
Towards Real-Time Performance Monitoring for Encrypted
Traffic

Mehdi Kharrazi, Subhabrata Sen, and Oliver Spatscheck
AT&T Labs-Research, Florham Park, NJ, 07932
{mkharrazi,sen,spatsch}@research.att.com

Abstract
IP networks are increasingly carrying mission-critical appli-
cations with robust end-to-end network performance and
reliability requirements. Network performance monitoring
forms an essential component of critical IP network man-
agement functions such as troubleshooting, anomaly detec-
tion, and Service-Level-Agreement (SLA) compliance moni-
toring. However, privacy and security considerations are fu-
eling the use of IP-level encryption techniques such as IPsec,
which obscure important transport layer features that exist-
ing performance measurement techniques need. New tech-
niques are therefore needed for monitoring performance of
encrypted traffic. Towards this goal, in this paper we present
a new technique for monitoring round-trip times (RTT) for
IP-level encrypted communications. Our approach involves
using network-level features like packet size and inter-packet
timing to infer specific timing events, and aggregating mea-
surements across short time intervals and related connec-
tions to derive final RTT estimates for network paths of
interest. Extensive evaluations using traces from an enter-
prise and a broadband access network, demonstrate that the
resulting RTT estimates are quite accurate.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General—
Security and Protection; C.2.3 [Computer-Communication
Networks]: Network Operations—Network Monitoring ; C.4
[Computer Systems Organization]: Performance of Sys-
tems—Measurement Techniques

General Terms
Measurement, Performance, Security

Keywords
Performance Monitoring, Encrypted Traffic, IPsec Traffic,
Traffic Analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
INM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-788-9/07/0008 ...$5.00.

1. INTRODUCTION
Five nines of availability has been an elusive goal for IP

network operators for many years. Lately this goal has be-
come even harder to achieve in that IP network operators
not only need to ensure network availability but also applica-
tion availability. This has lead to more sophisticated service
level agreements (SLAs) guaranteeing, in addition to basic
network uptime, also various network performance metrics
such as loss, latency and jitter. In addition, mission crit-
ical communication, for which application level SLAs are
crucial, is typically also highly sensitive and therefore en-
crypted. Unfortunately, encryption decreases the availabil-
ity of information in the traffic path that can be used by
network operators to passively monitor these more complex
SLAs. In this paper we examine the issues posed and present
a technique to passively monitor network path performance
for encrypted communications.

In general, performance monitoring can be either active
where the monitoring system launches probe traffic and makes
inferences about performance based on the observed responses,
or passive where the inferences are based on passive obser-
vation of traffic flows in both directions. Some of the chal-
lenges active probing faces are that it can only approximate
the performance of the real traffic and that the probing traf-
fic itself adds to the network load, in particular if the per-
formance needs to be monitored frequently between a large
number of end points. But more importantly, in the pres-
ence of multipath routing the active probe may traverse a
path that is different from that of the traffic being moni-
tored. The main drawback of passive measurements is that
it only measures network paths which carry active traffic.
Fortunately, this is typically not a problem in that the per-
formance of network paths which carry no active traffic are
rarely of importance.

Passive monitoring could be performed at different loca-
tions in the network. In particular the end systems or appli-
cation servers in an overlay network are in a perfect position
to collect performance data passively. Unfortunately for the
network operator, these systems are rarely under its control
or are rarely willing to provide such information. Therefore,
operators rely on in-network monitoring devices to collect
performance data. Such devices are commercially available
and have also been described in the research literature (e.g
Gigascope [4]). These devices typically rely on information
obtained from observed TCP transactions to derive the de-
sired performance metrics [12, 16, 9]. The two metrics which
are typically derived from TCP and which are of interest to
us in this work are loss and latency.

The packet loss properties of a network path are frequently
computed by tracking the gaps or repetition in the TCP se-
quence number space [3, 6, 2]. As for latency measurements,
a common approach involves analysing TCP handshakes [1,
10]. These techniques rely on information in the packet
stream to identify higher level timing events. However, such
information is hidden by IP level encryption techniques used
by security protocols like IPsec [11].

This paper investigates the potential for real-time, in-
network passive performance monitoring of IP layer encrypted
traffic. Our aim is to develop a tool which can assist oper-
ators in managing and troubleshooting ISP and Enterprise
networks. Such operators are particularly interested in ac-
tionable performance events. For example, if the perfor-
mance changes only for a few seconds or for one TCP con-
nection, operators are generally not in a position to react to
the performance change and consequently, reporting such
events has little value to the operator. However, network
operators do care if customer(s) performance is impacted
by loss or high latency for a sustained period of time which
would violate application level SLAs and therefore impact
application level availability.

We develop a measurement methodology for lightweight
online measurement of RTTs for IP-layer encrypted traffic.
Given that transport-level timing information is lacking, our
technique uses simple and robust network-level features such
as packet size and inter-packet timing information to infer
specific timing events and estimate performance. We eval-
uate our techniques assuming IPsec as the example encryp-
tion/security protocol, but expect the proposed technique
and forthcoming analysis to generalize to other IP layer en-
cryption/security protocols with similar properties. Exten-
sive evaluations using large traffic traces from an enterprise
and a broadband access network, demonstrate the feasibility
and potential of the approach. For example, for the enter-
prise data set, for the End-to-End IPSec scenario, more than
90% of the RTT estimates are within 1 msec of the actual
values.

To the best of our knowledge, this paper presents the first
proposed solution to the IP-level encrypted traffic perfor-
mance monitoring problem, an important area that has re-
ceived surprisingly little prior attention. [13] uses certain
signal processing techniques for exploring network charac-
teristics in the context of a wireless network consisting of 4
nodes and 3 flows. The authors indicate that the technique
does not work when applied to larger networks. In contrast
our work focuses on identifying potential events and infer-
ring specific performance measurements in a real network
environment. Another related work is [15] which measures
the ”client-perceived page view response time” in SSL/TLS
encrypted traffic. Our work differs substantially from that
paper, in that they focus on a single application, and do not
address network layer encryption which hides TCP informa-
tion. In contrast our work is application-agnostic, focusing
on basic network characteristics such as RTT, and measures
performance based on all TCP traffic. Because of the very
nature of our problem, we have to deal with a inherently far
noisier, more heterogeneous, and less informative environ-
ment.

The remainder of the paper is organized as follows. We
discuss the challenges faced by network operators when mon-
itoring links carrying encrypted traffic in Section 2. We
present our RTT estimation algorithm in Section 3 and eval-

uation results in Section 4. Finally, we conclude the paper
in Section 5.

2. THE IMPACT OF ENCRYPTION
Network security protocols differ in the amount of infor-

mation they make unavailable to a network monitor, and
traditional performance measurement tools may still be ap-
plicable in some cases. For example, application layer en-
cryption such as SSL or TLS [7, 5] preserve network and
transport level headers and, therefore, allow the use of tra-
ditional tools to estimate RTT, loss, and other traffic charac-
teristics from TCP. However, with IP layer encryption tech-
niques such as IPsec , all headers with the exception of some
IP header information are encrypted, and encapsulated with
new headers. Therefore, traditional sources of information
used for tracking latency and loss such as the TCP flags and
other transport-level information are not available. Another
challenge is that a single IPsec tunnel can carry different
types of traffic (eg., TCP, UDP, ICMP) as well as multiple
connections, and for latency and loss estimation it is nec-
essary to identify a string of related packets from the same
transport-level connection.

Ironically, measuring loss in IPsec traffic is a simpler task
than in TCP data streams. This is due to the fact that ev-
ery IPsec connection is uniquely identified by a SPI (Security
Parameters Index) number, and that each IPsec packet has a
unique sequence number which is steadily increasing within
the context of a given SPI. Therefore loss can be measured
by tracking gaps in these sequence numbers. The only lim-
itation is the fact that any calculated loss, will be for the
network path from the IPsec endpoint sending the packet to
the monitoring point, which can be resolved by strategically
positioning monitors to obtain loss measurements over net-
work paths of interest. We, therefore focus the remainder of
this paper on inferencing the latency of encrypted traffic.

Other than the IP level information available at the mon-
itoring point, the location of the monitoring point on the
connection path provides important information which can
be utilized for performance monitoring. Examples include
obtaining an RTT value from the monitoring point to each
end point of the connection in addition to the end-to-end
RTT measurement, or aggregating performance measure-
ments for the connections sharing the same network path.
In addition to the location of a monitoring point, the type of
traffic can also impact the measurements taken. In this con-
text, we identify three common scenarios : (i) End-to-End,
where the encrypted traffic flows between two end hosts.
(ii) Remote Access, in which a host tunnels all it’s commu-
nication with a remote network through an IPsec gateway.
(iii) VPN-to-VPN, where two VPNs with multiple hosts be-
hind them, connect to each other using an IPsec tunnel. We
should note that if the IPsec transport mode is employed
in the second and third scenarios, then these scenarios will
be similar to that of the End-to-End case in terms of mea-
surement complexity. While all three scenarios occur in the
Internet today, in this paper we focus primarily on the first
case, and provide preliminary results for the second case.

3. RTT ESTIMATION ALGORITHM
Any production network tool needs to be necessarily light-

weight and scalable to handle the huge traffic volumes be-
ing monitored. Given the IP-level encryption, a monitor

Grouping in
time

Grouping in
space

Final RTT Estimation

(i.e. Mean, Median,
90%, Vote)

Path A = IP1 to IP2

Time Bin

1

Time Bin

2

Time Bin

3

Path B = IP1 to IP3

Path A = IP1 to IP2
Timing Event
Identification

Time Bin

2

Time Bin 2

Path A

Timing Event
Identification

Timing Event
Identification

Path A

Path B

Path A

Time Bin 2

Path A

Figure 1: This figure represents the overall process
flow for our methodology consisting of (1) Timing
Event Identification, (2) Grouping measurements in
time, (3) Grouping measurements in space, and (4)
Final RTT Estimation which are explained in the
text . The red circles indicate timing events of in-
terest, and the white circles represent other events.

can only directly track a few features, such as the time it
observed each packet, the size of each packet, as well as
some IP address information. Hence, our RTT estimation
approach is based on identifying specific packet exchanges
using observable network-level features, and inferring RTT
measurements from them.

To be suitable for accurate RTT measurements, candidate
packet exchanges should involve minimal client- or server-
side processing time, as compared to the end-to-end RTT.
Also, from a monitoring point perspective, an exchange of at
least three packets is required to obtain an RTT estimation
between the monitor and each endpoint, as shown in Fig-
ure 2. One common network event which exhibits the above
properties is the TCP handshake. In addition, TCP hand-
shakes occur every time a connection is initiated. Also since
most TCP connections are usually short lived,eg., 22.7 s for
WWW, 10.1 s for https, and 89.8 s for ftp data [14], we
expect that most time intervals containing network traffic
would also contain at least one handshake.

We emphasize that we do not make any assumption as
to the relation of the handshake RTT to the RTT of the
entire connection. Rather, we treat the measurements ob-
tained from each inferred handshake to represent a sample
estimate of the RTT along the corresponding network path
at the time of the handshake. As we will discuss later in
this section, by grouping multiple such estimates for a given
time interval we derive a single overall RTT estimate for a
given time interval and path.

As illustrated in Figure 1, the technique for path RTT
estimation consists of the following four steps:

1. TCP Handshake Identification

A TCP handshake consists of three SYN, SYN-ACK, ACK
packets, transmitted in the stated order. As many TCP con-
nections are user-initiated, we expect some idle time before
the connection initiation. Of course there are exceptions to
this assumption. For example when a web page is accessed
after the initial handshake which starts the connection, a
number of other connections could be initiated to obtain
embedded objects. Fortunately, as discussed later, for our
passive measurement technique to work, we do not need to
identify all handshakes. It is sufficient to identify enough
handshakes to obtain a reliable measure of the RTT.

Another characteristic of TCP handshake packets is that
they carry no data payload and their sizes are limited to
a known small range. IPsec encapsulation in general in-
volves adding headers and trailers of predictable size and
potential padding for confidentiality. However, in practice,
experiences with a large ISP and with multiple enterprise
networks indicate that such padding is rarely used. This is
due to a number of reasons. First, padding only provides
a small improvement in traffic flow confidentiality. Second,
there are additional costs in terms of network utilization as
well as performance. These costs should not be underesti-
mated as they can increase the bandwidth cost a corpora-
tion would have to pay to provide remote VPN access to its
employees by two to three folds based on the packet sizes
reported in[14], with little additional benefit. Consequently,
encrypted TCP handshake packets still have sizes that fall
in a narrow predictable range.

Combining the above observations, we use the following
steps to identify a TCP handshake:

• SYN Detection: Identify a packet to be a potential SYN,
if (i) its size is within a given range, and (ii) its appearance
is preceded by at least tIdleSY N seconds of idle time during
which no packets were observed originating from the client
and destined for the server.

• SYN-ACK Detection: Given that a potential SYN packet
was detected in the opposite direction, a packet going from
the server to the client which is preceded by tIdleSY N−ACK
seconds of idle time and whose size is within a given range,
is identified as a potential SYN-ACK packet.

• ACK Detection: Given that a potential SYN and SYN-
ACK packet pair were identified over a link, then the first
packet between the same client-server pair, going in the same
direction as the SYN, whose size is in the given range, will
be identified as a potential ACK.

The above steps for identifying a TCP handshake, are
shown in Figure 2 using the terms client to identify the ini-
tiator of the TCP connection and server for the host being
connected to. In addition to the above, we require that there
are no other exchanges (in terms of packets with a packet
size in the range of interest) between the same client and
server pair, during an ongoing potential handshake.

Monitor

SYN

Client Server

ACK

SYN−ACK

Idle SYN

Idle SYNACK

Client Side RTT

Server Side RTT

Time

Figure 2: The TCP handshake process.

2. Grouping Measurements in time

In Section 1 we pointed out that performance measure-
ments are of value to network operators when grouped over
a period of time. We consider time intervals of width T sec-
onds, and use the above model to identify all handshakes
within each such time bin. As a consequence, the probabil-

ity of obtaining more than one measurement in each time
bin increases, in turn benefiting the accuracy of our RTT
estimates as we discuss later.

3. Grouping Measurements in space

In addition to grouping in time, we also group measure-
ments on a common network path as follows. We first decou-
ple the end-to-end client to server RTT estimation problem
to separately estimate the RTT components from the client
to monitoring point (or client-side) and monitoring point to
the server (or server-side) (see Figure 2). To estimate the
client to measurement point RTT, we consider all commu-
nications from that client in a given time bin to all servers,
and aggregate across all the individual client-side measure-
ments which traverse the same path between the client and
the measurement point. Here we have assumed that the net-
work path remains constant in a given time bin. The same
approach is used to obtain the server-side RTT for a given
server and time interval.

4. Path RTT Estimation

By grouping measurements in time and space, we substan-
tially increase the probability of obtaining more than one
measurement in a given time bin, for the same network path.
To obtain a final representative RTT value for that path
and specific time bin, we explore different aggregation tech-
niques: (i) mean, (ii) median, to capture the center of mass,
(iii) 90% percentile value, and (iv) a voting-scheme based
value. The voting approach is designed to remove outliers
which could have been caused by either an isolated/transient
network delay which is of little interest to the network op-
erator, or an incorrect identification of a TCP handshake.
The scheme works by quantizing the obtained RTT values in
each time bin with predetermined quantization steps, after
which the quantization step with the maximum population
is selected as the representative estimate for a given time
bin. We use non-uniform quantization steps which are set
relative to the values being quantized. In our evaluations
we use four (value range, quantization step size) combina-
tions: (i) ((> 10 msec), 10 msec), (ii) ((0.1 msec, 10 msec],
0.1 msec), (iii) ((0.001 msec,0.1 msec], 0.001 msec). Further-
more if the results of the vote are smaller than 0.001 msec
or 1 µsec, the vote value is set to 0.1 µsec.

4. EXPERIMENTAL EVALUATION
In the following section, we describe the dataset and ex-

perimental parameters we used in our evaluation, and present
the obtained results.

4.1 Dataset
Obtaining a dataset with which we can directly evaluate

our technique is a difficult task, as we require access to both
the encrypted as well as clear traffic in order to validate
our approach. We collected IP packet traces at the Internet
access link of an enterprise network located behind a firewall,
from April 17th to 25th, 2006. We then simulated IPsec
encryption by removing the encrypted fields from the data
set.

We classify IP addresses as either local or remote where
a local IP address represents an IP address within the ac-
cess network being monitored (i.e. client). All other IP
addresses are categorized as remote (i.e. server). All local
IP addresses which had some traffic destined towards them

but themselves did not originate any traffic were eliminated.
This phenomenon is mainly caused by network scans. Fur-
thermore, for our study, we focus on remote IPs which were
either visited by multiple local IPs or were visited over an
extended period of time. In particular we only consider a
remote IP if the sum of the number of local IPs communicat-
ing with it and the number of time bins in which at least one
local IP communicates with it exceeds 50. After the filtering
step, our Enterprise dataset consisted of 1 billion packets,
97.72%, 1.97%, and 0.16% of which are TCP, UDP, and
ICMP packets respectively, and contains 2.5 million TCP
connections initiated from local to remote IPs. There were
a total of 1012 local, and 2011 remote IP addresses.

4.2 Experimental Parameters
Our algorithm requires a few parameters. First is the Size

of handshake packets. These packets do not carry any pay-
load, and only consist of the TCP and IP headers. These
headers each range from 20 to 60 bytes according to the
TCP/IP standards. Thus we assume a minimum, and max-
imum size of 40 and 120 bytes respectively for handshake
packets 1. The second parameter is the Time bin length.
This value is greatly dependent on the human actionable
time and the particular network management application.
We selected a bin size of 300 seconds which is commonly
used by network operators for many network management
tools such as SNMP pollers.

The third, and last parameter is the Idle time thresh-
old. We found that tIdleSY N and tIdleSYN−ACK are highly
correlated, with a correlation coefficient of 97.24%. There-
fore for the remainder of this work we have set tIdleSYN =
tIdleSY N−ACK and identify them collectively as the idle time.
We believe this will generalize to other datasets, since the
SYN and SYN-ACK represent the initial packets in every
connection, and their presence is highly correlated. We have
experimented with a range of idle time thresholds and have
found two values of 1 and 50 seconds to represent two rea-
sonable choices which strike a balance between the number
of SYN and SYN-ACK packets identified, and the identifi-
cation accuracy. We will discuss this tradeoff later.

4.3 End-to-End Scenario
We evaluate our handshake-based RTT estimation method-

ology along a number of axes, namely (i) How available are
the handshakes, (ii) how well do we detect them (iii) how
accurate are the RTT estimates.

4.3.1 Availability of Handshakes
Intuitively, we want to track the RTT for an IP in time

bins where that IP has some minimum level of activity. We
adopt an inclusive notion of activity and define an active
time bin for a given IP to be one which has at least one
packet destined to and at least one packet sourced from that
IP. We find that more than 50% of active time bins carry one
or more handshakes for 77% and 87% of local and remote
IPs respectively. We also find that for 75% of the IPs (local
or remote), for 90% of the time, for every 2 active time
bins we get at least one time bin with handshakes. Overall
the results indicate that the handshake based approach can
provide frequent RTT measurements well spread over active
time bins for most IPs.

1If we were to monitor actual IPsec traffic, the range had to
consider the IPsec encapsulation overheads.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Recall

C
D

F

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Precision

C
D

F

(b)

Idle = 1 (Local)
Idle = 50 (Local)
Idle = 1 (Remote)
Idle = 50 (Remote)

Idle = 1 (Local)
Idle = 50 (Local)
Idle = 1 (Remote)
Idle = 50 (Remote)

Figure 3: CDF of precision values in identifying time
bins which carry handshakes.

4.3.2 Identification of handshakes
We next explore the effectiveness of our algorithm in iden-

tifying time bins which have at least one handshake. We
utilize two widely accepted metrics of accuracy, Recall and
Precision. In the context of our specific problem, they are
computed as follows: Recall is the ratio of the number of
time bins, for which handshakes are predicted, to the total
number of time bins which actually had handshakes. Preci-
sion is the number of time bins for which handshakes were
predicted correctly, expressed as a fraction of the total num-
ber of time bins predicted to contain handshakes.

Figures 3(a)-(b) depict the distribution of these Recall
and Precision values across the different local and remote
IPs. The results show that our algorithm is able to identify
time bins which carry handshakes with high accuracy. For
example, using an idle time value equal to 1 second, 80% of
local IPs have recall above 94% and precision above 80%.
As expected, the Idle time value plays an important role
in our algorithm, and although a larger Idle time leads to
higher precision values (i.e. more accurate identification of
time bins with handshakes), at the same it also reduces the
recall (i.e. the overall number of time bins identified to have
handshakes).

Note that it is not necessary to be able to identify every
individual handshakes for our technique to accurately esti-
mate the final RTT. Recall that we obtain multiple RTT
estimates in each time bin for a given network path, as a
result of grouping measurements in space and time. A final
and representative RTT value for that time bin and network
path is obtained by aggregating over the available RTT es-
timates. The accuracy of the final estimated value depends
both on the distribution of the estimated RTT values from
individual handshakes in each time bin, and on the aggre-
gation technique employed. Therefore, although identifying
all available handshakes would result in an accurate final
estimate, identifying a subset of available handshakes could
still lead to accurate final RTT estimates, as we shall see
next.

4.3.3 Accuracy of RTT Estimation
We next explore the accuracy of the estimated represen-

tative RTT value estimated in a time bin for each network
path. We compare this value to the actual representative
RTT for that time bin. The latter obtained by aggregat-
ing the RTTs of the actual handshakes in that time bin for

the same path, for a given aggregation technique. Such a
comparison can only be done with time bins for which both
actual and identified handshakes are available. We compute
the per-time-bin estimation error as the difference (estimated
RTT - actual RTT).

Performance differences can typically be measured in rela-
tive (e.g. the round trip time increased by 50%) or absolute
terms, (e.g. the round trip time increased by 10 msec). In
practice, operators are often more interested in the absolute
change then the relative one. For example, if the round trip
time changes 500% from 10 msec to 50 msec there is basi-
cally no impact on the voice quality of a VoIP call, which
we should note is one of the most time sensitive applica-
tions on the Internet today. On the other hand if the round
trip time changes by a factor of 200% from 150 msec to
300 msec voice quality is severely impacted [8]. Therefore,
in our evaluations, we focus on the absolute and not the
relative estimation error.

Figure 4 plots the distribution of the RTT estimation er-
rors, accumulated across all IPs. The graphs indicate that
the error is low for the vast majority of the estimates, across
the different aggregation techniques. Under the voting ag-
gregation, more than 95.20% and 90% of the estimated RTT
measurements are accurate to within 1 msec of the actual
values for the local and remote IPs respectively. Further-
more, the error is within 10 msec for 96.59% and 95.87% in
the local and remote IP cases respectively. The results also
indicate that the choice of aggregation technique can signif-
icantly impact the RTT estimation accuracy. In particular
voting consistently outperforms the other studied aggrega-
tion techniques.

−0.1 −0.05 0 0.05 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
D

F

Local Side

−0.1 −0.05 0 0.05 0.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Seconds

C
D

F

Remote Side

Mean
Median
90 %
Vote

Mean
Median
90 %
Vote

Figure 4: CDF of difference in actual and estimated
RTTs for each time bin.

While the overall accuracy is high, the next question is:
are time bins with low errors limited to a few IPs, or they are
spread among different IPs? We consider the 90th percentile
(across all time bins) of the absolute error values (|estimated
RTT - actual RTT|) per IP, based on the voting aggrega-
tion. The obtained results are quite encouraging. For the
vast majority of the local (or remote) IPs, the error is very
low. For eg., about 90% of the local IPs have 90% of their
estimations accurate to within 10 msec.

4.3.4 Alternate Data Set
In order to investigate the effectiveness of our algorithm

for other network environments, we employed a second dataset

which consists of packet traces obtained from a cable head-
end located in a Tier-1 ISP. The data was collected from
August 5th through 22nd, 2004. After the data processing
step (described in Sec 4.1), our dataset consisted of 2.5 bil-
lion packets, 87.55%, 10.29%, and 0.35% of which are TCP,
UDP, and ICMP packets, respectively. Furthermore it con-
tains 20 million TCP connections initiated from the local to
remote IPs, and 512 local, and 9876 remote IP addresses.
For this set, using voting aggregation, 81.27% and 94.75%
of the estimated RTT measurements are accurate to within
1 msec of the actual values for the local and remote IPs,
respectively. Furthermore, the error is within 10 msec for
90.50% and 96.46% in the local and remote IP cases, respec-
tively.

4.4 Remote Access Scenario
We next present initial results from exploring the Remote

Access scenario described in Section 2. For this case, recall
that only the gateway’s IP is visible to the monitoring point.
Therefore, the monitor has no easy way to distinguish, based
on IP headers, between packets from different remote IPs lo-
cated behind the same gateway. For the End-to-End case,
the handshake identification algorithm has to deal with the
possibility of incorrectly grouping together packets from dif-
ferent connections between a single local and a single remote
IP. In contrast, in the Remote Access the algorithm has the
task of identifying a handshake from a mixture of packets be-
ing exchanged between the local IP and potentially multiple
remote IPs behind the same remote gateway. This makes the
handshake identification and RTT estimation task harder.

Furthermore, as the VPN gateways represent multiple real
servers behind them which most likely will have different la-
tencies, we are only able to estimate the RTT on the local
side (local IP to measurement point) in this scenario. Fortu-
nately a network operator still has substantial control over
which paths of his network are being monitored by placing
the probe either close to the local IP or close to the VPN
gateway.

Using the Enterprise dataset and the voting aggregation,
we observe that more than 84.38% and 87.26% of the es-
timated RTT measurements are accurate to within 1 msec
and 10 msec respectively, of the actual values for the local
IPs. Furthermore, 61% of the local IPs have 90% of their
estimations accurate to within 10 msec. These initial results
are encouraging, and we are currently exploring ways to in-
crease the RTT estimation accuracy in the Remote Access
scenario.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we investigated the challenging problem of

monitoring performance of encrypted traffic, and developed
a methodology for estimating RTTs along specific network
paths. Simulations using traces obtained from two net-
works with different characteristics illustrate the effective-
ness of our approach, and suggest the potential of harvesting
network-level features. For example, for the enterprise data
set, for the End-to-End IPsec deployment scenario, more
than 95.20% and 90% of the estimated RTT measurements
are accurate to within 1 msec of the actual values for the
local and remote IPs respectively. The above technique has
been deployed in a real network.

The work in this paper takes a first step towards solving
the general problem of real-time performance monitoring of

IP encrypted traffic. More research is needed in the com-
munity for developing a complete suit of encrypted traffic
performance monitoring techniques such as what exists to-
day for unencrypted traffic. We are working on improving
the robustness and accuracy of the technique for the more
complex network settings such as the Remote Access and
VPN-to-VPN scenarios.

6. ACKNOWLEDGMENTS
We thank Jacobus Van Der Merwe and Seungjoon Lee for

their helpful discussions on an earlier version of the paper,
and the anonymous reviewers, whose suggestions benefited
this paper.

7. REFERENCES
[1] J. Aikat, J. Kaur, F. Donelson Smith, and K. Jeffay.

Variability in TCP round-trip times. Internet
Measurement Conference, 2003.

[2] M. Allman, W. M. Eddy, and S. Ostermann.
Estimating loss rates with TCP. ACM Performance
Evaluation Review, 31 (3), 2003.

[3] P. Benko and A. Veres. A passive method for
estimating end-to-end TCP packet loss. IEEE
Globecom, 2002.

[4] C. Cranor, T. Johnson, and O. Spatscheck. Gigascope:
a stream database for network applications. SIGMOD,
2003.

[5] T. Dierks and C. Allen. The TLS protocol version 1.0.
RFC 2246, January 1999.

[6] N. Fonseca and M. Crovella. Bayesian packet loss
detection for TCP. Infocom, 2005.

[7] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL
protocol version 3.0.
http://home.netscape.com/eng/ssl3/draft302.txt,
November 1996.

[8] I.-T. R. G.107. The e-model, a computational model
for use in transmission planning. http://www.itu.int/.

[9] S. Jaiswal, G. Iannaccone, C. Diot, J. Kurose, and
D. Towsley. Formal analyis of passive measurements
based inference techniques. Infocom, 2006.

[10] H. Jiang and C. Dovrolis. Passive estimation of TCP
round-trip times. Computer Communications Review,
2002.

[11] S. Kent and R. Atkinson. Security architecture for the
Internet protocol. RFC 2401, November 1998.

[12] J. Padhye and S. Floyd. On inferring TCP behavior.
ACM SIGCOMM, 2001.

[13] C. Partridge, D. Cousins, A. W. Jackson, R. Krishnan,
T. Saxena, and W. T. Strayer. Using signal processing
to analyze wireless data traffic. WiSE ’02: Proceedings
of the 3rd ACM workshop on Wireless security, 2002.

[14] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.
Class-of-service mapping for QoS: A statistical
signature-based approach to IP traffic classification.
Internet Measurement Conference, 2004.

[15] J. Wei and C.-Z. Xu. smonitor: A non-intrusive
client-perceived end-to-end performance monitor for
secured Internet services. USENIX, 2006.

[16] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On
the characteristics and origins of Internet flow rates.
ACM SIGCOMM, 2002.

