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Abstract. In the past few years, we have witnessed a number of pow-
erful steganalysis technique proposed in the literature. These techniques
could be categorized as either specific or universal. Each category of tech-
niques has a set of advantages and disadvantages. A steganalysis tech-
nique specific to a steganographic embedding technique would perform
well when tested only on that method and might fail on all others. On the
other hand, universal steganalysis methods perform less accurately over-
all but provide acceptable performance in many cases. In practice, since
the steganalyst will not be able to know what steganographic technique
is used, it has to deploy a number of techniques on suspected images. In
such a setting the most important question that needs to be answered is:
What should the steganalyst do when the decisions produced by differ-
ent steganalysis techniques are in contradiction? In this work, we propose
and investigate the use of information fusion methods to aggregate the
outputs of multiple steganalysis techniques. We consider several fusion
rules that are applicable to steganalysis, and illustrate, through a number
of case studies, how composite steganalyzers with improved performance
can be designed. It is shown that fusion techniques increase detection
accuracy and offer scalability, by enabling seamless integration of new
steganalysis techniques.

1 Introduction

Steganography refers to the science of “invisible” communication. Unlike cryp-
tography, where the goal is to secure communications from an eavesdropper,
steganographic techniques strive to hide the very presence of the message itself
from an observer. On the other hand, steganalysis techniques are used to de-
tect the presence of hidden messages in an image. The reader is referred to [1]
for a review of the field. Essentially there are two approaches to the problem
of steganalysis, one is to come up with steganalysis techniques that are spe-
cific to a particular steganographic technique. The other is developing universal
techniques that are effective over a wide variety of steganographic techniques. 3

3 Universality can be defined to indicate applicability over all embedding techniques
and/or the domains of operation. In this work, we use the notion of universal as
with respect to embedding techniques.
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Specific steganalysis attacks concentrate on image features which are directly
modified by the embedding algorithm. For example, F5 [2] embedding algorithm
suffers from DCT histogram shrinkage, in which the number of zero DCT co-
efficients increases after the embedding operation. To exploit this, the specific
attack proposed in [3], examines the differences between the histogram of the
stego image and it’s estimated original. As another example, in the model based
embedding technique [4] the crux of the embedding operation lies in fitting a
parametric model to the DCT histograms and preserving those models after em-
bedding. The weakness of this approach is that DCT histograms of the cover
images do not follow the model precisely. The specific attack proposed in [5]
analyzes how well the image’s DCT histograms match the fitted model for that
image to determine whether the image in question is carrying hidden messages
or not. Although such steganalysis techniques would perform well when tested
only on the intended embedding method, they are very likely to fail on all other
steganographic methods.

Universal steganalysis techniques operate by extracting some inherent fea-
tures of cover images that are likely to be modified when an image undergoes
steganographic embedding process. These features are then used to classify the
image as either a cover or stego image. There have been a number of universal
steganalysis techniques proposed in the literature. These techniques differ in the
feature sets they utilize for capturing the characteristics of images. For exam-
ple, Avcibas et al. [6] calculate several binary similarity measures between the
seventh and eighth bit planes of an image. Farid et al. [7, 8], obtain a number of
statistics from the wavelet transform coefficients of images. On the other hand,
Fridrich [9] utilizes DCT coefficient statistics. As observed in [10, 6] universal
steganalysis techniques do not perform equally over all embedding techniques;
Nor are they able to distinguish perfectly between cover and stego images.

Furthermore, the classifier at the heart of each universal steganalyzer needs
to be trained using a set of sample cover and stego images. This training process
becomes computationally expensive depending on the type of classifier used,
sample dataset size, and the separation of cover and stego images in the feature
space.

With the availability of different type of steganalyzers (specific and universal)
a number of questions would arise:

– What is the performance penalty due to the use of universal (or specific)
steganalysis techniques assuming a practical setting of the problem?

– When multiple steganalyzers are used together, how do we deal with con-
tradictory decisions?

– How does detection performance change when multiple embedding tech-
niques are deployed in training the steganalyzer as opposed to using a spe-
cific technique, and what is the computational cost for repeating the training
process to include new steganographic methods (in the training phase)?

– What is the most efficient strategy to combine different steganalyzers?

To answer these questions, we propose the use of information fusion techniques
to incorporate steganalyzers, specific and universal, together. This approach has
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two potential advantages, in addition to providing a solution to real-life steganal-
ysis problem. First, it improves the accuracy of distinguishing between a set of
cover and stego images when multiple steganalyzers are available for use. Second,
it reduces the computation cost associated with re-training a steganalyzer built
to detect different types of stego images when a new steganographic technique
has to be added to the training dataset.

The organization of the paper is as follows. In Section2, we review fusion
techniques that are applicable to steganalysis problem. In Section3, we study
the design of a composite steganalyzer by fusing a number of steganalysis tech-
niques and provide performance comparison results. In Section4, we study how
incorporation of a number of steganalysis techniques could be made scalable, by
avoiding the cost associated with re-training steganalyzers. Our discussion of the
results and conclusions are given in Section5.

2 Fusion Techniques

At the heart of every steganalyzer is a classifier which, given an image feature or
feature vector, decides whether the image at hand contains any secret messages.
Therefore, the fusion strategies developed for constructing more sophisticated
classifiers can be considered for our purposes as well.
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Fig. 1. Different scenarios as well classification stages in which fusion could be applied.
For example fusion could be applied among a set of classifier trained using one feature
vector, different feature vectors, or a hybrid of the two. Fusion may also be applied at
different stages of the classification process (i.e. pre-classification or post-classification).
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Motivated by [11], we review possible fusion strategies for classifiers as re-
lated to our work. Figure 1 summarizes different scenarios and classification
stages in which fusion could be used. For example, a set of classifiers can be
designed using the same feature vector. (I.e., given a feature vector, we could
design a linear as well as non-linear classifier and fuse the results together.) On
the other hand, fusion could also be applied to a set of classifiers each designed
with a separate feature vector. Furthermore the two approaches could be com-
bined into a hybrid approach. But more important is the stage in classification
at which fusion is applied. Below, we provide a break up of these stages and
discuss how they could be applied to steganalysis techniques.

2.1 Pre-Classification

In essence, given an image I , the steganalyst first calculates the feature vector
XI = [x1, x2, x3, ...] from I . The feature vector is then used by a classifier, that
was trained on previous observations of X , to output a decision regarding the
nature of the image I (i.e., cover or stego). Fusion at this stage could be done
by concatenating the feature vectors associated with each steganalysis technique
and re-training the classifier with the feature vector YI defined as

YI = [XI1|XI2|XI3...]. (1)

But in practice a number of problems arise with such an approach. These
are:

– With the increasing number of features, the classifier becomes more suscep-
tible to curse of dimensionality problem.

– Correlated and redundant features need to be excluded for better perfor-
mance.

– Classifier needs to be re-designed every time a new component is added to
the feature vector YI .

– Different feature compositions may require different designing approaches.

To elaborate on the last point, in our experiments we have observed that some
feature vectors show much improvement with more computationally expensive
non-linear classifiers, whereas others show very little improvement. Thus one
need to take into consideration such factors when constructing the classifier.

2.2 Post-Classification

In this case, the classifier is trained using a set of stego and cover feature vec-
tors, thereby calculating the location of the decision hyper-plane in the high-
dimensional feature space. Therefore, the trained classifier could be thought of
as a function, fclass, that computes the perpendicular distance of I , in terms of
the extracted features XI to the decision hyperplane in the feature space. This
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distance, also called decision value, DV , is used to categorize the image I as
either cover or stego. Hence, we have

DVXI = fclass(XI) (2)

Below we will discuss two different post-classification levels, with which the
obtained decision values are processed. It is after this processing that the decision
values obtained from a set of classifiers become comparable, and therefore could
be fused.

Measurement Level The obtained decision values need to be normalized in
order to make them comparable among a set of classifiers. This could be done
by converting the decision values to a conditional distribution, P (stego|XI), i.e.,
the posterior probability of image I represented by feature vector XI carrying a
secret message denoted as

P (stego|XI) = fnorm(DVXI) = fnorm(fclass(XI)). (3)

Since there are only two classes available (i.e. cover or stego), we have

P (cover|XI ) = 1− P (stego|XI). (4)

This is the most widely used stage for fusion. Here, the measurement informa-
tion obtained from a set of steganalyzers could be either input into a second
stage classifier for a final decision, or could be combined using schemes such
as the Mean, Max, Min, Median, and Product rules. In fact, Kittler et al. in
[12] conduct a theoretical study of these rules, and show that the Mean rule is
least susceptible to estimation errors in the conditional probability distributions.
Given the results in [12] and based on our preliminary experimental study, we
decided to only employ the Mean and Max rules in our experiments. These two
rules are explained below:

– Mean Rule:
C = argmaxj

∑N
i=1 P (cj |XIi)

With this rule, the class cj (for j = {stego, cover}), assigned to input image
I, is the class with which the sum of the conditional probabilities for that
class is maximized.

– Max Rule:
C = argmaxjmaxiP (cj |XIi)

Here the class cj is assigned to input image I with which the maximum
conditional probability is obtained.

Abstract Level Fusion could also be applied at the last stage of classification,
in which conditional class distributions are thresholded (or alternatively the
decision values are thresholded directly), and a decision is made as to the class
of the image I :
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P (stego|XI) > .5⇒ I ∈ stego (5)

P (stego|XI) < .5⇒ I ∈ cover (6)

In this case, voting rule could be used to obtain a collective decision from a set
of steganalyzers. But since this stage is obtained by thresholding the conditional
probability distribution values, yielding a binary value, it will provide minimal
usable information for fusion.

3 Fusion Based Steganalysis

In a practical setting, the steganalyst will be unsure of the embedding technique
being used, if any. Therefore the conventional approach is to employ a univer-
sal steganalyzer which could detect, although not perfectly, stego images. But
the steganalyst could also have a set of specific steganalyzers at her disposal,
that in some cases perform more accurately than the universal techniques, or
even alternate universal steganalyzers. In such a scenario, the steganalyst could
create a new composite steganalyzer and improve the detection performance by
fusing the decision obtained from the available set of universal and/or specific
steganalysis techniques as described in Section2.

In what follows, we illustrate through the two possible scenarios, how a new
steganalyzer could be built by fusing the results from a select set of stegana-
lyzers. In the first scenario, Section3.1, we investigate the fusion of a number of
universal steganalysis techniques, whereas in the second scenario, Section3.2, we
investigate the fusion of universal and specific steganalysis techniques.

3.1 Fusing Universal Techniques

We will first study the fusion of three universal steganalysis techniques. Here we
employed, binary similarity measures based steganalysis [13] denoted as BSM,
wavelet transform coefficient features’ based steganalysis [7, 8] denoted as WBS,
and DCT coefficient features’ based steganalysis [9] denoted as FBS. An initial
database consisting of 1800 natural images were used [14]. The images were
converted to gray-scale and the borders around them were cropped, resulting
in images of size 640x480 pixels, after which they were re-compressed with a
quality factor of 75.

A stego dataset was created using the LSB and LSB +/- embedding tech-
niques. In the LSB technique, the LSB of the pixels is replaced by the message
bits to be sent. Usually the message bits are scattered around the image, by
selecting the pixels to be modified in a random walk. Alternatively, LSB +/-,
operates by incrementing or decrementing the last bit instead of replacing it.
Message size was set as the ratio of bits per pixel in the image, more specifically
we used the message sizes of 0.1 (3840 Bytes) and 0.2(7680 Bytes) in creating
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the stego set. A classifier was built for each message length using the feature
vectors obtained by each steganalysis technique.

Fusion of the three steganalysis techniques was done at measurement level,
using the Max and Mean rules discussed earlier in Section2. These rules oper-
ate on class conditional probabilities obtained from each steganalysis technique.
For example with Max rule, the class of an input image is designated by the
steganalyzer that has highest confidence in its decision, e.g., yielded the maxi-
mum conditional probability. With the Mean rule, the class to an input image is
assigned so that the sum (or mean) of the conditional probabilities, associated
with each steganalyzer, for that class is maximized.
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Fig. 2. ROC curves obtained for LSB embedded vs. unmarked images for three different
steganalysis as well as two fusion techniques. (a) 0.1 messages size. (b) 0.2 message
size.

The accuracy of the original steganalysis techniques, as well as the accuracy
of the techniques when fused could be seen in terms of ROC curves in figure
2 for the LSB, and in figure 3 for the LSB +/- embedding techniques. As seen
in these figures fusion does provide considerable improvement over the three
steganalysis techniques. To quantify this improvement the areas under the ROC
curves are calculated and given in Table 1. We also observe that from the two
fusion rules employed, the Mean rule outperforms the Max rule, therefore we
will only employ the Mean rule for the rest of this work.

Here we should note that although the FBS steganalysis technique is pro-
posed for DCT based embedding techniques, it performed satisfactorily on spa-
tial domain embedding technique because of the dataset employed in these ex-
periments. More specifically the original cover images used, were obtained from
JPEG images compressed with a quality factor of 75. But, as observed in [15],
if we use original BMP images as covers, where there exists no JPEG artifacts,
the FBS technique is unable to distinguish between cover and LSB embedded
stego images.
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Fig. 3. ROC curves obtained for LSB +/- embedded vs. unmarked images for three
different steganalysis as well as two fusion techniques. (a) 0.1 messages size. (b) 0.2
message size.

Table 1. Area under the ROC curves.

BSM WBS FBS Fusion (Max) Fusion (Mean)

LSB (0.1) 96.62 58.23 91.72 95.58 97.36

LSB (0.2) 98.79 73.97 98.12 99.24 99.54

LSB +/- (0.1) 90.92 59.11 92.09 94.69 96.34

LSB +/- (0.2) 97.51 80.61 98.78 99.14 99.43

3.2 Fusing Specific and Universal Techniques

The second scenario we have looked at is one in which the embedder uses two
types of embedding techniques, LSB and LSB +/- embedding techniques. We
assume the steganalyst has available at her disposal the BSM universal stegan-
alyzer [6], which performs well over both the LSB and LSB +/- embeddings,
and the Pair steganalysis [16], which is a specific attack on the LSB embedding
technique. From the large data set of gray scale images obtained for our bench-
marking study in [10], we obtained about 13000 images with a quality factor
of 85 and above and with a minimum width of 1000 pixels. These images were
then down-sized to a size of 640x480 and saved as BMP. This was done to min-
imize the JPEG compression artifacts. We should note that the data set only
consists of images that had their aspect ratio preserved after the down sampling
operations.

Two BSM steganalyzers were trained independently, using the non-linear
SVM [17], with the LSB and LSB +/- stego images. The message size used in
creating the stego dataset was set as to the ratio of bits per pixel in the image,
where in this case a value of 0.6 was used. Furthermore, in order to obtain
the fusion result at different false positive rates (i.e. ROC curve), we opted to
choose the output of the pair analysis attack as a feature value to be used by
the classifier. This would also allow us to obtain classification confidence values
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which we will use when fusing the steganalysis techniques. Thus we have four
steganalyzers available, including the fused steganalyzer, which was obtained
using the Mean rule.
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Fig. 4. Obtained ROC curves for the 4 steganalyzers when employed against the same
cover but different stego datasets. (a) The stego test images consist of only LSB images.
(b) The stego test images consist of only LSB +/- images. (c) The stego test images
consist of both LSB and LSB +/- images. Here the number of LSB and LSB +/- stego
images is the same, and we have avoided using the same image from both sets.

The four steganalyzers are tested against the cover dataset and 3 different
stego datasets, namely, an LSB dataset, an LSB +/- dataset, and a dataset con-
sisting of equal number of unique LSB and LSB +/- stego images. The obtained
ROC curves for each dataset could be seen in figure 4, and the AUR 4 values
could be seen in Table 2. From the results we observe that the specific attack
works perfectly and has an accuracy of 100% when distinguishing between cover

4 AUR: The area under the ROC curve is generally used to obtain a single comparative
performance value for each classifier.



10

and LSB stego images, and when tested against the LSB +/- dataset the tech-
nique fails as expected. But when the pair analysis is tested against the mixed
dataset, its performance reduces since it is only effective in detecting the LSB
images and not the LSB +/- images.

The two BSM steganalzyers, one trained with cover and LSB stego images
the other with cover and LSB +/- stego images, perform around the same level
with all three datasets. But when the outputs of these three steganalyzers (tested
against the mixed dataset) are fused together, we observe a 15.3%, 5.55%, and
5.17% performance improvement from the results obtained if we had used only
the specific attack, BSM trained with LSB stego images, and BSM trained with
LSB +/- stego images, respectively.

Table 2. AUR obtained from the ROC curves, when fusing universal and specific
steganalysis techniques.

Specific Attack BSM (LSB) BSM(LSB +/-) Fusion

LSB (0.6) 99.96 93.72 88.04 99.06

LSB +/- (0.6) 53.84 79.49 85.72 84.15

Mixed Set 76.94 86.52 86.90 92.07

It should be noted that we also tried a decision tree approach in which at the
root we had placed the pair steganalysis technique. But the results of such fusion
technique were poor, due to the inaccuracy of the pair steganalysis technique in
identifying LSB +/- stego images.

4 Fusion Based Adaptive Steganalysis

Although in theory universal steganalysis techniques are meant to detect any
stego embedding technique, even ones unseen to it at the training stage, in our
experiments (as will be discussed later in this section), we have observed other-
wise. That is, a trained steganalyzer using embedding technique A, which also
performs well when tested on stego images of type A, performs quite inaccu-
rately if it is asked to classify stego image obtained from embedding technique
B. This is best illustrated in figure 5, where we show two stego sets denoted as
stego1 and stego2.

If the training dataset only consists of cover and stego1 images then the
classifiers might have a decision plane following the line A, with which most of
stego2 images will be classified correctly. But if the training dataset consists of
cover and stego2 images then the classifiers decision plane will follow line B,
with which half of the the stego1 images will be misclassified as cover images.
In order to avoid such a problem, the training set needs to include both stego1
and stego2 images so that the classifier’s decision plane will follow line C, and
it will be able to correctly classify both stego1 and stego2 images.
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Fig. 5. Effects of training set on the performance of universal steganalysis techniques.

Fridrich et al. [18], exploits the above deficiency of the universal steganalysis
techniques to address another interesting problem. In their work, a multi-class
classifier is designed using cover and stego images created with a number of
embedding techniques. Since, presumably, stego images from each embedding
technique occupy a unique space in the feature space, the steganalyst, not only
differentiates among stego and cover images, but also is able to distinguish be-
tween different types of stego images based on the embedding technique used.

We should note that the above problem could potentially be avoided using
one-class SVMs, but that approach has its own downsides. One-class SVMs are
designed with only one class of images by creating a hyper-sphere in the feature
space so that all images that fall inside the hyper-sphere are defined to be cover
images and images that fall outside of the hyper-sphere are deemed to be stego
images. Hence, the accuracy of such classifiers greatly depends on how well
the cover images, represented by a set of extracted features, could be enclosed
by a hyper-sphere. Because of the difficulty of this requirement two-class SVM
classifiers, which have access to both cover and stego images at the design stage,
outperform one-class SVMs.

In universal steganalysis, as the number of stego techniques represented in
the training dataset increases the size of the training dataset needs to grow as
well. This is so that a minimal number of stego images from each technique could
be represented in the dataset. However, this increase in the dataset size also in-
creases the classifier’s training cost, thus making this approach unscalable and
prohibitive. To show the relationship between the training set size and compu-
tational time, we have conducted a simple experiment in which we trained a set
of classifiers each using training sets with varying sizes that consist of cover and
stego images obtained by Model Based steganoggraphic embedding technique.
The images dataset from Section3.2 was used, with the message length set to
.08 bits per image pixel. The training set size vs. computational curve is given
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in figure 6. From the figure, we observe that the computational time increases
rapidly as the training set size increases for the linear SVM classifier. This in-
crease is more drastic when we used the superior non-linear SVM classifier. For
example if our training set consists of 110000 images, then it would take more
than 11 hours to design the non-linear SVM classifier.
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Fig. 6. Computational time for different training set sizes, using the linear and non-
linear SVM classifier. Training was done on a machine with a Xeon 2.8GHz processor,
and 1GB of memory, running linux. In the case of the non-linear svm, the parameter
grid search was done from 20 to 215 with steps of 23 for parameter c, and from 2−10 to
25 with steps of 23 for parameter g.

The above described problem is further exacerbated due to the fact that
the training operation has to be repeated every time with images from a new
steganograhic embedding technique are added to the training dataset. The use of
fusion strategies, aside from addressing decision aggregation problem, also offers
a solution to this problem. This can be realized by designing a separate clas-
sifier for each available steganographic technique and then fusing the decisions
obtained by testing an image against all available classifiers. Therefore, when a
new steganographic technique is introduced or dataset is changed, re-training
at a global scale is not needed. But the question to be answered is whether,
with fusion, we will be able to obtain accuracy results as well as those obtained
from a steganalyzer trained with a dataset containing stego images created with
available steganographic techniques.

To investigate the above question, we obtained a set of cover images, as in
Section3.2, and used Outguess (+) 5 [19], F5 [2], and Model Based [4] tech-

5 Outguess (+): The plus sign indicates the usage of the statistical steganalysis foiling
feature with the Outguess program. With this feature, a set of reserved DCT coeffi-
cients are adjusted after the message has been embedded with the aim of preserving
the original histogram of DCT coefficients.
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niques to create three stego datasets. The message lengths were set to 0.06 bits
per image pixel. As for the steganalyzer, we employed the FBS technique. A ste-
ganalyzer was trained independently for each of the three cover and stego image
pairs. We further designed a steganalyzer using a training set which consists of
cover images and a stego dataset compromised of equal number of stego images
from all three embedding techniques.
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Fig. 7. Obtained ROC curves for the designed steganalyzers when employed against
the same cover but different stego datasets. (a) Tested against the Outguess(+) stego
set. (b) Tested against the F5 stego set. (c) Tested against the MB stego set.

To show the importance of the training set on the performance of the uni-
versal steganalyzers, we tested each trained steganalyzer against the same cover
but three different stego datasets. The obtained ROC curves are seen in figure
7, and the calculated AURs are presented in Table 3. For example, we observe
from these results that the steganalyzer trained solely on the Outguess (+) stego
images, when asked to distinguish between cover and Outguess (+) images, ob-
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tains an accuracy of 98.49%. But, its accuracy for distinguishing cover images
from F5 and Model Based images is 54.37% and 66.45%, respectively.

Afterwards, the output of the three steganalyzers, each trained for one of the
three embedding techniques, are fused using the Mean rule. Alternatively a ste-
ganalyzer is trained using all three available stego images. The obtained results
are in figure 7, and the calculated AURs are presented in Table 3. Based on these
results, we make two observations, first of all, as argued earlier the composition
of training set plays an important role on the performance of the steganalyzer.
Secondly, we see a performance degradation ranging roughly from 3% to 4%
when we test our datasets against the steganalyzer trained with all three stego
techniques as opposed to steganlyzers trained with only one stego technique. As
evident from the results the fused steganalyzer has performance values very close
to the steganalyzer trained with all the three embedding techniques included in
its training dataset. Thus, fusion allows us to train steganalyzers only using
one embedding technique and then fuse the outputs together, therefore avoid-
ing the re-training of the classifier with new embedding techniques included in
the training dataset. We believe that these results will generalize over alternate
universal steganalysis techniques, and are not specific to the technique studied
here, although the magnitude of the effects may vary.

Table 3. AUR obtained from the ROC curves, when fusing steganalyzers to obtain
scalability.

FBS (Out+) FBS (F5) FBS (MB) FBS (Universal) FBS (Fusion)

Out+ 98.49 44.06 86.29 95.36 95.34

F5 54.37 93.12 65.47 88.84 87.16

MB 66.45 63.73 85.22 81.34 80.62

5 Discussion

With the availability of large number of steganalysis techniques proposed in the
literature, one might feel that the steganalyst has a good chance of distinguish-
ing between cover and stego images. But in practice, the steganalyst will have
to select one or more techniques which she will employ on a set of suspected
stego images. However, the question of what to do when the results produced
by various steganalysis techniques are in contradiction was not answered, pre-
viously. In this work, we investigated how fusion techniques could be applied in
steganalysis to resolve such questions.

As the first application, we illustrated how a new steganalyzer could be
created by fusing a number of steganalysis techniques while at the same time
improving the detection accuracy. As the second application of fusion, we dis-
cussed the importance of the training set for universal steganalysis techniques
and argued that incorporation of a new steganographic embedding technique
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into the an already designed steganalyzer is a costly and unscalable procedure.
As an alternative, we proposed fusing decisions from a set of steganalysis tech-
nique trained independently using only one embedding technique. We illustrated
through experimentation that the obtained accuracy results matches that of a
steganalyzer trained with stego images from all embedding techniques studied,
while at the same time providing scalability.

We believe that the applications of fusion techniques are not limited to the
examples we have studied in this work. For example, as noted earlier, Fridrich
et al. [18] illustrate how they could identify between a set of stego images, based
on the embedding technique used to create them. In their work, only one ste-
ganalysis technique is employed, but with the help of fusion, one could improve
and expand the results, by including more steganalyzers. Further more, such
approach could be extended to alternate post-steganalysis operations such as
estimation of the embedded message length. This form of information would be
quite valuable in any forensic analysis of the stego images that intends to recover
the hidden message.
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