
1

Payload Attribution via Character Dependent
Multi-Bloom Filters

Mohammad Hashem Haghighat, Mehdi Tavakoli, and Mehdi Kharrazi
DNS Laboratory, Department of Computer Engineering,

Sharif University of Technology, Tehran,Iran
{haghighat@ce., metavakoli@ce., kharrazi@} sharif.edu

Abstract—Network forensic analysts employ Payload Attribu-
tion Systems (PAS) as an investigative tool, which enables them to
store and summarize large amount of network traffic, including
full packet payload. Hence an investigator could query the system
for a specific string and check whether any of the packets
transmitted previously in the network contained that specific
string. As a shortcoming, the previously proposed techniques are
unable to support wildcard queries. Wildcards are an important
type of query that allow the investigator to locate strings in the
payload when only part of the string is known. In this paper a
new data structure for payload attribution, named Character
Dependent Multi-Bloom Filters, will be presented which, in
addition to improving the previously proposed techniques, is able
to support wildcard queries as well.

To this end, a theoretical study of the proposed method was
conducted in order to evaluate its false positive when responding
to queries and subsequently the theoretical analysis is verified
through a number of experiments. Furthermore, comparisons
are made between the proposed method and the state of the
art attribution techniques presented in the literature. The results
suggest that, using the Character Dependent Multi-Bloom Filters,
one can obtain a data reduction ratio of about 265:1 opposed
to 210:1 as obtained by the previously proposed state of the
art techniques assuming a similar false positive rate. More
importantly, the results indicate that a wildcard query with seven
unknown characters would take approximately less than 1 second
to process, using the proposed method; while given the previous
techniques, as an exhaustive search is required, the same query
takes about 4500 years to process.

Index Terms—Network Forensics, Bloom Filter, Payload Attri-
bution System, Wildcard Search

I. I NTRODUCTION

A Network forensic analyst is responsible for a difficult
task. Unlike non-virtual crimes, where the criminal often

leaves a trail of evidence, in the cyber world not much
evidence is left behind by the cybercriminal. For example,
assume that a new worm has spread in your organizational
network. How would you go about finding the nodes infected
within your network? Who was the source of infection? Was
he an insider? If not, did you have proper defenses installed
at the edge of your network?

In such cases, one approach would be to capture and store
full packet traces for any possible future forensics investi-
gation. This way, next time a worm is propagated in the
network, the forensic analyst could use the worm signature

Copyright (c) 2013 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

to search in traffic, looking for the initial source of infection,
the pattern in which infection had propagated, infected hosts
within the network, and possible vulnerabilities in network
defenses. Nevertheless storing full packet traces, specially for
extended time periods, is an extremely difficult, and at times
impossible, task given the volume of network traffic present
even at the organizational level, let alone in the case of larger
networks such as a service provider network. In fact, storing
full packet traces would require 10TBytes of daily storage
for a 1Gbps link. Thus storing data for a few month will
push the storage requirements into the order of Peta-Bytes and
additionally, given such large data sets, querying for specific
information would be quite costly, and with large overhead.

In order to minimize the storage requirements, while col-
lecting full packet traces, Kulesh et al. [1] proposed a payload
attribution technique based on bloom filters [2] with bounded
false positive rate. Therefore, one could submit a query and
find out if a specific byte pattern was seen in the network
traffic and identify the source and destination of the traffic.
Following their work, there have been other proposals [3],
[4], [5] which have improved upon the data reduction ratio
while lowering the false positive rate. For a general surveyon
related techniques, see [6].

However, the current techniques are limited in the type of
queries they could respond to. This is an extremely important
issue given the current trend in network attacks and the
complex signatures required to investigate such attacks [7],
[8], [9], [10]. One example could be the increasing number
of polymorphic worms in the wild. These worms change
their appearance as much as possible before re-transmitting
themselves to the next victim. This change in appearance is
usually done by re-encrypting the malware code by a different
encryption key every time which results in a different byte
code for the malware. However as noted in [7], some invariant
parts can be extracted from the worm payload, which are
then separated by random characters (i.e. parts of the malware
which were re-encrypted). Hence the signature of interest for
the worm would be in the form of “A*B”, where “A” and
“B” are two invariant strings separated by a set of unknown
random characters.

To the best of our knowledge, the current state of the art
techniques are only able to query for A and B independently
and are not able to handle the more generalized queries noted
above. In what follows, a new data structure for payload
attribution called Character Dependent Multi-Bloom Filters is

2

introduced, abbreviated as CMBF, specifically the contribu-
tions are:

• CMBF is able to support wildcard queries, where a
limited number of unknown characters are present in the
query excerpt, as opposed to the earlier techniques which
require exhaustive search in order to respond to such
queries. To clarify the issue, later in the manuscript it will
be shown that with CMBF, a query with seven unknown
characters would take approximately less than 1 second
to process; while using exhaustive search to process the
same query would require 4500 years.

• A theoretical study of the proposed method is conducted,
in order to calculate the false positive rate of the CMBF.
Furthermore, the optimal parameters which minimize the
false positive rate while maximizing the data reduction
ratio are calculated.

• CMBF is able to achieve a data reduction ratio of about
265:1 as compared to the reduction ratios of about 210:1
obtained with the state of the art technique proposed
earlier, having the same false positive rate.

The remainder of this paper is organized as follow, in
Section II a brief overview of related work is presented. In
Section III, we introduce the Character Dependent Multi-
Bloom Filters. Subsequently, a theoretical evaluation of CMBF
is conducted in Section IV, and in Section V the proposed
technique is evaluated through a number of experiments based
on collected traffic traces. Finally, the paper is concludedin
Section VI.

II. RELATED WORK

There have been a number of techniques proposed for
payload attribution with the goal of determining information
such as the packet source, flooding source, or connection
chains. In general, these techniques could be categorized into
header and payload based techniques. Header based techniques
focus on the packet headers to create audit clues. In this
respect, Snoeren et al. [11] proposed SPIE with which packet
digests (i.e. hash) are calculated from the header as well as
the first eight bytes of the payload. These digests are inserted
into a bloom filter for a short time duration. When a third
party device such as an IDS or a firewall detects a suspicious
activity, SPIE could be utilized to trace back the packet to
the source of the connection. As another example, Demir et
al. [12] proposed SBL, with which TCP connection duration
based on SYN and FIN packets as well as its source and
destination IP addresses are stored (i.e. essentially a simplified
netflow). This information is later used for IP trace back and
investigation of malicious network activities.

With regards to the payload based techniques, around which
the present study revolves, full packet payload is processed and
stored. The first work in this area was presented by Kulesh
et al. [1] in 2004, which introduced HBF. In HBF, packet
payloads are blocked and sampled using a fix sized sliding
window, and then inserted into a hierarchical bloom filter. An

Source Path Isolation Engine
Session Based Logging
Hierarchical Bloom Filter

important characteristic of HBF was its ability to store large
amounts of data for a long duration through the data reduction
ratio obtained by employing bloom filters. Nevertheless it is
noteworthy that HBF suffers from the offset collision and
alignment problems as noted in [4], [5]. This issue arises
when HBF concatenates an offset number to each block before
inserting it into the bloom filter in order to preserve the
order of the blocks in a packet. However, it should be noted
that inserting more than one packet into the bloom filter,
would mean keeping more than one block with the same
offset number, which leads to the offset collision problem.
Additionally, when we want to process a query, it is necessary
to find the correct alignment of the blocks, which, in turn,
increases the query response time.

To solve the HBF alignment problem, Cho et al. [3] pro-
posed RBF which considers all possible alignments at once.
In essence, RBF employs several bloom filters each with
an assigned fixed size window. It then slides the fixed size
windows through the payload in order to insert the blocks into
the corresponding bloom filter. However, the reported results
indicate that RBF achieves a data reduction ratio similar to
the best case of HBF with the same false positive rate.

Alternatively, Ponec et al. [4], [5] proposed a number of
attribution techniques, namely, the VBS, WBS, and WMH,
in order to solve the alignment and offset collision problems.
In addition, these techniques yield better data reduction ratio
and accuracy rates when compared to the previously proposed
techniques. VBS determines block boundaries using Rabin
fingerprinting [13] method. It slides a window through the
payload and calculates the fingerprint value for each position
of the window. The block boundary is set when the fingerprint
modm is equal to zero, wherem can be any arbitrary value.
Similarly, VBS fixes the alignment problem by specifying
block boundaries based on the payload, however, this causes
a new problem. Large blocks maybe constructed, which, in
turn, would not allow the investigator to query for smaller
excerpts. Similarly, there is also the possibility that a large
number of small blocks could be constructed, with which the
bloom filter will fill up quickly, where the latter problem is
resolved by defining a minimum threshold for the block size.

Alternatively in WBS, boundaries are determined using the
winnowing technique [14], which guarantees that the block
size could not exceed a specified value. Similar to VBS, a
window is slid through the payload and fingerprint values
for each position of the window are calculated. Subsequently,
another window (winnowing window) is slid through the
fingerprint values and the block boundary is set before the
maximum value of each position of the window. Lastly, the
WMH method operates by running multiple instances of WBS
with different parameters in order to decrease the system false
positive.

The payload attribution systems discussed above, provide
a facility to store a large amount of data for a long period
of time, yet they are unable to respond to wildcard queries.

Rolling Bloom Filter
Variable Block Shingling
Winnowing Block Shingling
Winnowing Multi Hashing

3

In what follows, an alternative to the previously proposed
technique is presented, which is able to accept wildcard
queries. Furthermore, a better data reduction ratio is also
obtained, in comparison to the previously proposed techniques,
while maintaining a similar false positive rate.

III. C HARACTER DEPENDENTMULTI -BLOOM FILTERS

Similar to the previously proposed techniques, CMBF em-
ploys bloom filters [2], a simple and efficient data structure,
as an essential building block. A bloom filter consists of an
m bits array andk different hash functions of rangem, in
which, each maps an element into a bloom filter cell. At first,
the array is set as0. In order to insert an element, one should
hash it, using thesek functions to get thek positions and set
the corresponding cells to1. To query a value, the value should
be hashed by the hash functions and should be checked to see
whether the respective cells have been set to1 or not.

CMBF employs 256 distinct bloom filters in order to create
a one-to-one way mapping for each possible byte to a unique
bloom filter. For example, bloom filter number 0 corresponds
to character “null” or number 65 corresponds to character “A”.
In addition, it should be mentioned that, we use only one hash
function for inserting values in the bloom filters. The CMBF
insertion phase consists of the following steps:

1) Sliding a window of sizew through the string.
2) Computing the fingerprint for each position of the win-

dow as below:

fingerprint(ci, ci+1, . . . , ci+w−1) =

(ci mod q)× pw−1 + (ci+1 mod q)× pw−2 + · · ·+
(ci+w−1 mod q)× p0 (1)

in which q and p are two random numbers and are
smaller than 256 andq ≤ p. Note thatci is the ith

character of the string. It should be noted that this
fingerprinting step results in a false positive, although its
contribution to the total false positive value is negligible
as shown in Section IV.

3) Aggregating g calculated fingerprints using a pre-
considered aggregation functionF (hereafter we callg
as the “Aggregation Factor”). For example one could
simply concatenate the calculated fingerprints.

4) Finding the corresponding bloom filter according to the
first byte that was involved in the aggregated fingerprint
calculation.

5) Inserting the aggregated fingerprint in the chosen bloom
filter.

As an example, suppose that we want to insert “abacd-
abadvccd” into the bloom filter as shown in Figure 1. We
consider a window of size 5 and slide it through the string.
Then we compute the fingerprint for each position of the
window. Afterward, we aggregate each 3 fingerprints and
finally insert the results in the appropriate bloom filter (e.g.
the second aggregated fingerprint is inserted in the bloom filter
responsible for character c).

In order to process a query, one should execute steps 1
to 4 from the above list on the query string and then check
whether the resulted aggregated fingerprints were insertedin

Fig. 1: In this example the string “abacdabadvccd” is processed
resulting in the calculation of the aggregated fingerprints
which are in turn inserted into the CMBF. The window size
is set to 5, and an aggregation factor of 3 is used.

the corresponding bloom filters or not. Note that CMBF has
the alignment problem, similar to HBF [1], because the first
used character in the aggregated fingerprint calculation isnot
clear and all possible alignments should be tested.

In order to support wildcard queries, CMBF uses fingerprint
modulo (q) in the fingerprint calculation, which maps each
string byte to a value (class) between0 andq − 1. Therefore
the query space size is restricted as one should use a value
between the range of[0, q − 1] for calculating the fingerprint
instead of all possible values between 0 to 255. As an example,
suppose string “abcd?eghi” is queried withq = 4. The query
is processed by constructing four sub-excerpts: (“abcd0eghi”,
“abcd1eghi”, “abcd2eghi”, “abcd3eghi”). Each sub-excerpt
is queried independently and if either results in a positive
response then the response to the original query would be
positive as well. In section V, we will study the effect of
different modulo values on the response time when conducting
a wildcard query search.

It is to be noted that CMBF is able to handle more complex
queries as well. For example if the query excerpt is “abcde[m-
p]fghij” with q = 8, then the sub-excerpts are created by map-
ping each of the 4 possible unknown characters (i.e. m,n,o, and
p) into the proper class between0 andq−1. These sub-excerpts
would be “abcde5fghij”, “abcde6fghij”, “abcde7fghij”, and
“abcde0fghij”. Similarly, other queries could be processed by
CMBF. In the following section we will evaluate the accuracy
of the proposed CMBF technique through theoretical analysis.

IV. T HEORETICAL ANALYSIS

In general, the system accuracy is measured based on the
false positive and false negative rates. A false positive occurs
when a query string not inserted into the system is incorrectly
stated as present in the system. Alternatively, a false negative
occurs when a string inserted into the system earlier, is stated
as absent from the system when queried. False negatives are
present in the payload attribution systems which employ a
fixed size block to sample the packet payload (i.e. CMBF,
HBF, etc.). For instance, suppose that string“abcdefghi” has
been inserted into the CMBF with window size of 4 and
aggregation factor of 3. Therefore, two aggregated fingerprints

Character m would be mapped to class 5 asASCII(m)mod 8 = 5

4

are constructed by considering“abcdef” and“defghi” , which
in turn are inserted in the bloom filters. Now if we query
for the excerpt“cdefgh” CMBF will respond that the excerpt
was not found, which is incorrect. It is noteworthy that false
negative in CMBF would occur only for the small excerpts,
betweenw+g−1 bytes (i.e. the minimum required length for
creating an aggregated fingerprint) and(w+ g− 1) + (g− 1)
bytes. Calculating the false negative rate is beyond the scope
of this work, as it greatly depends on the length of the queries
submitted to the CMBF. Therefore we will focus only on
calculating the false positive rate in the remainder of this
manuscript.

There are two types of false positives with CMBF. First, and
as CMBF employs bloom filters, there is thebloom filter false
positive. Secondly, by mapping string characters into classes
between[0] to [q − 1] for computing the fingerprints, there is
the possibility of collision between two different characters,
and hence false positive, which is calledfingerprint false
positive. Interestingly, and as shown later in the manuscript,
the fingerprint false positive rate is negligible compared to
the bloom filter false positive rate. In what follows we will
conduct a theoretical study of the noted false positive types.

A. Bloom Filter False Positive

Bloom filter reduces the required space size, however com-
pressing data without incurring any cost is impossible. In fact,
there is the possibility of a false positive, where the bloom
filter may state that a specific string was inserted into it when
it was not. On the other hand, a bloom filter does not have any
false negative, in other words, it will never respond negatively
to a query for an inserted string. Li Fan et al. [15] showed
that the probability of false positive in the bloom filter canbe
computed using the following relation:

FP =
(

1− (1− 1

m
)kN

)k
(2)

wherem is the bloom filter length,N is the number of
inserted items, andk is the number of used hash functions.

Lemma 1: let n be the total number of stored characters in
CMBF, m be the length of each of the 256 bloom filters, and
g be the aggregated factor. The false positive for each bloom
filter in the CMBF is:

a =
(

1− (1− 1

m
)

n
256g

)

(3)

As described earlier, CMBF uses only one hash function
but employs 256 bloom filters. Therefore, if we assume that
the characters are distributed uniformly in the string, the
insertion ratio of each bloom filter will beN = n

256g , where
g is the aggregation factor andn is the total number of
inserted characters in the CMBF bloom filters set. As a result,
according to relation 2, the false positive rate of each bloom
filter is:

a =
(

1− (1− 1

m
)

n
256g

)

(4)

�

Theorem 1:Let FPBFn
be the bloom filter false positive

based onn inserted characters,a be the false positive rate of

each bloom filter,g be the aggregation factor, andl be the
excerpt length. Then,

FPBFn
<

(1 + 255× g
√
a)l − 1

256l
(5)

Proof: Suppose the excerptS, which was not inserted
be queried and a false positive occurs because of a stringS′

that had been inserted before. This could happen when there
are i number of non-equal bytes betweenS andS′, hence all
possible values fori ranging from1 to l should be considered
in the false positive calculation:

Lemma 2:Let FPBFn,i
be the bloom filter false positive

in the case thatS andS′ differ in i bytes, then,

FPBFn,i
<

(

l
i

)

× (255× g
√
a)i

256l
(6)

The existence ofi different characters betweenS and S′

creates at least⌈ i
g
⌉ different aggregated fingerprints. The

bloom filter false positive occurs in CMBF when there are
false positives for all of the considered aggregated fingerprints.
On the other hand, according to relation 3, the false positive
rate of each bloom filter isa, which is less than one. Thus,
the upper bound of the bloom filter false positive in this case
is:

a⌈
i
g
⌉ ≤ g

√
ai (7)

In addition, the probability thatS andS′ differ in i bytes
can be calculated by:

(

l
i

)

× 255i

256l
(8)

As a result, the bloom filter false positive in the case where
S andS′ differ in i bytes is:

FPBFn,i
<

(

l
i

)

× (255× g
√
a)i

256l
(9)

�

Given the above, the bloom filter false positive can be
computed by the summation ofFPBFn,i

over all possible
values ofi. Therefore:

FPBFn
=

l
∑

i=1

FPBFn,i

<

l
∑

i=1

(

l
i

)

× (255× g
√
a)i

256l

=
1

256l
×
([

l
∑

i=0

(

l

i

)

× (255× g
√
a)i

]

− 1
)

=
(1 + 255× g

√
a)l − 1

256l
(10)

B. Fingerprint False Positive

As noted earlier, when all aggregated fingerprints of non-
inserted stringS are seen in the appropriate CMBF bloom
filter, we mistakenly state that the string was seen before.
More generally, this situation could happen in two distinct

5

Fig. 2: A sample string could be divided into two parts. The
break point is selected so that the characters in the second part
create the final aggregated fingerprint for the string. Further-
more, characters used in creating each aggregated fingerprint
are shown.

scenarios of fingerprint collision and fragmentation. In what
follows each of the mentioned scenarios will be analyzed, and
afterward the fingerprint false positive is computed.

1) Probability of Fingerprint Collision:Suppose thatS and
S′ are two different strings. A fingerprint collision occurs
when:

• The aggregated fingerprints ofS andS′ are equal.
• The corresponding aggregated fingerprints fromS andS′

are inserted in the same bloom filter. In other words, the
first byte of each aggregated fingerprint is equal forS

andS′, which results in selecting the same bloom filter
from the set of 256 available bloom filters.

As an example, assume thatS = s1s2s3s4s5s6s7 and
S′ = s′1s

′
2s

′
3s

′
4s

′
5s

′
6s

′
7, and that the window size and ag-

gregation factor have been set to 4 and 2, respectively. The
fingerprints collision occurs when:

• s1 = s′1 ands3 = s′3
• [s2] = [s′2], [s4] = [s′4], [s5] = [s′5], [s6] = [s′6], and

[s7] = [s′7]

Lemma 3:Let S andS′ be two random strings each with
lengthl, and let the window length be denoted byw, the num-
ber of classes (fingerprint modulo) byq, and the aggregation
factor by g. The following relation provides an upper bound
on the fingerprint collision probability based onn insertions:

PCn
<

[

(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

× 1

256
× (

1

q
+

1

256
)w+g−2 − 1

256l

]

× n (11)

In order to prove lemma 3, one should first identify the
characters which determine the proper bloom filter for in-
serting the aggregated fingerprints. The reason is that these
characters have to be equal so that the aggregated fingerprints
are inserted into the same bloom filter, where this is a precursor
to a fingerprint collision. It is important to note that the
characters at the end of the excerpt with which an aggregated
fingerprint may not be calculated due to the minimum number
of characters required for its calculation, should be ignored

from the querying phase. In order to simplify the discussion,
we assume that all characters of the query string would be
used in the computation of the aggregated fingerprints.

Accordingly, the string could be divided into two parts, as
shown in Figure 2; one with lengthl−w−g+1 bytes and the
otherw+g−1 bytes. The characters in the second part create
the final aggregated fingerprint, as a minimum ofw + g − 1
characters are required to create an aggregated fingerprint.

In the first part, the bytes indexed by the multiples ofg

determine the proper bloom filter from the 256 possibilitiesfor
insertion, as shown in the example earlier in this subsection.
Hence these characters inS andS′ should be equal respec-
tively. The total number of characters inS andS′ which have
to be equal is:

⌊ l − w − g + 1

g
⌋ (12)

As a result,Pf1 is the probability that these corresponding
characters are equal:

Pf1 = (
1

256
)⌊

l−w−g+1

g
⌋ (13)

On the other hand, the other bytes in the first part are only
involved in the aggregated fingerprints calculation, and donot
effect the bloom filter selection, hence they should only fall
with in the same class. This probability is denoted asPf2 ,
which is calculated by:

Pf2 =
(
⌈ 256

q
⌉

256

)(l−w−g+1)−⌊ l−w−g+1

g
⌋

<
(

(
1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

(14)

Therefore, the probability of collision in the first part,Pf ,
is obtained by:

Pf = Pf1 × Pf2

< (
1

256
)⌊

l−w−g+1

g
⌋ ×

(

(
1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

=
(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

(15)

As for the second part of the string, with a length of
w + g − 1, the final aggregated fingerprint ofS andS′ must
be equal. Accordingly, the first corresponding byte of these
strings should be equal and the rest have to be in the same
class. Therefore, we have:

Ps =
1

256
× (

⌈ 256
q
⌉

256
)w+g−2

<
1

256
× (

1

q
+

1

256
)w+g−2 (16)

Consequently the probability that the aggregated fingerprints
of S andS′ are equal is:

Peq = Pf × Ps <
(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

× 1

256
× (

1

q
+

1

256
)w+g−2

(17)

6

Fig. 3: Assume that only stringsS andS′ are inserted into the
CMBF with w = 3 andg = 2. The stringS′′ = c1c2c3c4c5c6
is constructed bymerge(S, S′), wherec1 and c3 should be
equal toa1 and b3 respectively. Also all other bytes inS′′

must be in the same class with the corresponding bytes inS

andS′. Therefore, when a query is submitted forS′′, a false
positive occurs.

We should note that in case the aggregated fingerprints of
two random strings are equal, then there will be a collision,
except for the time when all the bytes in the string are truly
equal. As a result, relation 17 is negated with1

256l
.

Furthermore, the fingerprint collision is directly relatedto
the number of insertions in the bloom filters. In fact, as
more aggregated fingerprints are inserted in the bloom filter
set, the chance of collision with the next insertion increases.
In lemma 3, we assume that the total number of inserted
aggregated fingerprints isn, where there could be collisions
among different insertions. In other words, the bloom filter
set stores at mostn different elements. Therefore, the upper
bound on the probability of collision based onn insertions
would be:

PCn
= [Peq −

1

256l
]× n

<
[

(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

× 1

256
× (

1

q
+

1

256
)w+g−2 − 1

256l

]

× n (18)

�

2) Probability of Fragmentation: As noted earlier, the
second contributing factor to the fingerprint false positive
is fragmentation. In essence, fragmentation occurs when all
fragments of a query string, with certain alignments, are found
in the CMBF. From another perspective, when two or more
inserted stringsmerge, and a query string is submitted to the
system which consists of these two or more strings, then the
system replies “yes” incorrectly to the query. We defined the
merger operation as:

Definition 1: Let S = S1S2 andS′ = S′
1S

′
2 be two inserted

strings, thenS′′ = S′′
1CS′′

2 is the merge ofS andS′ if:

1) S collides withS′′
1C.

2) S′ collides withCS′′
2 .

Note that definition 1 can be generalized using the
merge operator, recursively (e.g.merge(A,B,C) =
merge(merge(A,B), C)).

For example, and as illustrated in Figure 3, assume that
S = a1a2a3a4 and S′ = b3b4b5b6 are two inserted strings
into the CMBF, withw = 3 and g = 2. Accordingly,α and
β are the aggregated fingerprints ofS and S′ respectively.
ConsideringS′′ = merge(S, S′) = c1c2c3c4c5c6, then if one
queries forS′′, the system responds with an answer of “yes”
as the aggregated fingerprints forS′′ would consist ofα and
β, resulting in a false positive.

It is worth noting that, and as mentioned earlier,c1 andc3
should be equal toa1 and b3 respectively, in order for false
positive to happen (because of the CMBF insertion procedure).
Besides, all other bytes inS′′ must be in the same class with
the corresponding bytes inS andS′.

Lemma 4:Let Pfragn,i
be the probability ofi fragmenta-

tions occurring for stringS with the length ofl based onn
insertions, whereg is the aggregation factor,w the window
size, andq the number of classes. Then:

Pfragn,i
< ni+1 ×

(⌊ l−w+1
g

⌋ − 1

i

)

×
(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

× 1

256
× (

1

q
+

1

256
)w+g−2 × (

1

q
+

1

256
)i(w−1)

(19)

In order to prove lemma 4, first assume that the stringS

is constructed by mergingi+ 1 sub-strings. We can simplify
the problem by dividing it into the following sub-problems.
Note that lemma 4 can be computed by the multiplication of
probabilities for these items.

1) How many possibilities are there to selecti+1 sequence
of contiguous aggregated fingerprints?

2) How many possible points are there in the string at
which i fragmentations could occur?

3) What is the probability ofi+1 sub-strings being merged,
which results ini fragmentations?

At first, one should choose the sequence of contiguous
aggregated fingerprints. As there aren insertions, then at most
n independent contiguous aggregated fingerprints would pos-
sibly be available. Therefore, one may choosei+1 aggregated
fingerprints from the set ofn possible aggregated fingerprints,
which is stated by:

(

n

i+ 1

)

< ni+1 (20)

It has to be noticed thatni+1 is considered as an upper
bound in order to simplify the proof of lemma 4.

Contiguous aggregated fingerprints are a set of aggregated fingerprints,
which are in sequence and have originated from the same inserted string.

7

The second item refers to the number of possible fragmen-
tation points. The total number of aggregated fingerprints is
⌊ l−w+1

g
⌋, and in turn the number of possible fragmentation

points is ⌊ l−w+1
g

⌋ − 1 , where l is the length ofS. As i

fragmentation points are to be selected, therefore:
(⌊ l−w+1

g
⌋ − 1

i

)

(21)

Finally, when it comes to computing the probability of
i + 1 fragments that are being merged, all the aggregated
fingerprints ofS are required to be seen in the bloom filters,
where this probability can be computed byPeq, relation 17.
Furthermore, the merge operator requires that the second part
of the first operand of the merge operatorS2, collides with the
first part of the second operandS′

1, as illustrated in Figure 3,
where each has a length ofw − 1. Therefore, it is sufficient
that thew− 1 corresponding bytes in the two fragments be in
the same class, so that we have:

Pwi
=

(
⌈ 256

q
⌉

256

)i(w−1)
< (

1

q
+

1

256
)i(w−1) (22)

Accordingly, the following relation represents the probabil-
ity of merging i+1 sub-strings:

Peq × Pwi
<

(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

× 1

256
× (

1

q
+

1

256
)w+g−2 × (

1

q
+

1

256
)i(w−1)

(23)

Consequently, the following relation expresses the frag-
mentation false positive, resulting from the occurrence ofi

fragmentations, with respect ton insertions:

Pfragn,i
< ni+1 ×

(⌊ l−w+1
g

⌋ − 1

i

)

×
(1

256
× (

1

q
+

1

256
)g−1

)⌊ l−w−g+1

g
⌋

× 1

256
× (

1

q
+

1

256
)w+g−2 × (

1

q
+

1

256
)i(w−1)

(24)

�

Based on relations 11 and 19, one can compute the finger-
print false positive now.

Theorem 2:Let n be the number of insertions,q be the
number of classes,w be the window length,l be the excerpt
length, andg be the aggregation factor. Then the fingerprint
false positive is upper bounded by:

FPFn
< 1

256 (
1
q
+ 1

256)
w+g−2

(

1
256 × (1

q
+ 1

256)
g−1

)⌊ l−w−g+1

g
⌋

×
[

1 +
(

n× (1
q
+ 1

256)
w−1

)

]⌊ l−w−g+1

g
⌋
× n

(25)
Proof: Suppose that excerptS, which was not inserted

earlier into CMBF, is queried and a fingerprint false positive
occurs due to the fingerprint collision,PCn

, and fragmentation,
Pfragn,i

. Therefore, the probability of fingerprint false positive

can be computed by:

FPFn
= PCn

+
⌊ l−w+1

g
⌋−1

∑

i=1

Pfragn,i

< n.
[

(

1
256 (

1
q
+ 1

256)
g−1

)⌊ l−w−g+1

g
⌋ × 1

256 (
1
q
+ 1

256)
w+g−2

]

+
⌊ l−w−g+1

g
⌋

∑

i=1

[

(⌊ l−w−g+1

g
⌋

i

)

.
(

1
256 .(

1
q
+ 1

256)
g−1

)⌊ l−w−g+1

g
⌋

× 1
256 (

1
q
+ 1

256)
w+g−2.(1

q
+ 1

256)
i(w−1).ni+1

]

< n
256 (

1
q
+ 1

256)
w+g−2 ×

(

1
256 × (1

q
+ 1

256)
g−1

)⌊ l−w−g+1

g
⌋

×
[

1 +
(

n× (1
q
+ 1

256)
w−1

)

]⌊ l−w−g+1

g
⌋

(26)

As highlighted earlier in this section, the CMBF false
positive originates in both bloom filter and fingerprint false
positives, respectively denoted byFPBFn

and FPFn
, and

can be computed by the summation of relations 5 and 25.
A notable point in these relations is that the growth rate of
the bloom filter false positive is much faster than that of the
fingerprint false positive. More specifically, the number of
insertions,n, appears as a multiplier in theFPFn

relation,
whereas theFPBFn

is an exponential function ofn. As a
result, raising the number of insertions in CMBF leads to
a much sharper increase in theFPBFn

than theFPFn
. To

validate this observation, the two false positive rates were
calculated using different values forn, as illustrated in Figure
4, whereFPBFn

increases and approaches one sharply as the
number of insertions increases. ButFPF rises steadily to a
value near10−80 for a similar value ofn. As such one can
ignoreFPFn

, and assumeFPCMBF ≃ FPBFn
.

C. Optimization

Given the false positive formulation in the previous subsec-
tion, one could optimize the involved parameters in order to
obtain the minimum false positive rate. As Mitzenmacher [16]
shows, the number of hash functions used effects the false
positive rate of the bloom filter. Increasing the number of hash
functions results in an increase in the system’s resolutionand
consequently decreases the false positive. On the other hand,
using a large number of hash functions results in an increase
in the number of insertions in the bloom filter, which increases
the chances of collision and in turn the false positive rate.

In the proposed CMBF technique, the aggregation factorg

plays the same role as the number of hash functions used for
insertion in the bloom filter. Decreasing the aggregation factor
results in increasing the number of insertions in the bloom
filters and in turn brings about an increase in the false positive
rate. Similarly, when the aggregation factor is increased,less
resolution is used when processing a query, which results
in a higher bloom filter false positive. To find the optimum
value ofg, with which the false positive rate of the CMBF is

8

0 2 4 6

x 10
8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of insertions
(a)

B
lo

om
 F

ilt
er

 F
al

se
 P

os
iti

ve

0 2 4 6

x 10
8

10
−200

10
−180

10
−160

10
−140

10
−120

10
−100

10
−80

Number of insertions
(b)

F
in

ge
rp

rin
t F

al
se

 P
os

iti
ve

Fig. 4: (a) The bloom filter false positive of CMBF with
different number of insertions between 50000 to 500000000
characters,w = 8, g = 3, q = 8, m = 25000, andl = 150. (b)
The fingerprint false positive of CMBF with the same noted
parameters. As observed, the fingerprint false positive (b), is
negligible with respect to the bloom filter false positive (a).

minimized, one should find the root of the false positive rate,
as defined by relation 5, with respect to the aggregation factor
as below (note thata is the single bloom filter false positive
as specified in relation 3):

∂FPCMBF

∂g
=

∂
(

(1+255× g
√
a)l−1

256l

)

∂g
= 0

=⇒ l

256l
× (1 + 255× g

√
a)l−1 × ∂(1 + 255× g

√
a)

∂g
= 0

=⇒ ∂(1 + 255× g
√
a)

∂g
= 0

=⇒
∂
(

(

1− (1− 1
m
)

n
256g

)
1
g

)

∂g
= 0

(27)
Replacing variableg with 1

k
, we would be able to find the

optimum value forg as below:

=⇒
−k2 × ∂

(

(

1− (1− 1
m
)

nk
256

)k
)

∂k
= 0

=⇒
∂
(

(

1− (1− 1
m
)

nk
256

)k
)

∂k
= 0 (28)

Relation 28 is the single bloom filter false positive derivation
with n

256 insertions, which was computed in [16] as:

k =
256×m

n
ln 2 (29)

Therefore, the following relation computes the optimum
value for the aggregation factor:

=⇒ g =
n

256×m× ln 2
(30)

Having relation 30, the bloom filter length and the number
of insertions for the expected false positive can be computed
by:

m =
−n× ln(

l
√

256l×FPCMBF+1−1

255)

256× (ln 2)2
(31)

n =
−256×m× (ln 2)2

ln(
l
√

256l×FPCMBF+1−1

255)
(32)

wherel is the excerpt length andFPCMBF is the CMBF false
positive.

Moreover, one could calculate the data reduction ratio for
CMBF, using the optimum value for the aggregation factor. As
noted earlier, 256 distinct bloom filters are employed, which
occupy256×m bits of the storage to storen bytes. Thus, the
CMBF data reduction ratio, in short DRR, is:

DRR =
8× n

256×m

=
−8× (ln 2)2

ln(
l
√

256l×FPCMBF+1−1

255)
(33)

In the next section, an evaluation of the proposed CMBF
technique will be offered, based on a number of experimental
studies.

V. EXPERIMENTAL EVALUATION

In this Section, we evaluate CMBF with the help of captured
network traces. This evaluation serves a number of purposes.
First, validity of the theoretical analysis conducted in the pre-
vious section is examined, second, the CMBF performance is
studied when using wildcard queries, and last, CMBF is com-
pared in terms of accuracy, data reduction, and performanceto
the previously proposed techniques in the literature. In fact, in
addition to implementing CMBF, we have implemented the
state of the art techniques introduced by Ponec et al. [4],
[5] which include FBS, VBS, WBS, and WMH, in order to
make a fair and accurate comparison between these different
techniques. Furthermore, we have verified the correctness of
our implementation by comparing the obtained results in our
experiments with those reported by the authors in [4], [5]. As
for the data set, 5 GBytes of network traces were collected
from our Department’s core switch, which consist of TCP and
UDP packets. This traffic was then stored using the different
attribution techniques noted.

A. False Positive Validation

In order to compare the experimental false positive rates
with the theoretical limits calculated earlier, we first stored the
captured network traffic into the CMBF using a data reduction
ratio of 100:1. Subsequently 20000 different random strings
were queried from the CMBF for each possible lengths of
25, 50, 75, 100, 150, 200, 250, and 300 bytes. As random
strings were used, the probability that the strings actually were
inserted into the data set (Psc) is less than10−46 for an excerpt
of size 25 bytes, and this probability would be even smaller

9

for larger excerpts. For more details on how to calculate this
value, see Appendix A.

Using relation 5, the false positive rate was also computed,
with excerpt sizes ranging from 25 to 300 Bytes. Both exper-
imental and theoretical results are summarized in Table I, and
as observed, the two sets of numbers closely follow each other
for excerpts larger than 100 Bytes. However, given excerpts
of size smaller than 100 Bytes experimental results indicate a
much higher false positive rate. This can be attributed to the
fact that, for small excerpt sizes, the number of constructed
aggregated fingerprints is quite small, giving a rather poor
query resolution, and consequently, a higher false positive rate.

TABLE I: CMBF False Positive Evaluation

CMBF

Excerpt Length Theoretical Result Experimental Result

25 43.15 87.4

50 18.62 33.1

75 8.03 17.91

100 3.47 4.56

150 0.65 0.51

200 0.12 0.07

250 0.02 0.01

300 0.004 0

The comparison between the theoretical false positive results obtained in
Section IV, and the experimental results. Where in the experimental results
5GBytes of network traces were inserted into the CMBF and then 20000
random queries, for each excerpt length noted on the figure, were submitted
to the CMBF and the resulting false positive calculated. Theparameters used
werew = 8, g = 3, andq = 8.

It is also noticeable that the window size and aggregation
factors have a major impact on accuracy value as illustrated
in Figure 5. In fact, with these two parameters, the CMBF
accuracy could be worse than FBS or, contrarily, better than
WMH. A more detailed comparison of these techniques is
presented in Section V-C. Furthermore, the maximal CMBF
accuracy rate is obtained whenw = 8 and g = 3, and thus,
these values are used in the experiments conducted in this
study.

B. Supporting Wildcards

Another important feature of CMBF is its ability to respond
to wildcard queries in a reasonable time. In order to evaluate
the response time, we inserted a string in the system and
consecutively used the same string to query the system, while
replacingb random bytes of the excerpt with question marks
(i.e. unknown characters). We measured the response time for
different values ofb. Moreover, this process was repeated for
different values ofq (fingerprint modulo), the results of which
are shown in Figure 6.

As an example, CMBF answers the excerpt with seven
unknown characters (i.e.b = 7) in less than one second,
using q = 8; however, it responds to the same query in
about 600 seconds if we setq = 16. The reason is that
for q = 8, about two million different strings are checked
in the bloom filter set. Yet forq = 16, the search space
increases to more than 200 million strings. Consequently, one

�����

�

����

�������

�����

�����

�����

����	

� �
 � 	 ��

�
�
��
�
�
��
��
	

�
��
	�
��
�
��
�

�

��
������������	���
����

��

��	

����

����

���

����	

�����

Fig. 6: The CMBF response time to wildcard queries for
different number of wildcard characters and different values
of q, where the response time is shown in logarithmic scale.
The parameters used werew = 8, andg = 3.

can estimate that the previously proposed techniques respond
to the same query in more than 4500 years, as they employ
q = 256 as the fingerprint modulo. In the rest of this work
we have setq = 8, as this is the largestq value for which
we still obtain a reasonable response time for large number of
unknown characters.

C. Accuracy

As discussed earlier in this section, 20000 random query
excerpts were used for each of the eight possible lengths,
ranging from 25 to 300 bytes, to evaluate the false positive of
CMBF. The same procedure was carried out for the FBS, VBS,
WBS, and WMH techniques, the results of which are summa-
rized in Table II. With all of the above mentioned techniques,
the data reduction ratio is set to 100:1. As discussed before,
with a probability practically equal to 1, the response to all
20000 queries should be an answer of “No”. If a query results
in an answer of “Yes”, then a false positive has occurred.
Alternatively, if the system is unable to respond to a query,it
results in an answer of “N/A”.

It is observable, that, CMBF is the only method with
no instances of a “N/A” answer, while the other studied
techniques are unable to handle small queries quite well. Even
FBS, WBS, and WMH were unable to answer 25 byte query
excerpts. These results could be explained by the fact that
in the case of CMBF, given the chosen data reduction ratio,
small values for the window size and aggregation factor could
be selected, while in WBS and WMH, larger window sizes
have to be selected. Additionally, as for VBS, due to its block
boundary selection procedure, more than 8000 excerpts with
the size of 25 bytes, were remained unanswered.

On the other hand, and unlike the other methods, CMBF is
found to be capable of answering 300 byte queries with no
false positive. As described in section III, it uses 256 distinct
bloom filters and only one hash function. Thus the aggregated
fingerprints are distributed across bloom filters and only one
bloom filter is affected with each insertion, which reduces the
false positive rate. In contrast, FBS provides the worst rate. It
creates fixed sized blocks, hence it suffers from the alignment
problem. In fact, the best accuracy for the FBS, through our
experiments, was achieved when a fixed block size of about

10

�

��

��

��

��

��

��

��

	�

�

���

�
��
�
��
��
��
�
	
��
	

��

������
�������	��
������	�����
�������

������������������

������������������

�������������������

�������������������

�������������������

�������������������

Fig. 5: The figure shows the impact of the window size and aggregation factor parameters on the CMBF false positive (the
fingerprint module is set to 8). The results were obtained by using 20000 random queries for each possible excerpt length,
where the excerpt lengths ranged between 50 to 250 byte, for arange of window size and aggregation factors noted on the
figure.

TABLE II: The wrong answer detail

Query CMBF FBS VBS WBS WMH
Length Yes N/A No Yes N/A No Yes N/A No Yes N/A No Yes N/A No

25 17480 0 2520 0 20000 0 8001 8334 3665 0 20000 0 0 20000 0
50 6619 0 13381 19514 0 486 8908 1373 9719 5937 6067 7996 9800 3912 6288
75 3582 0 16418 19998 0 2 5978 181 13841 5343 0 14657 5412 0 14588
100 911 0 19089 18386 0 1614 3511 13 16476 2122 0 17878 2035 0 17965
150 101 0 19899 6121 0 13879 1248 0 18752 353 0 19647 323 0 19677
200 14 0 19986 884 0 19116 448 0 19552 51 0 19949 61 0 19939
250 2 0 19998 90 0 19910 174 0 19826 12 0 19988 4 0 19996
300 0 0 20000 14 0 19986 57 0 19943 1 0 19999 1 0 19999

The obtained responses when querying for 20000 different excerpts using CMBF, FBS, VBS, WBS, and WMH. All the studied techniques store the data
set with data reduction ratio 100:1 and they should answer “No” to all queries. A “Yes” response would results from a falsepositive, and a “N/A” response
would mean that the system was unable to provide a response to the query (i.e. small query excerpt length). The experiment wascarried out using 8 different
excerpt lengths, ranging between 25 to 300 bytes. The parameters used werew = 8, g = 3, andq = 8.

30 Bytes was used. Therefore, for a query excerpt, all the
30 possible alignments of the first blocks should be tested,
which dramatically increases the false positive rate. Although
the CMBF method suffers from the alignment problem as well,
only all possible aggregated fingerprint positions are required
to be checked, where this is 3 possible positions when CMBF
operates optimally. This results in a less false positive rate
for the CMBF method when compared to the FBS technique.
Figure 7 represents the calculated true positive rates for each
of the studied methods based on 20000 different queries for
each of the eight studied lengths.

D. Data Reduction Ratio

Another important characteristic of any payload attribution
technique is its ability to reduce the volume of data stored.
In order to compare CMBF to the other noted techniques, the
accuracy rate (i.e. true positive rate) was set to 90%. Then
we found the proper reduction ratio, given a query length and
based on 20000 queries, where the query lengths ranged from
50 to 300 bytes. Figure 8 depicts the detailed results.

According to Figure 8, CMBF can store the data set in a
very small space given the noted accuracy, while WMH, as the
state of the art technique falls noticeably shorter. For instance,
WMH achieves a data reduction ratio of about 210:1, in the

�

��

��

��

��

��

��

��

	�

�

���

� �� ��� ��� ��� ��� ��� ���

�
��
�
��
��
��
	

��

�
�

���
�	���
����

���

��

��

���

��

Fig. 7: The true positive rate of CMBF, FBS, VBS, WBS,
and WMH techniques which is computed based on 20000
random queries for each possible excerpt length, having a data
reduction ratio 100:1. The parameters used werew = 8, g = 3,
andq = 8.

case that the excerpt length is 300 bytes, while CMBF achieves
a reduction ratio of about 265:1 given the same excerpt length.
It should be noted that due to memory space constraints, we
were unable to evaluate the WBS and WMH techniques for

11

�

��

���

���

���

���

���

� �� ��� ��� ��� ��� ��� ���

�
�
��
��
�
�
�
	�

�
�
�
�
�

�

��	����������

���	

��

���

��

	��

Fig. 8: The figure shows the data reduction ratio for CMBF,
VBS, WBS, and WMH methods when the true positive rate
has been fixed at 90%. The true positive was obtained by
using 20000 excerpts for each noted length. The parameters
used werew = 8, g = 3, andq = 8.

50 byte queries, requiring a 90% accuracy.

E. Performance

A payload attribution technique with a great accuracy and
data reduction ratio will not be useful if it is not able to insert
and respond to queries in a timely manner. This becomes
important specially given the higher bandwidth links being
deployed. If the system can not keep up with the data input
rate in the insertion phase, then packets will be lost and this
directly affects the accuracy of the system. Therefore, the
system performance plays an essential role in the payload
attribution systems.

TABLE III: The insertion and querying costs

CMBF VBS WBS WMH FBS
Inserting cost n n 2n 2ni n
Querying cost ng n 2n 2ni ns

The insertion and querying costs of CMBF, VBS, WBS, and WMH, where
n is the string length,g is the CMBF aggregation factor, andi is the number
of WBS instances employed in WMH, ands is the FBS window size.

Table III shows the insertion and querying costs of the
listed methods in detail. It can be viewed that CMBF, FBS,
and VBS have the least insertion costs as they process the
string of characters only once. WBS uses the winnowing
window technique to determine the boundaries, which forces
the system to process the string twice. WMH usesi instances
of WBS and therefore the cost of insertion will bei times
more than WBS.

When responding to queries, VBS has to process the excerpt
only once. On the other hand, WBS requires the excerpt to be
processed twice and accordingly WMH requiresi times the
WBS processing on the excerpt. In the case of CMBF, though,
the response time is a function of the string length as well as
the aggregation factorg. This is as the first character used in
aggregated fingerprint is unclear. In other words, one should
consider all possible alignments in order to find the starting

As discussed earlier CMBF like FBS has the alignment problem.

point of the aggregated fingerprint calculation. In CMBF,g

different alignments should be tested, where as in FBS,s

different alignments had to be considered (s is the block size).
Therefore, this problem is not as serious as in the FBS, since
generallyg ≪ s.

VI. CONCLUSION

In this paper we presented a new data structure for payload
attribution, called Character Dependent Multi-Bloom Filters,
which uses 256 bloom filters to store the full packet payload
with small storage requirements. The main contribution of
CMBF is its ability to respond to wildcard queries in a
reasonable time. In fact doing exhaustive search in response
to a wildcard query, which is done by prior techniques, is
practically infeasible.

Moreover, a theoretical analysis of the proposed CMBF
method was conducted and the validity of this analysis was
ensured through a number of experiments based on actual
network traffic. Additionally, comparisons were made between
the proposed CMBF method and the state of the art techniques
previously proposed in the literature, in terms of their accuracy,
data reduction ratio, and performance. It was shown that
CMBF is able to achieve a data reduction ratio of about
265:1, while previously proposed techniques obtained a data
reduction ratio of around 210:1 in the best case, assuming
similar test scenarios. As part of the future work, we are
working on applying the proposed CMBF data structure to
other security applications such as signature based malware
detection and intrusion detection systems to name a few
examples.

APPENDIX A

The probability of a random string was previously inserted
into the CMBF bloom filter set, can be calculated by the
following relation:

Psc =
n×#queries

256l
(34)

wherel is the excerpt length andn is the number of inserted
elements. In order to calculate an upper bound, it is assumed
that each byte of data inserted in the CMBF results in an
aggregated fingerprint insertion. Therefore, as 5GBytes ofdata
is used, there will be5× 230 inserted elements in the CMBF.
Table IV represents the calculated value ofPsc for different
query lengths.

ACKNOWLEDGMENTS

We would like to thank Fereshteh Razmi and Fatemeh
Kamaly for their help in implementing some of the techniques
studied in this work. We would also like to thank Mohammad
Sadeq Dousti for his help in verifying some of the proofs
in the manuscript. Furthermore, we would like to thank the
reviewers for their constructive comments which has led to an
improved version of the manuscript.

12

TABLE IV: The probability that a random string was inserted
into the CMBF bloom filter set previously.

Query Length
Psc

(Byte)

25 6.68× 10−47

50 4.16× 10−107

75 2.59× 10−167

100 1.61× 10−227

150 6.23× 10−348

200 2.41× 10−468

250 9.35× 10−589

300 3.62× 10−709

REFERENCES

[1] K. Shanmugasundaram, H. Brönnimann, and N. Memon, “Payload
attribution via hierarchical bloom filters,” inProceedings of the 11th
ACM conference on Computer and communications security. ACM,
2004, pp. 31–41.

[2] B. Bloom, “Space/time trade-offs in hash coding with allowable errors,”
Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[3] C. Cho, S. Lee, C. Tan, and Y. Tan, “Network forensics on packet
fingerprints,”Security and Privacy in Dynamic Environments, pp. 401–
412, 2006.

[4] M. Ponec, P. Giura, H. Brönnimann, and J. Wein, “Highly efficient
techniques for network forensics,” inProceedings of the 14th ACM
conference on Computer and communications security. ACM, 2007,
pp. 150–160.

[5] M. Ponec, P. Giura, J. Wein, and H. Brönnimann, “New payload attri-
bution methods for network forensic investigations,”ACM Transactions
on Information and System Security (TISSEC), vol. 13, no. 2, pp. 1–32,
2010.

[6] E. S. Pilli, R. Joshi, and R. Niyogi, “Network forensic frameworks:
Survey and research challenges,”Digital Investigation, vol. 7, no. 1-2,
pp. 14 – 27, 2010.

[7] J. Newsome, B. Karp, and D. Song, “Polygraph: Automatically generat-
ing signatures for polymorphic worms,”Proceedings of the 2005 IEEE
Symposium on Security and Privacy, 2005.

[8] M. Polychronakis, K. G. Anagnostakis, and E. P. Markatos, “An
Empirical Study of Real-world Polymorphic Code Injection Attacks,”
in 2nd Usenix Workshop on Large-Scale Exploits and Emergent Threats
(LEET ’09), 2009.

[9] P. Fogla, M. Sharif, R. Perdisci, O. Kolesnikov, and W. Lee,
“Polymorphic blending attacks,” inProceedings of the 15th conference
on USENIX Security Symposium - Volume 15, ser. USENIX-SS’06.
Berkeley, CA, USA: USENIX Association, 2006. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1267336.1267353

[10] Z. Li, M. Sanghi, Y. Chen, M.-Y. Kao, and B. Chavez, “Hamsa: Fast
signature generation for zero-day polymorphicworms with provable
attack resilience,” in Proceedings of the 2006 IEEE Symposium
on Security and Privacy, ser. SP ’06. Washington, DC, USA:
IEEE Computer Society, 2006, pp. 32–47. [Online]. Available:
http://dx.doi.org/10.1109/SP.2006.18

[11] A. Snoeren, “Hash-based ip traceback,” inACM SIGCOMM Computer
Communication Review, vol. 31, no. 4. ACM, 2001, pp. 3–14.

[12] O. Demir, P. Ji, and J. Kim, “Session based logging (sbl) for ip-traceback
on network forensics,” inIn proceedings of the 2006 International
Conference on Security and Management, 2006, pp. 233–239.

[13] M. Rabin,Fingerprinting by random polynomials. Center for Research
in Computing Techn., Aiken Computation Laboratory, Univ., 1981.

[14] S. Schleimer, D. Wilkerson, and A. Aiken, “Winnowing: local algorithms
for document fingerprinting,” inProceedings of the 2003 ACM SIGMOD
international conference on Management of data. ACM, 2003, pp. 76–
85.

[15] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary cache: A scalable
wide-area web cache sharing protocol,” inACM SIGCOMM Computer
Communication Review, vol. 28, no. 4. ACM, 1998, pp. 254–265.

[16] M. Mitzenmacher, “Compressed bloom filters,”IEEE/ACM Transactions
on Networking (TON), vol. 10, no. 5, pp. 604–612, 2002.

Mohammad Hashem Haghighatreceived his B.S.
degree in computer engineering from Shiraz Azad
University, Shiraz, Iran in 2008, and his M.S. degree
in computer engineering from Sharif University of
Technology, Tehran, Iran in 2010. He is currently a
researcher with the DNS Laboratory at Sharif Uni-
versity of Technology. His research interests include
network security, information forensics, and formal
verification of security properties in protocols.

Mehdi Tavakoli received his B.Sc. degree in com-
puter science in 2004 from Shahid Beheshti Uni-
versity, Tehran, Iran, and his M.Sc. degree in com-
puter science from Sharif University of Technology,
Tehran, Iran in 2012. He is currently a researcher
with the DNS Laboratory at Sharif University of
Technology. His research interests include network-
ing, network security, and digital forensics.

Mehdi Kharrazi received his B.E. degree in elec-
trical engineering from the City College of New
York and his M.S. and Ph.D. degrees in electri-
cal engineering from the Department of Electrical
and Computer Engineering, Polytechnic University,
Brooklyn, New York, in 2002 and 2006 respec-
tively. He is currently an Assistant Professor with
the Department of Computer Engineering, Sharif
University of Technology, Tehran, Iran. His current
research interests include network and multimedia
security.

