character used irftudied in this work. We would also like to thank Mohammad
aggregated fingerprint is unclear. In other words, one shogpadeq Dousti for his help in verifying some of the proofs

consider all possible alignments in order to find the stgrtiri? theé manuscript. Furthermore, we would like to thank the
reviewers for their constructive comments which has ledto a

As discussed earlier CMBF like FBS has the alignment problem. improved version of the manuscript.

P,. = (34)
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TABLE IV: The probability that a random string was inserte(flm] M. Mitzenmacher

into the CMBF bloom filter set previously.

(1]

(2]
(3]

(4]

(5]

(6]

(7]

(8]

(9]

(20]

[11]

[12]

[13]

[14]

[15]

Query Length

(Byte) Pe
25 6.68 x 10747
50 4.16 x 107107
75 2.59 x 10167
100 1.61 x 107227
150 6.23 x 107348
200 2.41 x 10468
250 9.35 x 10589
300 3.62 x 10~ 709
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