
1

Back to Static Analysis for Kernel-Level Rootkit
Detection

Seyyedeh Atefeh Musavi, and Mehdi Kharrazi
DNS Laboratory, Department of Computer Engineering,

Sharif University of Technology, Tehran, Iran
{amusavi@ce., kharrazi@} sharif.edu

Abstract— Rootkit’s main goal is to hide itself and other
modules present in the malware. Their stealthy nature has made
their detection further difficult, specially in the case of kernel-
level rootkits. There have been many dynamic analysis techniques
proposed for detecting kernel-level rootkits, while on the other
hand, static analysis has not been popular. This is perhaps
due to its poor performance in detecting malware in general,
which could be attributed to the level of obfuscation employed in
binaries which make static analysis difficult if not impossible. In
this manuscript we make two important observations, first there
is usually little obfuscation used in legitimate kernel-level code,
as opposed to the malicious kernel-level code. Second, one of the
main approaches to penetrate the Windows operating system is
through kernel-level drivers. Therefore by focusing on detecting
malicious kernel drivers employed by the rootkit, one could
detect the rootkit while avoiding the issues with current detection
technique. Given these two observation, we propose a simple
static analysis technique with the aim of detecting malicious
driver. We first study the current trends in the implementation of
kernel-level rookits. Afterwards, we proposed a set of features to
quantify the malicious behavior in kernel drivers. These features
are then evaluated through a set of experiments on 4420 malicious
and legitimate drivers, obtaining an accuracy of 98.15% in
distinguishing between these drivers.

Index Terms— Malware, Rootkit, Static analysis, Kernel driver.

I. INTRODUCTION

The concept of malware has evolved over the years, orig-
inally written by a single author with a specific functional-
ity, to the current modular malware having several different
functionalities. In fact and given the modular design, multiple
authors, toolkits, legitimate off-the-shelf modules, or even
modules from previous malware may be involved in creation
of newer malware. One of the most important modules which
increases the threat of malware is the rootkit module. It has
been reported by Kapoor et al. [1] that over 10% of current
malware contain such model, hence named rootkit. While
this may present a small percentage of the total malware
population, it is widely accepted that rootkits are far more
dangerous than non-rootkit malware. For example, TDSS and
ZeroAccess are rootkits which are currently used in the largest
active bot networks.

Rootkit may be considered as an independently developed
module for hiding the presence of other modules employed
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in the malware. This has had at least three significant effects
on the malware industry: (i) as hiding technologies have been
improved, newer malware are less concerned with their size
on the victim’s hard disk. For example it is reported in [2]
that the Zegost rootkit driver takes about a 100 MBytes of
storage space on disk; (ii) rootkit modules are included in the
Malware-as-a-Service infrastructure. While this underground
market is known more for selling automated panels for botnet
management [3], it now also offers rootkit modules. In parallel,
open source rootkits have became another source for reuse
of such modules in combination with several malware. For
example the FU rootkit [4] as a process hider in some variants
of Rbot[5] and Mytob.r[6] or JiurlPortHide open source driver
in ProAgent2.0 spyware [7]; and (iii) The trend to employ
rootkit technology in legitimate applications, such as security
products [8][9], copy protection technologies [10], recovery
tools[11], and third party boot loaders[12]. This has resulted
in a negative impact to the detection accuracy of security tools
which try to look for evidence of rootkits.

Rootkits could be classified broadly based on their point
of operation within the operating system. Processes need to
employ APIs or use system services to communicate with
the operating system, with which the higher level commands
are executed in a lower level language understood by the
hardware. Any rootkit which intercepts this communication in
user mode is called a user-level rootkit. Example techniques
used in user-level rootkits include patching the OS libraries,
utilizing OS facilities for hooking processes, or terminating
security products through user-level vulnerabilities (e.g. ACL,
ActiveX, etc.). As these type of rootkits operate in the user-
space, security tools which reside in the kernel-space are
able to monitor and detect them. Alternatively, kernel-level
rootkits operate in the kernel-space and have much more potent
capabilities. There are several types of techniques employed,
including file masquerading, redirecting the execution path of
the kernel code by hooks and patches, DKOM (i.e. Direct Ker-
nel Object Manipulation), installing a malicious filter driver,
changing the sequence of boot procedure (including MBR
code or partition table, VBR IPL code, BIOS Parameter Block
modification or even BIOS code)[13], use of HFS (Hidden
File System)[14], and finally virtualization and other firmware
modification methods[15][16]. The reader is referred to [17]
for a good review of rootkits.

A great number of solutions have been proposed for ordi-
nary malware detection in the literature, which mostly operate
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in the user-level and are not effective for detecting kernel-level
rootkits. This is mainly due to the fact that these detection
techniques are able to view events at their level of operation
(i.e. user-level) and trust the operating system for gathering
required information about the system; Where as kernel-level
rootkits are able to hide their presence to the operating system
and in turn the user-level processes.

Nevertheless, there are a number of proposed solutions
for detecting kernel-level rootkits. One of the more prevalent
approaches is to detect the rootkit by executing it in a hard-
ware/software virtualized environment. But such approaches
are not widely deployable on the end user’s system due to
resource requirements, performance issues, and transparency
challenges. Alternatively there are a number of techniques
which operate within the operating system, and execute the de-
tection procedure through dynamic analysis. Such approaches
are not without risks and shortcomings. First the suspicious
binary has to be executed on the system in order to be
analyzed. Second, all possible binary routines may not be
executed as they would require specific conditions to be
available (e.g. not getting executed in a sandbox), hence
the binary may not be analyzed completely. In other words,
unless the binary is executed in the proper environment, it
will not show any malicious behavior. An alternate method
of detection which operates within the operating system is
through static analysis, where the binary is analyzed as a whole
and malicious behavior/patterns are detected regardless of
whether those sections are executed are not. Nevertheless, this
approach has not been popular nor successful with malware in
general, mainly due to the fact that obfuscation techniques are
widely available and employed, making such analysis quite
difficult.

There are two important observations which should be
considered when discussing kernel-level rootkits as compared
to user-level rootkits and malware in general. First, the key
role kernel drivers play in rootkits, with which the rootkit
penetrates into the Windows kernel space. Second and perhaps
more importantly, while powerful obfuscators (i.e. packers
or encryptors) are abundant and used regularly for either
malicious or legitimate purposes in user-level executables, they
are not as widely available nor used in kernel-level code,
at least for legitimate purposes. This could be explained by
the fact that there are a smaller set of facilities with which
one could hide the intent in kernel code, specifically in low-
level assembly code, and the difficulty that obfuscation brings
when maintaining and debugging code in the kernel-level. In
other words, even though malware developers may employ
obfuscation, there is much less motivation for legitimate
driver developers to use obfuscation. Hence, the presence of
obfuscation could indicate potentially malicious behavior.

Considering the above noted observations, while taking
into account the issues and limitations in dynamic analysis
techniques, we propose a static analysis technique which could
be used to detect rootkit drivers in the Windows operating
system on an end-user machine and can complement previ-
ously proposed dynamic analysis techniques. Another more
important usage of such static analysis technique would be to
help in extracting rootkit driver samples from a large corpus.

Usually and in order to decide on the nature of collected
samples, the samples are executed in a controlled environment
(i.e. sandbox) and with the help of dynamic technique the
samples is analyzed. This process is quite time consuming as
each sample is to be executed properly. Furthermore and at
times the malicious samples intentionally increase the time of
execution, for example by adding sleep timers. Therefore the
detection technique would not detect any malicious activity
in finite time and could classify the sample as legitimate.
But static analysis techniques, such as the one noted in this
work, would only have to parse the code and calculate a set
of features, with out any need to execute any samples. This
process would be more efficient and resistant to environment
aware malware.

Therefore, we propose a set of features to distinguish
between malicious and legitimate drivers based on a study
of modern kernel-level rootkit behaviors. Furthermore, we
evaluate the proposed features by gathering 2200 kernel-
level rootkit drivers and 2220 legitimate drivers and obtain
and accuracy rate of 98.15% in distinguishing between the
legitimate and rootkit drivers. In fact, and to the best of
our knowledge, other that Kruegel et al. [18] which look for
improper memory access as a sign of rootkit activity, there has
been no prior work which employs static analysis to extract
pre-defined behavioral features covering different kinds of
kernel-level rootkit drivers. It should be noted that we focus on
detecting kernel-level rootkits and consider user-level rootkits
as out of scope. More specifically the main contributions of
this work include a study of behavioral trends in current day
Windows kernel-level rootkits and then proposing a set of
features to differentiate between their malicious behavior and
that of the legitimate drivers.

In the remainder of this paper, we first review the related
works in Section II. The proposed static analysis based detec-
tion technique is presented in Section III, and in Section IV
we discuss the implementation and evaluation of the proposed
detection technique. We discuss a number of related issues in
Section V and conclude this manuscript in Section VI.

II. RELATED WORKS

Many rootkit detection techniques have been proposed in
the literature since 1999, when the first known rootkit (i.e.
NTRootkit for the Windows operating system) was created.
There has been much published work on the hardware/software
virtualization based detection techniques [19][20][21][22][23],
but there are limitation in employing such techniques in
practice and on an end-user system. In addition to perfor-
mance penalty, detection of the emulation environment by
the malware, as well as special hardware requirements in
the case of hypervisors, a number of studies [24][25][16][22]
show that such environments have their own vulnerabilities
and challenges. Alternatively, a number of proposed detection
techniques operate from within the operating system and re-
quire no artificial environment. Kernel Integrity check [26][27]
or crossview [28] are two common dynamic detection ap-
proaches. Most of these proposed schemes focus on a limited
category of rootkits and are unable to detect a wide range of
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rootkits. In the rest of this section, we will focus on related
works on static analysis as well as a number of techniques
which have focused on malicious rootkit driver detection as
they relate more closely to this work.

There have been different methodologies proposed for static
detection of malware in general. These techniques could
be categorized, based on the approach used to define the
distinguishing features, as either blind or behavior driven.
There are a large number of blind techniques proposed in
the literature. For example, Byte-level signatures [29][30] are
widely used in anti-virus products. In [31] the authors argue
that byte level signatures would be ineffective in the presence
of polymorphism and mutations and instead focus on features
based on opcodes. An alternate approach is to use the type
and number of system calls found in the code as features
to distinguish legitimate and malicious samples. Schmidt et.
al [32] gather function calls observed in the code and selects
a small set as distinguishing features based on statistical
analysis. Sami at al. [33] use PE header imported functions to
find the frequent API call sets which are then used as features.
Such approaches result in a large number of features which
should then be reduced for efficient classification.

As an extreme example Dahl et al. [34] extract 50 million
features from 2.6 million malware samples before reducing
the number of features. More specifically, authors in [33],
[34], [35], and [36] have employed the fisher score, random
projection, information gain, and feature-hashing respectively,
in order to decrease the large number of features obtained
and select the more important features. These approaches do
provide acceptable accuracy results by only considering sys-
tem calls, while ignoring the arguments and parameters used
in the call, nevertheless use of obfuscation would certainly
affect their accuracy.

On the other hand, there have been a number of studies
in which the features are proposed based on some initial
knowledge of malware’s behaviors. Prophiler [37] is one such
work in which 77 features are proposed for detecting malicious
behaviors in webpages. As another example Zhao et al. [38]
extract a FCG (i.e. function call graph) from a file and propose
32 distinguishing features related to the structure of the graph
and defined function. In such approaches, the features are
defined and selected based on a perceived malware behavior
as opposed to a statistical feature selection process.

Another important approach proposed in works such as [39]
and [18] is semantic-aware detection. For example Kruegel
et al. [18] concentrate on the detection of kernel-level rootkit
drivers by modeling improper kernel memory accesses. More
specifically, the sample code is executed symbolically and
when a sequence of instructions match that of the model,
malicious activity is identified. In fact and to the best of our
knowledge, this is the only static analysis technique which
focuses on kernel-level rootkit drivers.

We should also note two other important detection tech-
niques which focus on kernel-level rootkit drivers, although
they are not purely based on static analysis. dAnubis [40]
is an extension to Anubis [41] which analyzes kernel driver
behavior by Virtual Machine Introspection (VMI) and provides
a complete overview of how it communicates with other

elements in the system, and its interaction with the system
memory. However, the main goal for dAnubis is to provide a
human readable report on the driver and it does not provide
a detection service. Limbo [22] is another proposal which
focuses on detecting kernel-level drivers. It extracts a set
of behavioral features dynamically in an extended PAM322

emulator, where they are mostly related to popular hooks and
DKOM techniques as well as general properties they found
in rootkits. Furthermore a few general static features from
the driver’s PE header are also considered. They evaluate the
proposed technique with a total of 754 kernel-level drivers and
obtain and overall accuracy of 96.2%. In the next section we
will introduce the proposed static detection technique.

III. STATIC DETECTION OF ROOTKITS

As noted briefly in Section I, static analysis is thought to be
insufficient to perform typical malware detection in user space.
Nevertheless, there are a number of issues which suggest that
such approach would be more effective when looking for
malicious kernel-level drivers and in turn kernel-level rootkits.
One could observe that two issues have resulted in a shift
from the static analysis towards the costly dynamic analysis
in the malware detection techniques. First, and as noted by
Moser et al. [42], obfuscation techniques are being widely
deployed, which makes low cost static analysis inefficient if
not impossible. Second, malware detection techniques trust the
operating system for run-time analysis by default. Given such
trust, dynamic analysis is easier as compared to the difficulties
with reverse-engineering of malware code for static analysis.
Neither of these two issues are valid when confronting rootkits.

Control-flow obfuscation, run-time load of OS modules, and
command, callee, and string coding/encryption are the most
common approaches for code obfuscation in an executable.
Control Flow obfuscation is harder in kernel space because
of the modular nature of a driver structure (a DriverEntry and
some IRP 3 handler routines) with determined signatures.

As for run-time load of OS modules, while user-level
malware prefer to dynamically load API functions instead
of static linking to obfuscate their code, there are small
number of kernel functions with less usage/power ( e.g.
callingMmGetSystemRoutineAddress, MmLoadSystemImage,
etc.) which allow loading kernel modules in run time. This
makes obfuscation in kernel code more difficult. Another
important point, as noted in [43][44], is that obfuscated code
executes slower than normal code. Assume a filter driver which
spends considerable time for de-obfuscating its code when it’s
called to filter the results of a disk or network query. The lazy
kernel response to each request would not be transparent. This
is while small performance penalty and automated procedure
of deploying such techniques in user-level binaries by packers
and encryptors, makes obfuscation common in both malicious
and legitimate binaries at that level. Some of these techniques
can be implemented in kernel space, but with more constraints
and limitations on facilities. Most of the existing constraints
are related to the stability and performance limits in the kernel

2An X86 ISA emulator employed mostly by Symantec.
3I/O request packet
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memory space which is shared by many other kernel modules
and the operating system itself.

Furthermore, the need for maintenance, debugging, and
crash dump analysis of drivers required for legitimate de-
velopment tasks encourages developers not to employ ob-
fuscation techniques. Exceptions do exist, for example DRM
enabled[45] and copy protected drivers (i.e. for gaming, audio,
and video products) do use obfuscation at the cost of less sta-
bility and slower execution time as discussed in [46]. All above
issues results in much limited possible volume of obfuscation
in kernel modules. In practice legitimate driver developers do
not generally employ such techniques, although as noted there
are exceptions. This is while malicious driver developers, as
a best practice in their respective domain, try to employ these
techniques to make the analysis more challenging. Thus the
presence of obfuscation would potentially point to malicious
intent in the code.

The second issue noted is the assumption that the OS
could be trusted. In dynamic detection inside the OS, the
detector has the same power and privileges as the rootkit.
Thus there is no guarantee that it would be able to monitor
the system completely. Hidden processes, firewall bypass, and
Kernel Hook Bypassing Engine attacks[47] are examples of
such threats. Migrating this run-time analysis to outside of
the OS through hardware extensions or hardware/software
virtualization bring about other resource requirements and
limitation which make such approach difficult and at times
costly to apply on an end user system.

Considering the noted issues, we propose a simple light
weight static detection technique. The detection process is
invoked when it is called to scan all kernel-drivers on disk
or when the memory monitor indicated that a driver is
dropped/installed by a user-level application. The kernel-driver
is then dis-assembled and a set of features extracted. Finally
the analyzer agent, which is a binary classifier, classifies the
driver as either malicious or legitimate. In what follows we first
discuss the trends we have observed in kernel-level rootkits in
Section III-A. The proposed static features are then introduced
in Section III-B.

A. Trends

Based on the malicious behavior of rootkits expounded
in [48][49][50][51][52], large number of studied reports ob-
tained from different malware analysis labs (i.e. Kaspersky,
McAfee, Eset, Symantec, etc.), and static analysis done on
a number of sample drivers, we observe a range of trends
in the functionalities provided by rootkit drivers. These func-
tionalities include injection, hooking, DKOM, kernel memory
over-writing, system modifying (modify system by installing
filter-drivers/devices, providing new hidden file system, etc.),
loading (load files or stored binary data into memory), and
networking. Where a malicious driver may have one or more
of the above noted functionalities implemented. These trends,
when considered against documented facilities for legitimate
drivers [53][54][55], could be used to distinguish between
rootkit and legitimate drivers. In what follows, we discuss
some of the more important trends observed:

1) Injection: Injection or more generally patching is one
of the most popular behaviors in rootkits. A malicious kernel
driver may patch user-level executables, operating system
kernel modules, or other drivers. One of the most common
methods to inject into user-level processes is to attach to
a target process and inject a desired code via allocation of
Virtual Memory in context of a newly created or existing
thread. Another technique includes creating and mapping of a
new section into a process memory space. A more stealthier
approach is to use APC 4, in order to run a thread or raw
code in context of a target process. Usage of these techniques
from kernel space make patching stealthier, although these
functions often have their user-level alternatives. There are also
kernel specific facilities for injection. Kernel thread injection,
as explained in [56], is an example with which the malicious
functionality is executed through kernel space. For patching
kernel codes there is no facilities from user-level programs
in current versions of windows(i.e. XP SP3 and later). Thus
Shared kernel memory available for kernel drivers makes it
possible to overwrite existing codes via accurate kernel mem-
ory allocations. It is important to note that because injection is
one of the prevalent behavior in large number of rootkits with
rare usage in legitimate drivers, it can be considered as a good
delimiter to distinguish malicious from legitimate drivers.

2) File Activity: Programmers are discouraged [57][58]
from using file activities in kernel drivers in some kernels
to avoid programming errors and subsequent system crashes,
as well as difficulties in applying policies in kernel-level.
While kernels like Linux are more restrictive to such activities,
Windows does include some function calls for accessing files
for situations like when a driver is going to update hardware
microcode by downloading new code [53]. However the proce-
dure should be handled carefully, for example and as pointed
in [59], if a driver is loaded before determination of drive
letters, the DosDevices namespace which is used to access
file objects may not exist. Nevertheless, there are situations in
which a rootkit requires to obtain a handle to modify a file
including logs and/or spying data, or alter file access times.
Thus we believe that such behavior should be observed more
in rootkit drivers rather than legitimate drivers.

3) Malicious vs. legitimate filters: Attaching to a target
device is a common behavior in rootkit filter drivers and
IRP 5 hookers. However such technique is also employed
in legitimate drivers which operate in the layered Windows
architecture, like multimedia and modem device drivers. The
point is that malicious filter driver needs to log the events in
order to know when the lower level process has completed.
However there is a technical limitation as the filter is run in the
DPC 6 level, and file access via the ZWxxx routines requires
the filter to be executed at the PASSIVE LEVEL[53]. Thus and
in order to have the proper file access, another system thread
is executed in PASSIVE level to run ZwWriteFile. Observing
code which is used to notify this system thread could be taken
as a sign for identification of such filters.

4Asynchronous procedure call
5I/O Request Packets
6Deferred Procedure Call
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TABLE I
THE PROPOSED FEATURES, GROUPED INTO FIVE CATEGORIES

Feature category Features
General behavior Allocations, handled MJ IRP count ,dispatch routines, network activity, file activity, registry activity, file system activity,

hardware activity, synchronization (i.e. wait/signal, Set timer, alert, set event, etc.) , exclusive access (i.e. mutex, fast and
guarded mutex, locks, semaphors, etc.) , RaiseIRQL, DPC level activity (i.e. whether a driver works at dispatch level or
not) , deploying system thread, attach devices, device activity, memory overwrite, port level activity

Communications user communication (i.e. SymbolicLink, DeviceInterface, operation on VirtualMemory of user-level processes), kernel
communication (i.e. kernel APC, load image, load filter, set information of jobs, processes, etc. )

Rootkit-like behaviors injection, general hook (heuristic to follow unknown hooks as much as possible) ,SSDThook, IRPhook, DKOM (heuristic
to estimate usage of functions/constants which are used in XP rootkits) , filter driver, bootkit-like (activities related to boot
time, BIOS, etc.) , write protection (CR, MDL or VirtualProtect)

Overall static feature device counts, DriverEntry size, number of system calls , DriverEntry subroutines, constants, dis-assembly size, strings,
string activity ratio, allocation to dis-allocation ratio

Suspicious behaviors track process, query about a specific file, notification installing (i.e. callbacks or notifies), anti-analysis, environment
aware, undocumented devices, non-English characters, dynamic load, system reconnaissance (i.e. trying to identify hw/sw
specification) , own network stack, security descriptor modification, misc-suspected, minimum per character entropy,
average score of all attributes

4) Bypass memory write protection: There are two different
ways a rootkit may choose to bypass write protection for
kernel code pages it wants to hook or inject: CR0 register
modification and MDL7 modification, which are discussed
in [49]. While modifying the write protection bit of CR0
is a good indicator of malicious activity, creating a MDL
is a common behavior where its argument, which describe
the desired region of memory, can determine whether it is
malicious or not. Using VirtualProtect function is another
technique a rootkit employs to modify the access protec-
tion of desired pages of memory in order to change code
segments. In such scenario it is required to ensure that the
instruction cache does get updated with new instructions by
calling FlushInstructionCache. This behavior, although not
advised[60], can be used in some legitimate scenarios such
as self-modifying codes like packed/compressed executables
and other applications such as real-time graphic drivers.

5) Track Process: Tracking a process on the memory has
many applications for a rootkit. DKOM drivers are mainly
module hiders which track the target executable in the mem-
ory, use the result specification as an index to find the target in
EPROCESS list, and then change the pointers in order to hide
the module, details of such operation is discussed on [48].
Furthermore, injectors also should find their decoy process
before injection. Any protector driver (hookers or filters) also
requires to track their subject module to get its specification,
so that it could filter related commands for the module. This
means that unlike legitimate drivers, which often communicate
with a module they have looked for on memory (e.g. by APC),
malicious drivers continue the tracking procedure either by
injections or by in-direct communication with the module (i.e.
by DKOM and hooking).

6) Own network stack implementation: As noted by
Vieler [51], C&C communication is one the most revealing
points for malware to be detected. This is because deploying
Winsock Layered Service Provider (LSP) DLL of Windows
in user-space is easy to use but also easily visible. Hence,
rootkits try to minimize their visibility by employing the TDI
and NDIS interfaces in the kernel space. Since TDI interface

7Memory Descriptor List

operates at a lower level than that of the security monitors
with user-level sockets, many rootkits prefer to use it. NDIS
driver is the lower interface which allows the process, either
malicious or legitimate, access to raw packets. By dealing with
raw packets at this level, one can bypass many existing security
products such as firewalls. As reported by Kasslin [61], Srizibi
was the first malware to bypass many firewalls by the use of
this technique. Thus one of the most suspicious behaviors for a
driver is to use its own network stack via NDIS library instead
of implemented OS stack at this layer.

In the rest of this section we will discuss the proposed fea-
ture set which would help in distinguishing between malicious
and legitimate drivers.

B. Driver features

Based on the behavioral trends observed, some of the
more important of which were reviewed above, we propose
50 features to distinguish between legitimate and malicious
rootkit drivers. These features could be classified in five broad
categories as noted in Table I and described below:

1) General behavior: The set includes different possible
activities on files, registries, and network as well as
some limited measures for file system activities. It also
enumerate any exclusive accesses (e.g. Mutexes, Spin-
Locks, CriticalRegion, etc.), synchronization processes
(e.g. timers, waits, and events), and increase in DPC or
more generally IRQL levels. This category reveals the
overall functionalities of the driver.

2) Communications: Two separate sub-categories were de-
fined, one for kernel and another for user-level commu-
nications. For the kernel-level communications we have
considered image loads, kernel APCs, and other kernel
functions which allows the driver to modify any kind of
system objects such as ZwSetSystemInformation. User-
level communication is considered by looking for signs
of SymbolicLink or DeviceInterface being deployed.

3) Rootkit like functionalities: Based on different types of
rootkits analyzed, the following categories have been de-
fined to show the related activity of the driver: injection,
general hooking behavior, as well as special hooks like
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SSDT and IRP hooks, DKOM, bootkit-like behavior,
filter drivers, and bypassing write protection mechanisms
in memory.

4) Overall static features: These features are related to the
data we can extract from a driver binary regardless of its
context or functionality. The main goal of this class of
features is to provide a measure of obfuscation employed
in the driver. Number of kernel-function calls, size of
DriverEntry, device counts are some examples of these
features. Apart from these, number of strings and the
ratio of string-related call activities to the overall size
of driver are other examples used to get a view about
probable string obfuscation employed in the driver.

5) Suspicious behaviors: While the first three classes were
necessary to find kernel-level rootkit drivers, they are not
sufficient. A driver may use similar technologies for a le-
gitimate task. The idea here is to involve other suspicious
behaviors as some evidences of being malicious. These
features have been selected in a diversified manner to
cover multiple suspicious activities. Tracking a process
in memory, query about a specific file, anti-analysis
behavior, obfuscation (i.e. small or nested DriverEntry
routine, use of special characters like *, using familiar
looking device names, etc.) are examples of this category
of features. While callbacks and notifiers are facilities
for any kernel driver, they have vast usages for rootkits.
Thus we have considered multiple kind of calls from
popular ”ExCreateCallback” to less known ”ZwAccess-
CheckByTypeAndAuditAlarm”. In addition since rootk-
its operate deep in the system, they need to query
about some system specification in hardware or software
levels. Hence we define a system reconnaissance feature
to cover such software checks from OS version to
user interface language or environment variable checks.
multi processor is another feature engaged with queries
about max or active number of processors or other
related functions.

Our feature set has a multi-aspect approach to the problem
of distinguishing between malicious and legitimate drivers. For
example assume a SSDT hooker driver, which uses dynamic
load techniques to hide system calls it requires to employ.
With this example, the SSDThook feature will provide little
information, however the feature which looks for dynamic
loads will provide valuable distinguishing information. As
another example, we consider obfuscation in some of the
proposed features (i.e. 10 features are obfuscation related).
Therefore, if a driver uses obfuscation, it will obtain bigger
scores in obfuscation related features and lower scores in
other features. We consider this difference in the scores as a
distinguishing factor. In other words the proposed feature set
tries to look for any abnormal combination of events/behaviors
employed in the driver which could help in detecting known
behaviors in an unknown rootkit. In the next section we will
evaluate the proposed features.

IV. IMPLMENTATION AND EVALUATION

In this section we first introduce the dataset gathered for
evaluating the proposed static analysis detection technique in
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Fig. 1. Distribution of samples collected based on their submission year
to the malware repository. Note that the Y-axis is in log scale. Furthermore,
there was only one sample in the data set which was submitted to the malware
repository in 2004.

Section IV-A. We then discuss how the proposed features
are extracted in Section IV-B. Given the collected dataset,
functionality trends noted earlier are analyzed in Section IV-C.
Lastly, we evaluate the proposed features in Section IV-D.

A. DataSet

In order to evaluate the proposed detection technique and its
ability to distinguish between legitimate and malicious drivers,
we gathered two datasets, one with legitimate drivers and one
with kernel drivers used by malware. As for the legitimate
driver dataset, we collected 1600 distinct drivers from three
driver collection products (i.e. Universal XP Driver pack, Huge
Drivers Collection Pack for Windows XP, and Driver Pack for
windows 7 and Vista) plus 600 XP SP3 drivers on dllcache
folder of an XP system. These drivers include many low level
filters, such as network, sound, video card, wireless, web-
cam, blue-tooth, and other application drivers from different
vendors.

Unlike extracting driver modules from normal applications,
extracting such a large number of drivers by running rootkit
samples in an isolated environment is a challenging process.
This is because of a number of issues unique to the kernel-level
rootkits which includes kernel-level implementation of Anti-
VM techniques, usage of DKOM techniques to hide modules,
forcing a reboot on the infected machine, denying access to
modules by kernel-level hooks and protection, and storage
of driver modules in hidden file systems. Thus we obtained
module samples with “sys” extension from the VirusShare [62]
malware repository. It should be noted that under the McAfee
naming scheme, that extension would correspond to malicious
drivers used in current day rootkits. Figure 1 provides an
overview of the distribution of samples collected based on
their initial submission time to the malware repository.

To check the diversity of the malicious set we have em-
ployed the Ssdeep clustering tool [63] on 5000 downloaded
malicious drivers. Ssdeep is a popular implementation of
CTPH 8, which can identify files similar to each other and

8context triggered piece-wise hashing
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is used for locating similar pieces of malicious code. As
expected, there are some drivers which are being used by
multiple rootkits. These similar drivers are grouped into clus-
ters, where Figure 2 illustrates the cluster size distribution.
As we had 2200 legitimate drivers, we randomly selected
2200 malicious drivers from 1459 distinct clusters, where the
number of samples used from each cluster was relative to the
cluster size. This method of selection insures that samples
from the more popular rootkit drivers would also be more
present in the dataset. It should be noted that we also used
the CTPH utility on the collected legitimate dataset, where
there were 1978 clusters. 1934 of these clusters included only
one sample. This ensures that the legitimate data set is not
populated by specific types of drivers.

Additionally, we also added some drivers from software
products which are likely to cause false positives in the
detection routine, such as those discussed in section I. This
was done by collecting 20 drivers used in such applica-
tions, including TrueCrypt, Safedisk, Kaspersky, Returnil AV,
Comodo recovery, PC-back, Sentiel, Daemon Tools, Dwall,
Malwaredefender, and VMware. Hence, we have a total of
2220 legitimate and 2200 malicious drivers which we used in
the evaluation.

B. Feature extraction

A number of distinguishing features were proposed in the
previous section. These features, some of which are abstract,
were calculated by looking at smaller elements in the driver’s
dis-assembled code. Simply put, the number of instances an
element related to a certain feature is observed in a dis-
assembled driver, would make up the value for that feature.
The elements considered are:

• Kernel function calls: There are a large number of kernel
functions (i.e. Zw, Ke, Ks, Cm, Ex, Hal, Io, Mm, Ob, Po,
Ps, Rtl, Se, Ndis, and CRT) in Windows including either
documented or undocumented ones. These functions and
libraries can disclose the general intent of a module.

TABLE II
NUMBER AND TYPE OF ELEMENTS USED IN CALCULATING THE FEATURES

FOR EACH CATEGORY

Feature
category

Kernel
functions

Constants Assembly
commands

Type
and
value
of vari-
ables

Calculated
measures

General 13 2 1 1 1
Communications 2 - - - -
Rootkit func-
tionalities

7 1 2 3 1

Overall static
feature

1 2 1 3 7

Suspicious be-
haviors

10 3 - 3 2

These functions are clustered, where each cluster is tied
to a functionality.

• Constants: Constant values in dis-assembled code provide
important information about the code being analyzed. For
example, special offsets of kernel memory are often used
to overwrite on (e.g, the offset for MBR).

• Assembly commands : There are some special assembly
instructions which are used by rootkits for known intents.
Examples include instructions to modify CR register for
bypassing write protection of kernel or looking for the
INT3 instruction, with which the presence of a debugger
is detected and therefore the executable presents a non-
malicious behavior.

• Type and value of variables: One of the sources for
finding special functions between all subroutines is to
check their arguments type. As an example one way
to determine the dispatch routines in a driver (beside
other heuristics) is to look for two arguments to be
DEVICE OBJECT and PIRP.

• Calculated measures: There are measures with which
the appearance of the code is quantified. For exam-
ple, minimum per character entropy, number of nested
routines in DriverEntry, or size of the dis-assembly. In
fact, there are 4 features9 which are only dependent on
these measures. In other words, they could be calculated
properly regardless as to what percentage of the driver is
successfully dis-assembled.

Table II provides an overview of how the above element
categories are used in calculating the five feature categories
noted in Section III. It should be noted that a feature could
be calculated by considering elements from more that one
element category. In order to clarify how the features are
calculated, we will describe the calculation of five features in
more detail, where their pseudo-code is available in Figure 3.
The “DKOM feature” is calculated based on the first and
second category of elements noted above. This is done by
enumerating system calls which are used by rootkits to obtain
required kernel objects as well as the number of accesses to
the offsets of such objects (i.e. Flink,Blink, or EPROCESS).
The number of instances these system-calls and offsets are
observed would be counted and then the value is normalized

9Dis-assembly size, Minimum entropy, Number of detected system calls,
and Average score of all features (as lesser parts of a driver are dis-assembled,
the average would be lower.)
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Fig. 3. pseudo-code for calculating the DKOM, DPC level activity, Dispatch
routine, Device activity, and undocumented device features

1: DKOM cluster ←(PsActiveProcessHead, PsLoadedModuleList,
PsLoadedModuleResource, ExCreateHandleTable, ExDupHandleTable,
ExSweepHandleTable, ExDestroyHandleTable, ExChangeHandle,
ExSnapShotHandleTables, ExfInterlockedInsertTailList,
ExfInterlockedRemoveHeadList, IoGetDeviceObjectPointer)

2: DPC cluster ←(KeRaiseIrqlToDpcLevel, KeInitializeDpc,
KeInsertQueueDpc, KeRemoveQueueDpc, KeSetTimer,
KeSetTargetProcessorDpc, KefAcquireSpinLockAtDpcLevel)

3: if CallExistInDKOM cluster then
4: DKOM f ← DKOM f + 1
5: end if
6: if OffsetExistIn(Flink,Blink, EPROCESS) then
7: DKOM f ← DKOM f + 1
8: end if
9: if CallExistInDPC cluster then

10: DPC f ← DPC f + 1
11: end if
12: if SubRoutine AND FirstArgType == DEV ICEOBJ AND

SecondArgType == PIRP then
13: Dispatch f ← Dispatch f + 1
14: end if
15: if variable Type ==DEVICE OBJ then
16: Device activity f ← Device activity f + 1
17: if Device TypeExistIn58 system defined devices then
18: undocumented device← undocumented device+ 1
19: end if
20: end if
21: DKOM f ← normalized(DKOM f)
22: DPC f ← normalized(DPC f)
23: Dispatch f ← normalized(Dispatch f)

to be used a the feature value. The “DPC level activity” is also
calculated in a similar manner. The “Dispatch routines” feature
is calculated by counting the number of subroutines with two
argument types of: DEVICE OBJECT and PIRP. As another
example, the “Device activity” feature is obtained by counting
the variables with the DEVICE OBJ type. Furthermore the
number of times a device type does not exist in the Microsoft
pre-defined devices, constitutes the “Undocumented devices”
feature.

Based on the above noted elements, a feature extractor is
implemented in the Perl scripting language which take as
input a dis-assembled driver. Dis-assembly is done the by the
powerful IDA dis-assembler [64]. The current feature extractor
implementation is available at [65].

C. Trend verification

A number of trends were observed when analyzing rootkit
drivers as noted in Section III-A. We employed the collected
dataset, in order to investigate the generality of these trends.
The obtained results are noted below:

1) Injection: As expected, injection is more widely used in
malicious driver modules. More specifically, more than 27%
of malicious modules had in one way or another signs of
injection being used, while there were only 1.4% of legitimate
drivers with similar functionality. Although small, we did not
expect to see legitimate drivers in which injection was being
employed. After a closer examination of these drivers, we have
found some legitimate behaviors which are similar to injection.
For example, some of the drivers attach to the Crss.exe system
process in order to copy BIOS from its memory, this is instead
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Fig. 4. An illustration of the five noted trends as obtained from the collected
malicious and legitimate driver samples.

of properly accessing the BIOS through its real offset value.
Another example was calling the ZwMapViewOfSection func-
tion for mapping memory on to a process from the kernel,
done by legitimate mini port drivers [66] which is similar to
the injection behavior.

2) File Activity: The result shows that while 19% of mali-
cious drivers have had file modification activity, this was done
by only 7% of legitimate drivers. This was broadly because
audio device drivers create a file in order to communicate with
the client using KS10 filters[67].

3) Malicious filters: 98% of malicious drivers showed file
modification activity, while 19% of legitimate drivers showed
similar activity. Again, mostly legitimate audio drivers were
showing such activity. Furthermore and as expected, a larger
correlation exists between the feature for file modification
and two other features, installation of notification facilities
and deploying system thread, in malicious filter drivers than
legitimate ones.

4) Write protection: In practice 7% of the rootkits bypass
memory protection using MDL or CR0 modification in order
to hook SSDT. There were also a total of three legitimate
drivers, belonging to Anti-Virus and firewall products with
similar behavior.

5) Track process: As expected, tracking processes is a
normal behavior in legitimate drivers as well as malicious
ones, such that 22% of legitimate drivers and more than
34% of malicious modules show signs of this. Thus further
communications (i.e. legitimate communication via APC or
illegal injection), could show whether this behavior is normal
or not. In fact, and on average, legitimate drivers show a higher
rate of user-level communication rather than malicious drivers,
while having a lower probability of injection or hooking
behavior compared to the malicious drivers.

6) Own network stack: About 1.12% of our malicious
samples use the NDIS library functions in order to bypass
security products and security monitors running on the system.
This is while 19% of legitimate network adapter drivers have

10Kernel streaming



9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001  0.01  0.1  1

T
ru

e
 p

o
s
it
iv

e
 r

a
te

False positive rate

Fig. 5. Calculated ROC curve for the trained C5 classifier using our test
dataset. The area under the ROC curve is 0.99.

much larger score in this feature with larger dis-assembly size.
This could be largely attributed to the fact that malicious
drivers do not need to completely handle all complexities
and implement details of the network protocols. In fact, this
difference in the implemented code size could be used as a
differentiating factor.

D. Experimental evaluation

In order to investigate the effectiveness of the proposed
detection scheme, we trained and tested a classifier. To that
end we employed the C5 Tree classification algorithm and
used cross-validation with k=10. Furthermore, the classifier
identified the more important features using the pearson fac-
tor [68], with which 26 features are selected. The results
were encouraging. We were able to classify the malicious
and legitimate drivers in the test dataset, with an accuracy
rate of 98.15%, false negative of 0.6%, and a false positive
of 3%. The ROC plot obtained for the classifier is shown in
Figure 5, where the calculated AUC is 0.99. Table III presents
the 26 features employed, ranked by their importance factor.
We have also experimented with a smaller number of features
for training and testing the classifier. We obtained an accuracy
of 95.64% and 97.9%, when employing the top 10 and 15
features respectively.

Even though we obtained acceptable accuracy results, we
wanted to inquire as to why some of the test data was miss-
classified. Overall 80 drivers where miss-classified, including
14 false negatives and 66 false positives. Upon a closer
investigation, it was found that most of the false-negatives
are process-hider drivers like HideProc variants which show
the need for more accurate behavior modeling. Failure in
dis-assembly 11 was another cause of such errors. Further-
more, False positives were legitimate drivers which were dis-
assembled partially in a way that IDA could not find system
call names but many constants (which are raw bytes).

As noted in Table III, features such as string activity ratio,
anti-analysis, number of system calls, dis-assembly size, con-
stants, and other similar feature are ranked high. These features

11A total of 9 legitimate and 12 malicious drivers failed to be dis-assembled
even in part.

TABLE III
TOP 26 FEATURES RANKED BY PEARSON FACTOR

Rank Feature Name Rank Feature Name

1 dynamic load 14 constants

2 string activity ratio 15 environment aware

3 user communication 16 strings

4 number of system calls 17 write protection

5 dis-assembly size 18 Track process

6 filter driver 19 non-English characters

7 RaiseIRQL 20 awakening

8 misc-suspected 21 allocation to dis-allocation ratio

9 DriverEntry subroutines 22 entropy

10 anti-analysis 23 device activity

11 SSDThook 24 IRPhook

12 injection 25 undocumented device

13 allocations 26 query about a specific file

are mostly used for measuring the level of obfuscation in the
drivers. Given these results, we conjecture that the malicious
status of a driver neither depends on its general behavior
nor the rootkit like operations (e.g. hooking, etc). What is
important is the level of suspicious activity present, such
as hiding intent (e.g. obfuscation). This could be explained
by observing that currently rootkit have benign counterparts
with similar behavior and legitimate applications. For example,
bootkits vs. bootloaders, spyware filters vs. legitimate filters,
malicious hookers vs. security product hookers, and DKOM
rootkit hiders vs. game protection products, etc. In what
follows we will discuss the obtained results and compare and
contrast the proposed technique to the related works in this
area.

V. DISCUSSION

Even though the proposed technique is able to detect
malicious rootkit drivers accurately, such approach will not
be effective against all possible types of rootkits. Zero day
exploits on the kernel code or un-patched vulnerabilities could
be employed by the rootkit to penetrate into the kernel space
without deploying any driver. Nevertheless, given the difficulty
in finding such exploits, most rootkits found in the wild prefer
to deploy using malicious drivers. There are also few modern
rootkits like Festi [69] which use memory resident kernel
drivers downloaded from C&C on each reboot. Another similar
scenario are rootkits which store the drivers in hidden file
systems and load them into memory on each boot. We should
note that any kind of penetration into kernel space, other than
employing kernel vulnerabilities, requires at least an initial
kernel driver to be loaded12 and then through which other
drivers will be loaded. Hence, we can detect the loader kernel
driver at the beginning of the process.

Undoubtedly, like other inside OS solutions, deploying the
proposed static analysis technique on an actual system requires
a number of assumptions. More specifically we assume that
the detector, which is a user-level agent, analyzes any new

12An exception to this would be Windows XP in which a user-level process
can modify kernel memory region directly. This issues was resolved in the
Service Pack 3 update.
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TABLE IV
A SUBJECTIVE COMPARISON BETWEEN THE PROPOSED TECHNIQUE AND TWO PREVIOUS PROPOSALS WHICH FOCUS ON KERNEL DRIVERS AS PART OF

THE ROOTKITS DETECTION/ANALYSIS PROCESS.

Capability Proposed method Kruegel[18] dAnubis [40] Limbo [22]

Does not require run time analysis Yes Yes No No

Covers multiple rootkit behaviors Yes No No No

Distinguishes between rootkits and their benign counterparts Yes No - No

Final decision as to malicious or not Yes Yes No Yes

Operating system supported Windows Linux Windows Windows

driver being loaded on the system and itself is protected
by Kernel-level self-protection solutions such as [70], which
can be employed to insure proper execution of the analyzer.
Additionally, kernel integrity verification techniques [71], [72]
should be employed before any analysis in order to handle
attacks against the kernel protection technique.

The most comparable detection technique we could find
were the proposals by Kruegel et al.[18], dAnubis [40], and
Limbo [22]. Kruegel [18] is an static detection technique
which models improper kernel memory access and based on
the behavior observed classifies the driver as either legitimate
or malicious. There are two issues with such approach. First
the detection routine is limited to a very specific model and
may miss rootkit drivers such as a spyware filter which is
malicious but does not have improper kernel memory accesses.
Furthermore, the proposed technique fails to differentiate
between rootkits and their benign counterparts which may
have similar behavior but different intent (i.e. one malicious
and one legitimate). Lastly, the proposal by Kruegel et al.
is implemented for the Linux operating system, unlike our
proposed technique which operate in the Windows operating
system.

The other two noted technique are based on dynamic analy-
sis, although Limbo considers a few simple static features from
the PE header of the file being analyzed. Unfortunately, and
after a number of tries, we were unable to obtain proper access
to dAnubis and Limbo for a comprehensive comparative anal-
ysis. Hence, we conducted a subjective comparison between
these technique, which is presented in Table IV. dAnubis is
designed as an analyzer with no framework for making a final
judgment as to nature of the driver being analyzed. Moreover,
it can not guarantee the execution of all parts of the driver in
its simulator.

Limbo, on the other hand, employs a Bayesian classifier to
label a given binary as either legitimate or malicious. However,
many new behaviors of modern rootkits such as bootkits or
hidden file systems are not considered and some assumptions
made are no longer valid. For example, through our analysis of
rootkits, we have observed that rootkit drivers try to imitate
legitimate drivers by including symbol tables as debugging
information. This is while Limbo consider this as a feature
to be seen in legitimate drivers. In addition to the more
comprehensive coverage in the proposed technique, including
new types of rootkits (e.g. bootkits, HFS, and malicious filter
drivers), the most important advantage of the proposed static
detection technique is that it does not require a sandbox,
emulator, or any isolated environment. Furthermore there are

no concerns as to making sure that all parts of the code are
executed with environment aware rootkits.

VI. CONCLUSION

In this manuscript we proposed a revisit to static analysis
for detecting kernel-level rootkits. We made two important
observations. First, one of the main approaches in pene-
trating the Windows kernel space is by employing kernel
drivers. Second, there is usually little obfuscation applied to
kernel-level codes and the possible obfuscation is much more
prevalent in malicious drivers than legitimate ones. Based on
these observations, we proposed a rootkits detection technique
through static analysis of the kernel drivers. A big advantage of
the static analysis approach, as opposed to dynamic analysis,
is that it does not require the binary being analyzed to be
executed.

Based on a number of observed trends, we proposed 50
features which are obtained from the dis-assembled driver.
Furthermore, a large dataset consisting of 2200 malicious
drivers and 2220 legitimate drivers where used to evaluate
the effectiveness of the proposed features in distinguishing
between legitimate and malicious drivers. Employing a C5
classifier, we were able to obtain and accuracy of 98.15% in
classifying the malicious and legitimate drivers.
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