
Foundation

I must Create a System, or be enslav’d by another Man’s; I will not
Reason and Compare: my business is to Create.

—William Blake

uppose you want to build a computer network, one that has the potential toSgrow to global proportions and to support applications as diverse as telecon-
ferencing, video-on-demand, electronic commerce, distributed computing, and

digital libraries. What available technologies would serve as the underlying building
blocks, and what kind of software architecture would you design to integrate these

P R O B L E M

Building a Network

building blocks into an effective com-
munication service? Answering this
question is the overriding goal of
this book—to describe the available
building materials and then to show
how they can be used to construct
a network from the ground up.

Before we can understand how to design a computer network, we should
first agree on exactly what a computer network is. At one time, the term network
meant the set of serial lines used to attach dumb terminals to mainframe com-
puters. To some, the term implies the voice telephone network. To others, the
only interesting network is the cable network used to disseminate video signals.
The main thing these networks have in common is that they are specialized to
handle one particular kind of data (keystrokes, voice, or video) and they typically
connect to special-purpose devices (terminals, hand receivers, and television sets).

What distinguishes a computer network from these other types of networks? Prob-
ably the most important characteristic of a computer network is its generality. Com-
puter networks are built primarily from general-purpose programmable hardware, and
they are not optimized for a particular application like making phone calls or deliv-
ering television signals. Instead, they are able to carry many different types of data,
and they support a wide, and ever-growing, range of applications. This chapter looks

2



1
at some typical applications of computer networks and discusses
the requirements that a network designer who wishes to support
such applications must be aware of.

Once we understand the requirements, how do we pro-
ceed? Fortunately, we will not be building the first network.
Others, most notably the community of researchers responsible
for the Internet, have gone before us. We will use the wealth
of experience generated from the Internet to guide our design.
This experience is embodied in a network architecture that iden-
tifies the available hardware and software components and shows
how they can be arranged to form a complete network system.

To start us on the road toward understanding how to build
a network, this chapter does four things. First, it explores the re-
quirements that different applications and different communities
of people (such as network users and network operators) place
on the network. Second, it introduces the idea of a network ar-
chitecture, which lays the foundation for the rest of the book.
Third, it introduces some of the key elements in the implemen-
tation of computer networks. Finally, it identifies the key metrics
that are used to evaluate the performance of computer networks.



4 1 Foundation

1.1 Applications
Most people know the Internet through its applications: the World Wide Web, email,
streaming audio and video, chat rooms, and music (file) sharing. The Web, for example,
presents an intuitively simple interface. Users view pages full of textual and graphical
objects, click on objects that they want to learn more about, and a corresponding new
page appears. Most people are also aware that just under the covers, each selectable object
on a page is bound to an identifier for the next page to be viewed. This identifier, called a
Uniform Resource Locator (URL), is used to provide a way of identifying all the possible
pages that can be viewed from your web browser. For example,

http://www.cs.princeton.edu/~llp/index.html

is the URL for a page providing information about one of this book’s authors: the string
http indicates that the HyperText Transfer Protocol (HTTP) should be used to down-
load the page, www.cs.princeton.edu is the name of the machine that serves the
page, and

/~llp/index.html

uniquely identifies Larry’s home page at this site.
What most Web users are not aware of, however, is that by clicking on just one such

URL, as many as 17 messages may be exchanged over the Internet, and this assumes
the page itself is small enough to fit in a single message. This number includes up to
six messages to translate the server name (www.cs.princeton.edu) into its Internet
address (128.112.136.35), three messages to set up a Transmission Control Protocol
(TCP) connection between your browser and this server, four messages for your browser
to send the HTTP “get” request and the server to respond with the requested page (and
for each side to acknowledge receipt of that message), and four messages to tear down the
TCP connection. Of course, this does not include the millions of messages exchanged
by Internet nodes throughout the day, just to let each other know that they exist and
are ready to serve web pages, translate names to addresses, and forward messages toward
their ultimate destination.

Another widespread application of the Internet is the delivery of “streaming” audio
and video. While an entire video file could first be fetched from a remote machine and
then played on the local machine, similar to the process of downloading and displaying
a web page, this would entail waiting for the last second of the video file to be delivered
before starting to look at it. Streaming video implies that the sender and the receiver
are, respectively, the source and the sink for the video stream. That is, the source gener-
ates a video stream (perhaps using a video capture card), sends it across the Internet in
messages, and the sink displays the stream as it arrives.



1.1 Applications 5

There are a variety of different classes of video applications. One class of video ap-
plication is video-on-demand, which reads a preexisting movie from disk and transmits
it over the network. Another kind of application is videoconferencing, which is in some
ways the more challenging (and, for networking people, interesting) case because it has
very tight timing constraints. Just as when using the telephone, the interactions among
the participants must be timely. When a person at one end gestures, then that action
must be displayed at the other end as quickly as possible. Too much delay makes the
system unusable. Contrast this with video-on-demand where, if it takes several seconds
from the time the user starts the video until the first image is displayed, the service is still
deemed satisfactory. Also, interactive video usually implies that video is flowing in both
directions, while a video-on-demand application is most likely sending video in only one
direction.

One pioneering example of a videoconferencing tool, developed in the early and
mid-1990s, is vic. Figure 1.1 shows the control panel for a vic session. vic is actually

Figure 1.1 The vic video application. This shot is from a 1995 release of the tool.



6 1 Foundation

one of a suite of conferencing tools designed at Lawrence Berkeley Laboratory and UC
Berkeley. The others include a whiteboard application (wb) that allows users to send
sketches and slides to each other, a visual audio tool called vat, and a session directory
(sdr) that is used to create and advertise videoconferences. All these tools run on Unix—
hence their lowercase names—and are freely available on the Internet. Many similar tools
are available for other operating systems. It is interesting to note that while video over the
Internet is still considered to be in its relative infancy at the time of this writing (2006),
that the tools to support video over IP have existed for well over a decade.

Although they are just two examples, downloading pages from the Web and partic-
ipating in a videoconference demonstrate the diversity of applications that can be built
on top of the Internet, and hint at the complexity of the Internet’s design. Starting from
the beginning, and addressing one problem at time, the rest of this book explains how
to build a network that supports such a wide range of applications. Chapter 9 concludes
the book by revisiting these two specific applications, as well as several others that have
become popular on today’s Internet.

1.2 Requirements
We have just established an ambitious goal for ourselves: to understand how to build a
computer network from the ground up. Our approach to accomplishing this goal will
be to start from first principles, and then ask the kinds of questions we would naturally
ask if building an actual network. At each step, we will use today’s protocols to illustrate
various design choices available to us, but we will not accept these existing artifacts as
gospel. Instead, we will be asking (and answering) the question of why networks are
designed the way they are. While it is tempting to settle for just understanding the way
it’s done today, it is important to recognize the underlying concepts because networks are
constantly changing as the technology evolves and new applications are invented. It is
our experience that once you understand the fundamental ideas, any new protocol that
you are confronted with will be relatively easy to digest.

The first step is to identify the set of constraints and requirements that influence
network design. Before getting started, however, it is important to understand that the
expectations you have of a network depend on your perspective:

■ An application programmer would list the services that his application needs, for
example, a guarantee that each message the application sends will be delivered
without error within a certain amount of time.

■ A network designer would list the properties of a cost-effective design, for exam-
ple, that network resources are efficiently utilized and fairly allocated to different
users.



1.2 Requirements 7

■ A network provider would list the characteristics of a system that is easy to ad-
minister and manage, for example, in which faults can be easily isolated and
where it is easy to account for usage.

This section attempts to distill these different perspectives into a high-level intro-
duction to the major considerations that drive network design, and in doing so, identifies
the challenges addressed throughout the rest of this book.

1.2.1 Connectivity
Starting with the obvious, a network must provide connectivity among a set of comput-
ers. Sometimes it is enough to build a limited network that connects only a few select
machines. In fact, for reasons of privacy and security, many private (corporate) networks
have the explicit goal of limiting the set of machines that are connected. In contrast,
other networks (of which the Internet is the prime example) are designed to grow in a
way that allows them the potential to connect all the computers in the world. A system
that is designed to support growth to an arbitrarily large size is said to scale. Using the
Internet as a model, this book addresses the challenge of scalability.

Links, Nodes, and Clouds

Network connectivity occurs at many different levels. At the lowest level, a network can
consist of two or more computers directly connected by some physical medium, such as
a coaxial cable or an optical fiber. We call such a physical medium a link, and we often
refer to the computers it connects as nodes. (Sometimes a node is a more specialized piece
of hardware rather than a computer, but we overlook that distinction for the purposes
of this discussion.) As illustrated in Figure 1.2, physical links are sometimes limited to a
pair of nodes (such a link is said to be point-to-point), while in other cases, more than two
nodes may share a single physical link (such a link is said to be multiple-access). Whether

Figure 1.2 Direct links: (a) point-to-point; (b) multiple-access.



8 1 Foundation

a given link supports point-to-point or multiple-access connectivity depends on how the
node is attached to the link. It is also the case that multiple-access links are often limited
in size, in terms of both the geographical distance they can cover and the number of
nodes they can connect.

If computer networks were limited to situations in which all nodes are directly
connected to each other over a common physical medium, then networks would either
be very limited in the number of computers they could connect, or the number of wires
coming out of the back of each node would quickly become both unmanageable and
very expensive. Fortunately, connectivity between two nodes does not necessarily imply a
direct physical connection between them—indirect connectivity may be achieved among
a set of cooperating nodes. Consider the following two examples of how a collection of
computers can be indirectly connected.

Figure 1.3 shows a set of nodes, each of which is attached to one or more point-
to-point links. Those nodes that are attached to at least two links run software that
forwards data received on one link out on another. If organized in a systematic way,
these forwarding nodes form a switched network. There are numerous types of switched
networks, of which the two most common are circuit-switched and packet-switched. The
former is most notably employed by the telephone system, while the latter is used for the
overwhelming majority of computer networks and will be the focus of this book. The
important feature of packet-switched networks is that the nodes in such a network send

Figure 1.3 Switched network.



1.2 Requirements 9

discrete blocks of data to each other. Think of these blocks of data as corresponding to
some piece of application data such as a file, a piece of email, or an image. We call each
block of data either a packet or a message, and for now we use these terms interchangeably;
we discuss the reason they are not always the same in Section 1.2.2.

Packet-switched networks typically use a strategy called store-and-forward. As the
name suggests, each node in a store-and-forward network first receives a complete packet
over some link, stores the packet in its internal memory, and then forwards the com-
plete packet to the next node. In contrast, a circuit-switched network first establishes a
dedicated circuit across a sequence of links and then allows the source node to send a
stream of bits across this circuit to a destination node. The major reason for using packet
switching rather than circuit switching in a computer network is efficiency, discussed in
the next subsection.

The cloud in Figure 1.3 distinguishes between the nodes on the inside that imple-
ment the network (they are commonly called switches, and their primary function is to
store and forward packets) and the nodes on the outside of the cloud that use the network
(they are commonly called hosts, and they support users and run application programs).
Also note that the cloud in Figure 1.3 is one of the most important icons of computer
networking. In general, we use a cloud to denote any type of network, whether it is a
single point-to-point link, a multiple-access link, or a switched network. Thus, when-
ever you see a cloud used in a figure, you can think of it as a placeholder for any of the
networking technologies covered in this book.

A second way in which a set of computers can be indirectly connected is shown in
Figure 1.4. In this situation, a set of independent networks (clouds) are interconnected
to form an internetwork, or internet for short. We adopt the Internet’s convention of
referring to a generic internetwork of networks as a lowercase i internet, and the currently
operational TCP/IP Internet as the capital I Internet. A node that is connected to two or
more networks is commonly called a router or gateway, and it plays much the same role
as a switch—it forwards messages from one network to another. Note that an internet
can itself be viewed as another kind of network, which means that an internet can be
built from an interconnection of internets. Thus, we can recursively build arbitrarily
large networks by interconnecting clouds to form larger clouds.

Just because a set of hosts are directly or indirectly connected to each other does not
mean that we have succeeded in providing host-to-host connectivity. The final require-
ment is that each node must be able to state which of the other nodes on the network
it wants to communicate with. This is done by assigning an address to each node. An
address is a byte string that identifies a node; that is, the network can use a node’s ad-
dress to distinguish it from the other nodes connected to the network. When a source
node wants the network to deliver a message to a certain destination node, it specifies
the address of the destination node. If the sending and receiving nodes are not directly



10 1 Foundation

Figure 1.4 Interconnection of networks.

connected, then the switches and routers of the network use this address to decide how
to forward the message toward the destination. The process of determining systemati-
cally how to forward messages toward the destination node based on its address is called
routing.

This brief introduction to addressing and routing has presumed that the source
node wants to send a message to a single destination node (unicast). While this is the
most common scenario, it is also possible that the source node might want to broadcast a
message to all the nodes on the network. Or a source node might want to send a message
to some subset of the other nodes, but not all of them, a situation called multicast.
Thus, in addition to node-specific addresses, another requirement of a network is that it
supports multicast and broadcast addresses.▲

The main idea to take away from this discussion is that we can define a network
recursively as consisting of two or more nodes connected by a physical link, or as two
or more networks connected by a node. In other words, a network can be constructed
from a nesting of networks, where at the bottom level, the network is implemented by
some physical medium. One of the key challenges in providing network connectivity is
to define an address for each node that is reachable on the network (including support
for broadcast and multicast connectivity), and to be able to use this address to route
messages toward the appropriate destination node(s).



1.2 Requirements 11

1.2.2 Cost-Effective Resource Sharing
As stated above, this book focuses on packet-switched networks. This section explains the
key requirement of computer networks—efficiency—that leads us to packet switching as
the strategy of choice.

Given a collection of nodes indirectly connected by a nesting of networks, it is
possible for any pair of hosts to send messages to each other across a sequence of links
and nodes. Of course, we want to do more than support just one pair of communicating
hosts—we want to provide all pairs of hosts with the ability to exchange messages. The
question, then, is how do all the hosts that want to communicate share the network,
especially if they want to use it at the same time? And, as if that problem isn’t hard
enough, how do several hosts share the same link when they all want to use it at the same
time?

To understand how hosts share a network, we need to introduce a fundamental
concept, multiplexing, which means that a system resource is shared among multiple
users. At an intuitive level, multiplexing can be explained by analogy to a timesharing
computer system, where a single physical CPU is shared (multiplexed) among multiple
jobs, each of which believes it has its own private processor. Similarly, data being sent by
multiple users can be multiplexed over the physical links that make up a network.

To see how this might work, consider the simple network illustrated in Figure 1.5,
where the three hosts on the left side of the network (senders S1–S3) are sending data to
the three hosts on the right (receivers R1–R3) by sharing a switched network that con-
tains only one physical link. (For simplicity, assume that host S1 is sending data to host
R1, and so on.) In this situation, three flows of data—corresponding to the three pairs
of hosts—are multiplexed onto a single physical link by switch 1 and then demultiplexed
back into separate flows by switch 2. Note that we are being intentionally vague about

Figure 1.5 Multiplexing multiple logical flows over a single physical link.



12 1 Foundation

exactly what a “flow of data” corresponds to. For the purposes of this discussion, assume
that each host on the left has a large supply of data that it wants to send to its counterpart
on the right.

There are several different methods for multiplexing multiple flows onto one phys-
ical link. One common method is synchronous time-division multiplexing (STDM). The
idea of STDM is to divide time into equal-sized quanta and, in a round-robin fashion,
give each flow a chance to send its data over the physical link. In other words, during
time quantum 1, data from S1 to R1 is transmitted; during time quantum 2, data from
S2 to R2 is transmitted; in quantum 3, S3 sends data to R3. At this point, the first flow
(S1 to R1) gets to go again, and the process repeats. Another method is frequency-division
multiplexing (FDM). The idea of FDM is to transmit each flow over the physical link at
a different frequency, much the same way that the signals for different TV stations are
transmitted at a different frequency on a physical cable TV link.

Although simple to understand, both STDM and FDM are limited in two ways.
First, if one of the flows (host pairs) does not have any data to send, its share of the phys-
ical link—that is, its time quantum or its frequency—remains idle, even if one of the
other flows has data to transmit. For example, S3 had to wait its turn behind S1 and S2
in the previous paragraph, even if S1 and S2 had nothing to send. For computer commu-
nication, the amount of time that a link is idle can be very large—for example, consider
the amount of time you spend reading a web page (leaving the link idle) compared to
the time you spend fetching the page. Second, both STDM and FDM are limited to
situations in which the maximum number of flows is fixed and known ahead of time. It
is not practical to resize the quantum or to add additional quanta in the case of STDM
or to add new frequencies in the case of FDM.

The form of multiplexing that we make most use of in this book is called statistical
multiplexing. Although the name is not all that helpful for understanding the concept,
statistical multiplexing is really quite simple, with two key ideas. First, it is like STDM
in that the physical link is shared over time—first data from one flow is transmitted
over the physical link, then data from another flow is transmitted, and so on. Unlike
STDM, however, data is transmitted from each flow on demand rather than during a
predetermined time slot. Thus, if only one flow has data to send, it gets to transmit that
data without waiting for its quantum to come around and thus without having to watch
the quanta assigned to the other flows go by unused. It is this avoidance of idle time that
gives packet switching its efficiency.

As defined so far, however, statistical multiplexing has no mechanism to ensure that
all the flows eventually get their turn to transmit over the physical link. That is, once a
flow begins sending data, we need some way to limit the transmission, so that the other
flows can have a turn. To account for this need, statistical multiplexing defines an upper
bound on the size of the block of data that each flow is permitted to transmit at a given



1.2 Requirements 13

time. This limited-size block of data is typically referred to as a packet, to distinguish it
from the arbitrarily large message that an application program might want to transmit.
Because a packet-switched network limits the maximum size of packets, a host may not
be able to send a complete message in one packet. The source may need to fragment
the message into several packets, with the receiver reassembling the packets back into the
original message.

In other words, each flow sends a sequence of packets over the physical link, with
a decision made on a packet-by-packet basis as to which flow’s packet to send next.
Notice that if only one flow has data to send, then it can send a sequence of packets
back-to-back. However, should more than one of the flows have data to send, then their
packets are interleaved on the link. Figure 1.6 depicts a switch multiplexing packets from
multiple sources onto a single shared link.

The decision as to which packet to send next on a shared link can be made in a
number of different ways. For example, in a network consisting of switches intercon-
nected by links such as the one in Figure 1.5, the decision would be made by the switch
that transmits packets onto the shared link. (As we will see later, not all packet-switched
networks actually involve switches, and they may use other mechanisms to determine
whose packet goes onto the link next.) Each switch in a packet-switched network makes
this decision independently, on a packet-by-packet basis. One of the issues that faces a
network designer is how to make this decision in a fair manner. For example, a switch
could be designed to service packets on a first-in-first-out (FIFO) basis. Another ap-
proach would be to transmit the packets from each of the different flows that are cur-
rently sending data through the switch in a round-robin manner. This might be done to

Figure 1.6 A switch multiplexing packets from multiple sources onto one shared link.



14 1 Foundation

ensure that certain flows receive a particular share of the link’s bandwidth, or that they
never have their packets delayed in the switch for more than a certain length of time.
A network that attempts to allocate bandwidth to particular flows is sometimes said to
support quality of service (QoS), a topic that we return to in Chapter 6.

Also, notice in Figure 1.6 that since the switch has to multiplex three incoming
packet streams onto one outgoing link, it is possible that the switch will receive packets
faster than the shared link can accommodate. In this case, the switch is forced to buffer
these packets in its memory. Should a switch receive packets faster than it can send them
for an extended period of time, then the switch will eventually run out of buffer space,
and some packets will have to be dropped. When a switch is operating in this state, it is
said to be congested.▲

The bottom line is that statistical multiplexing defines a cost-effective way for mul-
tiple users (e.g., host-to-host flows of data) to share network resources (links and nodes)
in a fine-grained manner. It defines the packet as the granularity with which the links of
the network are allocated to different flows, with each switch able to schedule the use of
the physical links it is connected to on a per-packet basis. Fairly allocating link capacity
to different flows and dealing with congestion when it occurs are the key challenges of
statistical multiplexing.

1.2.3 Support for Common Services

While the previous section outlined the
challenges involved in providing cost-
effective connectivity among a group of
hosts, it is overly simplistic to view a com-
puter network as simply delivering pack-
ets among a collection of computers. It
is more accurate to think of a network
as providing the means for a set of appli-
cation processes that are distributed over
those computers to communicate. In other
words, the next requirement of a computer
network is that the application programs
running on the hosts connected to the net-
work must be able to communicate in a
meaningful way.

When two application programs
need to communicate with each other,

SANs, LANs, MANs, and WANs

One way to characterize networks
is according to their size. Two well-
known examples are local area net-
works (LANs) and wide area networks
(WANs); the former typically extend
less than 1 km, while the latter can be
worldwide. Other networks are clas-
sified as metropolitan area networks
(MANs), which usually span tens of
kilometers. The reason such classifi-
cations are interesting is that the size
of a network often has implications
for the underlying technology that can
be used, with a key factor being the
amount of time it takes for data to



1.2 Requirements 15

propagate from one end of the net-
work to the other; we discuss this is-
sue more in later chapters.

An interesting historical note
is that the term “wide area network”
was not applied to the first WANs
because there was no other sort of
network to differentiate them from.
When computers were incredibly rare
and expensive, there was no point in
thinking about how to connect all
the computers in the local area—there
was only one computer in that area.
Only as computers began to prolifer-
ate did LANs become necessary, and
the term “WAN” was then introduced
to describe the larger networks that
interconnected geographically distant
computers.

Another kind of network that
we need to be aware of is a storage
area network (SAN). SANs are usually
confined to a single room and con-
nect the various components of a large
computing system, such as disk arrays
and servers. For example, High Per-
formance Parallel Interface (HiPPI)
and Fiber Channel are two common
SAN technologies used to connect
massively parallel processors to scal-
able storage servers and data vaults.
Although this book does not describe
such networks in detail, they are
worth knowing about because they
are often at the leading edge in terms
of performance, and because it is in-
creasingly common to connect such
networks into LANs and WANs.

there are a lot of complicated things that
need to happen beyond simply sending a
message from one host to another. One
option would be for application design-
ers to build all that complicated func-
tionality into each application program.
However, since many applications need
common services, it is much more logical
to implement those common services once
and then to let the application designer
build the application using those services.
The challenge for a network designer is to
identify the right set of common services.
The goal is to hide the complexity of
the network from the application with-
out overly constraining the application
designer.

Intuitively, we view the network
as providing logical channels over which
application-level processes can communi-
cate with each other; each channel pro-
vides the set of services required by that
application. In other words, just as we use
a cloud to abstractly represent connectivity
among a set of computers, we now think
of a channel as connecting one process
to another. Figure 1.7 shows a pair of
application-level processes communicating
over a logical channel that is, in turn, im-
plemented on top of a cloud that connects
a set of hosts. We can think of the channel
as being like a pipe connecting two appli-
cations, so that a sending application can
put data in one end and expect that data
to be delivered by the network to the ap-
plication at the other end of the pipe.

The challenge is to recognize what
functionality the channels should pro-
vide to application programs. For example,



16 1 Foundation

Figure 1.7 Processes communicating over an abstract channel.

does the application require a guarantee that messages sent over the channel are delivered,
or is it acceptable if some messages fail to arrive? Is it necessary that messages arrive at the
recipient process in the same order in which they are sent, or does the recipient not care
about the order in which messages arrive? Does the network need to ensure that no third
parties are able to eavesdrop on the channel, or is privacy not a concern? In general, a
network provides a variety of different types of channels, with each application selecting
the type that best meets its needs. The rest of this section illustrates the thinking involved
in defining useful channels.

Identifying Common Communication Patterns

Designing abstract channels involves first understanding the communication needs of a
representative collection of applications, then extracting their common communication
requirements, and finally incorporating the functionality that meets these requirements
in the network.

One of the earliest applications supported on any network is a file access program
like FTP (File Transfer Protocol) or NFS (Network File System). Although many details
vary—for example, whether whole files are transferred across the network or only single
blocks of the file are read/written at a given time—the communication component of
remote file access is characterized by a pair of processes, one that requests that a file be



1.2 Requirements 17

read or written and a second process that honors this request. The process that requests
access to the file is called the client, and the process that supports access to the file is
called the server.

Reading a file involves the client sending a small request message to a server and the
server responding with a large message that contains the data in the file. Writing works
in the opposite way—the client sends a large message containing the data to be written
to the server, and the server responds with a small message confirming that the write to
disk has taken place. A digital library, as exemplified by the World Wide Web, is another
application that behaves in a similar way: a client process makes a request, and a server
process responds by returning the requested data.

Using file access, a digital library, and the two video applications described in the
Preface (videoconferencing and video-on-demand) as a representative sample, we might
decide to provide the following two types of channels: request/reply channels and message
stream channels. The request/reply channel would be used by the file transfer and digital
library applications. It would guarantee that every message sent by one side is received
by the other side and that only one copy of each message is delivered. The request/reply
channel might also protect the privacy and integrity of the data that flows over it, so that
unauthorized parties cannot read or modify the data being exchanged between the client
and server processes.

The message stream channel could be used by both the video-on-demand and
videoconferencing applications, provided it is parameterized to support both one-way
and two-way traffic and to support different delay properties. The message stream chan-
nel might not need to guarantee that all messages are delivered, since a video application
can operate adequately even if some video frames are not received. It would, however,
need to ensure that those messages that are delivered arrive in the same order in which
they were sent, to avoid displaying frames out of sequence. Like the request/reply chan-
nel, the message stream channel might want to ensure the privacy and integrity of the
video data. Finally, the message stream channel might need to support multicast, so that
multiple parties can participate in the teleconference or view the video.

While it is common for a network designer to strive for the smallest number of
abstract channel types that can serve the largest number of applications, there is a danger
in trying to get away with too few channel abstractions. Simply stated, if you have a
hammer, then everything looks like a nail. For example, if all you have are message stream
and request/reply channels, then it is tempting to use them for the next application
that comes along, even if neither type provides exactly the semantics needed by the
application. Thus, network designers will probably be inventing new types of channels—
and adding options to existing channels—for as long as application programmers are
inventing new applications.



18 1 Foundation

Also note that independent of exactly what functionality a given channel provides,
there is the question of where that functionality is implemented. In many cases, it is eas-
iest to view the host-to-host connectivity of the underlying network as simply providing
a bit pipe, with any high-level communication semantics provided at the end hosts. The
advantage of this approach is it keeps the switches in the middle of the network as simple
as possible—they simply forward packets—but it requires the end hosts to take on much
of the burden of supporting semantically rich process-to-process channels. The alterna-
tive is to push additional functionality onto the switches, thereby allowing the end hosts
to be “dumb” devices (e.g., telephone handsets). We will see this question of how various
network services are partitioned between the packet switches and the end hosts (devices)
as a recurring issue in network design.

Reliability

As suggested by the examples just considered, reliable message delivery is one of the
most important functions that a network can provide. It is difficult to determine how
to provide this reliability, however, without first understanding how networks can fail.
The first thing to recognize is that computer networks do not exist in a perfect world.
Machines crash and later are rebooted, fibers are cut, electrical interference corrupts bits
in the data being transmitted, switches run out of buffer space, and if these sorts of
physical problems aren’t enough to worry about, the software that manages the hardware
sometimes forwards packets into oblivion. Thus, a major requirement of a network is
to recover from certain kinds of failures, so that application programs don’t have to deal
with them, or even be aware of them.

There are three general classes of failure that network designers have to worry
about. First, as a packet is transmitted over a physical link, bit errors may be introduced
into the data; that is, a 1 is turned into a 0 or vice versa. Sometimes single bits are
corrupted, but more often than not, a burst error occurs—several consecutive bits are
corrupted. Bit errors typically occur because outside forces, such as lightning strikes,
power surges, and microwave ovens, interfere with the transmission of data. The good
news is that such bit errors are fairly rare, affecting on average only one out of every 106

to 107 bits on a typical copper-based cable and one out of every 1012 to 1014 bits on a
typical optical fiber. As we will see, there are techniques that detect these bit errors with
high probability. Once detected, it is sometimes possible to correct for such errors—if
we know which bit or bits are corrupted, we can simply flip them—while in other cases
the damage is so bad that it is necessary to discard the entire packet. In such a case, the
sender may be expected to retransmit the packet.

The second class of failure is at the packet, rather than the bit, level; that is, a
complete packet is lost by the network. One reason this can happen is that the packet
contains an uncorrectable bit error and therefore has to be discarded. A more likely



1.3 Network Architecture 19

reason, however, is that one of the nodes that has to handle the packet—for example,
a switch that is forwarding it from one link to another—is so overloaded that it has
no place to store the packet, and therefore is forced to drop it. This is the problem of
congestion mentioned in Section 1.2.2. Less commonly, the software running on one
of the nodes that handles the packet makes a mistake. For example, it might incorrectly
forward a packet out on the wrong link, so that the packet never finds its way to the
ultimate destination. As we will see, one of the main difficulties in dealing with lost
packets is distinguishing between a packet that is indeed lost and one that is merely late
in arriving at the destination.

The third class of failure is at the node and link level; that is, a physical link is cut,
or the computer it is connected to crashes. This can be caused by software that crashes,
a power failure, or a reckless backhoe operator. Failures due to misconfiguration of a
network device are also common. While any of these failures can eventually be corrected,
they can have a dramatic effect on the network for an extended period of time. However,
they need not totally disable the network. In a packet-switched network, for example,
it is sometimes possible to route around a failed node or link. One of the difficulties in
dealing with this third class of failure is distinguishing between a failed computer and
one that is merely slow, or in the case of a link, between one that has been cut and one
that is very flaky and therefore introducing a high number of bit errors.▲

The key idea to take away from this discussion is that defining useful channels
involves both understanding the applications’ requirements and recognizing the limita-
tions of the underlying technology. The challenge is to fill in the gap between what the
application expects and what the underlying technology can provide. This is sometimes
called the semantic gap.

1.3 Network Architecture
In case you hadn’t noticed, the previous section established a pretty substantial set of
requirements for network design—a computer network must provide general, cost-
effective, fair, and robust connectivity among a large number of computers. As if this
weren’t enough, networks do not remain fixed at any single point in time, but must
evolve to accommodate changes in both the underlying technologies upon which they
are based as well as changes in the demands placed on them by application programs.
Designing a network to meet these requirements is no small task.

To help deal with this complexity, network designers have developed general
blueprints—usually called network architectures—that guide the design and implemen-
tation of networks. This section defines more carefully what we mean by a network ar-
chitecture by introducing the central ideas that are common to all network architectures.



20 1 Foundation

It also introduces two of the most widely referenced architectures—the OSI architecture
and the Internet architecture.

1.3.1 Layering and Protocols
When a system gets complex, the system designer introduces another level of abstraction.
The idea of an abstraction is to define a unifying model that can capture some important
aspect of the system, encapsulate this model in an object that provides an interface that
can be manipulated by other components of the system, and hide the details of how
the object is implemented from the users of the object. The challenge is to identify
abstractions that simultaneously provide a service that proves useful in a large number
of situations and that can be efficiently implemented in the underlying system. This is
exactly what we were doing when we introduced the idea of a channel in the previous
section: We were providing an abstraction for applications that hides the complexity of
the network from application writers.

Abstractions naturally lead to layering, especially in network systems. The general
idea is that you start with the services offered by the underlying hardware, and then
add a sequence of layers, each providing a higher (more abstract) level of service. The
services provided at the high layers are implemented in terms of the services provided by
the low layers. Drawing on the discussion of requirements given in the previous section,
for example, we might imagine a simple network as having two layers of abstraction
sandwiched between the application program and the underlying hardware, as illustrated
in Figure 1.8. The layer immediately above the hardware in this case might provide host-
to-host connectivity, abstracting away the fact that there may be an arbitrarily complex
network topology between any two hosts. The next layer up builds on the available host-
to-host communication service and provides support for process-to-process channels,
abstracting away the fact that the network occasionally loses messages, for example.

Layering provides two nice features. First, it decomposes the problem of building
a network into more manageable components. Rather than implementing a monolithic
piece of software that does everything you will ever want, you can implement several

Figure 1.8 Example of a layered network system.



1.3 Network Architecture 21

Figure 1.9 Layered system with alternative abstractions available at a given layer.

layers, each of which solves one part of the problem. Second, it provides a more modular
design. If you decide that you want to add some new service, you may only need to
modify the functionality at one layer, reusing the functions provided at all the other
layers.

Thinking of a system as a linear sequence of layers is an oversimplification, however.
Many times there are multiple abstractions provided at any given level of the system,
each providing a different service to the higher layers but building on the same low-level
abstractions. To see this, consider the two types of channels discussed in Section 1.2.3:
One provides a request/reply service and one supports a message stream service. These
two channels might be alternative offerings at some level of a multilevel networking
system, as illustrated in Figure 1.9.

Using this discussion of layering as a foundation, we are now ready to discuss the
architecture of a network more precisely. For starters, the abstract objects that make up
the layers of a network system are called protocols. That is, a protocol provides a com-
munication service that higher-level objects (such as application processes, or perhaps
higher-level protocols) use to exchange messages. For example, we could imagine a net-
work that supports a request/reply protocol and a message stream protocol, correspond-
ing to the request/reply and message stream channels discussed above.

Each protocol defines two different interfaces. First, it defines a service interface to
the other objects on the same computer that want to use its communication services. This
service interface defines the operations that local objects can perform on the protocol.
For example, a request/reply protocol would support operations by which an application
can send and receive messages. An implementation of the HTTP protocol could support
an operation to fetch a page of hypertext from a remote server. An application such as
a web browser would invoke such an operation whenever the browser needs to obtain a
new page, for example, when the user clicks on a link in the currently displayed page.

Second, a protocol defines a peer interface to its counterpart (peer) on another
machine. This second interface defines the form and meaning of messages exchanged
between protocol peers to implement the communication service. This would determine



22 1 Foundation

Figure 1.10 Service and peer interfaces.

the way in which a request/reply protocol on one machine communicates with its peer on
another machine. In the case of HTTP, for example, the protocol specification defines
in detail how a “GET” command is formatted, what arguments can be used with the
command, and how a web server should respond when it receives such a command. (We
will look more closely at this particular protocol in Section 9.1.2.)

To summarize, a protocol defines a communication service that it exports locally
(the service interface), along with a set of rules governing the messages that the protocol
exchanges with its peer(s) to implement this service (the peer interface). This situation is
illustrated in Figure 1.10.

Except at the hardware level where peers directly communicate with each other
over a link, peer-to-peer communication is indirect—each protocol communicates with
its peer by passing messages to some lower-level protocol, which in turn delivers the
message to its peer. In addition, there are potentially multiple protocols at any given
level, each providing a different communication service. We therefore represent the suite
of protocols that make up a network system with a protocol graph. The nodes of the graph
correspond to protocols, and the edges represent a depends on relation. For example,
Figure 1.11 illustrates a protocol graph for the hypothetical layered system we have been
discussing—the protocols Request/Reply Protocol (RRP) and Message Stream Protocol
(MSP) implement two different types of process-to-process channels, and both depend
on Host-to-Host Protocol (HHP), which provides a host-to-host connectivity service.

In this example, suppose that the file access program on host 1 wants to send a
message to its peer on host 2 using the communication service offered by protocol RRP.
In this case, the file application asks RRP to send the message on its behalf. To commu-
nicate with its peer, RRP then invokes the services of HHP, which in turn transmits the
message to its peer on the other machine. Once the message has arrived at protocol HHP



1.3 Network Architecture 23

Figure 1.11 Example of a protocol graph.

on host 2, HHP passes the message up to RRP, which in turn delivers the message to the
file application. In this particular case, the application is said to employ the services of
the protocol stack RRP/HHP.

Note that the term protocol is used in two different ways. Sometimes it refers to
the abstract interfaces—that is, the operations defined by the service interface and the
form and meaning of messages exchanged between peers—and sometimes it refers to
the module that actually implements these two interfaces. To distinguish between the
interfaces and the module that implements these interfaces, we generally refer to the for-
mer as a protocol specification. Specifications are generally expressed using a combination
of prose, pseudocode, state transition diagrams, pictures of packet formats, and other
abstract notations. It should be the case that a given protocol can be implemented in
different ways by different programmers, as long as each adheres to the specification.
The challenge is ensuring that two different implementations of the same specification
can successfully exchange messages. Two or more protocol modules that do accurately
implement a protocol specification are said to interoperate with each other.



24 1 Foundation

We can imagine many different protocols and protocol graphs that satisfy the com-
munication requirements of a collection of applications. Fortunately, there exist stan-
dardization bodies, such as the International Standards Organization (ISO) and the In-
ternet Engineering Task Force (IETF), that establish policies for a particular protocol
graph. We call the set of rules governing the form and content of a protocol graph a
network architecture. Although beyond the scope of this book, standardization bodies
such as the ISO and the IETF have established well-defined procedures for introducing,
validating, and finally approving protocols in their respective architectures. We briefly
describe the architectures defined by the ISO and the IETF shortly, but first there are
two additional things we need to explain about the mechanics of a protocol graph.

Encapsulation

Consider what happens in Figure 1.11 when one of the application programs sends a
message to its peer by passing the message to protocol RRP. From RRP’s perspective, the
message it is given by the application is an uninterpreted string of bytes. RRP does not
care that these bytes represent an array of integers, an email message, a digital image, or
whatever; it is simply charged with sending them to its peer. However, RRP must com-
municate control information to its peer, instructing it how to handle the message when
it is received. RRP does this by attaching a header to the message. Generally speaking,
a header is a small data structure—from a few bytes to a few dozen bytes—that is used
among peers to communicate with each other. As the name suggests, headers are usu-
ally attached to the front of a message. In some cases, however, this peer-to-peer control
information is sent at the end of the message, in which case it is called a trailer. The
exact format for the header attached by RRP is defined by its protocol specification. The
rest of the message—that is, the data being transmitted on behalf of the application—is
called the message’s body or payload. We say that the application’s data is encapsulated in
the new message created by protocol RRP.

This process of encapsulation is then repeated at each level of the protocol graph;
for example, HHP encapsulates RRP’s message by attaching a header of its own. If we
now assume that HHP sends the message to its peer over some network, then when
the message arrives at the destination host, it is processed in the opposite order: HHP
first interprets the HHP header at the front of the message (i.e., takes whatever action
is appropriate given the contents of the header), and passes the body of the message
(but not the HHP header) up to RRP, which takes whatever action is indicated by the
RRP header that its peer attached, and passes the body of the message (but not the
RRP header) up to the application program. The message passed up from RRP to the
application on host 2 is exactly the same message as the application passed down to RRP
on host 1; the application does not see any of the headers that have been attached to it to
implement the lower-level communication services. This whole process is illustrated in



1.3 Network Architecture 25

Figure 1.12 High-level messages are encapsulated inside of low-level messages.

Figure 1.12. Note that in this example, nodes in the network (e.g., switches and routers)
may inspect the HHP header at the front of the message.

Note that when we say a low-level protocol does not interpret the message it is
given by some high-level protocol, we mean that it does not know how to extract any
meaning from the data contained in the message. It is sometimes the case, however, that
the low-level protocol applies some simple transformation to the data it is given, such as
to compress or encrypt it. In this case, the protocol is transforming the entire body of
the message, including both the original application’s data and all the headers attached
to that data by higher-level protocols.

Multiplexing and Demultiplexing

Recall from Section 1.2.2 that a fundamental idea of packet switching is to multiplex
multiple flows of data over a single physical link. This same idea applies up and down
the protocol graph, not just to switching nodes. In Figure 1.11, for example, we can
think of RRP as implementing a logical communication channel, with messages from



26 1 Foundation

two different applications multiplexed over this channel at the source host and then
demultiplexed back to the appropriate application at the destination host.

Practically speaking, all this means is that the header that RRP attaches to its mes-
sages contains an identifier that records the application to which the message belongs.
We call this identifier RRP’s demultiplexing key, or demux key for short. At the source
host, RRP includes the appropriate demux key in its header. When the message is deliv-
ered to RRP on the destination host, it strips its header, examines the demux key, and
demultiplexes the message to the correct application.

RRP is not unique in its support for multiplexing; nearly every protocol imple-
ments this mechanism. For example, HHP has its own demux key to determine which
messages to pass up to RRP and which to pass up to MSP. However, there is no uniform
agreement among protocols—even those within a single network architecture—on ex-
actly what constitutes a demux key. Some protocols use an 8-bit field (meaning they can
support only 256 high-level protocols), and others use 16- or 32-bit fields. Also, some
protocols have a single demultiplexing field in their header, while others have a pair of
demultiplexing fields. In the former case, the same demux key is used on both sides of
the communication, while in the latter case, each side uses a different key to identify the
high-level protocol (or application program) to which the message is to be delivered.

1.3.2 OSI Architecture
The ISO was one of the first organizations to formally define a common way to connect
computers. Their architecture, called the Open Systems Interconnection (OSI) architecture
and illustrated in Figure 1.13, defines a partitioning of network functionality into seven
layers, where one or more protocols implement the functionality assigned to a given
layer. In this sense, the schematic given in Figure 1.13 is not a protocol graph, per se,
but rather a reference model for a protocol graph. The ISO, usually in conjunction with
a second standards organization known as the International Telecommunications Union
(ITU),1 publishes a series of protocol specifications based on the OSI architecture. This
series is sometimes called the “X dot” series since the protocols are given names like X.25,
X.400, X.500, and so on.

Starting at the bottom and working up, the physical layer handles the transmission
of raw bits over a communications link. The data link layer then collects a stream of bits
into a larger aggregate called a frame. Network adaptors, along with device drivers run-
ning in the node’s OS, typically implement the data link level. This means that frames,
not raw bits, are actually delivered to hosts. The network layer handles routing among
nodes within a packet-switched network. At this layer, the unit of data exchanged among
nodes is typically called a packet rather than a frame, although they are fundamentally

1A subcommittee of the ITU on telecommunications (ITU-T) replaces an earlier subcommittee of the ITU, which was
known by its French name, Comité Consultatif International de Télégraphique et Téléphonique (CCITT).



1.3 Network Architecture 27

Figure 1.13 OSI network architecture.

the same thing. The lower three layers are implemented on all network nodes, including
switches within the network and hosts connected along the exterior of the network. The
transport layer then implements what we have up to this point been calling a process-to-
process channel. Here, the unit of data exchanged is commonly called a message rather
than a packet or a frame. The transport layer and higher layers typically run only on the
end hosts and not on the intermediate switches or routers.

There is less agreement about the definition of the top three layers. Skipping ahead
to the top (seventh) layer, we find the application layer. Application layer protocols in-
clude things like the File Transfer Protocol (FTP), which defines a protocol by which
file transfer applications can interoperate. Below that, the presentation layer is concerned
with the format of data exchanged between peers, for example, whether an integer is 16,
32, or 64 bits long and whether the most significant byte is transmitted first or last, or
how a video stream is formatted. Finally, the session layer provides a name space that is
used to tie together the potentially different transport streams that are part of a single



28 1 Foundation

application. For example, it might manage an audio stream and a video stream that are
being combined in a teleconferencing application.

1.3.3 Internet Architecture
The Internet architecture, which is also sometimes called the TCP/IP architecture af-
ter its two main protocols, is depicted in Figure 1.14. An alternative representation is
given in Figure 1.15. The Internet architecture evolved out of experiences with an earlier
packet-switched network called the ARPANET. Both the Internet and the ARPANET
were funded by the Advanced Research Projects Agency (ARPA), one of the R&D fund-
ing agencies of the U.S. Department of Defense. The Internet and ARPANET were
around before the OSI architecture, and the experience gained from building them was
a major influence on the OSI reference model.

While the seven-layer OSI model can, with some imagination, be applied to the
Internet, a four-layer model is often used instead. At the lowest level are a wide variety
of network protocols, denoted NET1, NET2, and so on. In practice, these protocols are
implemented by a combination of hardware (e.g., a network adaptor) and software (e.g.,
a network device driver). For example, you might find Ethernet or Fiber Distributed

Figure 1.14 Internet protocol graph.

Figure 1.15 Alternative view of the Internet architecture. The “Network” layer shown

here is sometimes referred to as the “subnetwork” or “link” layer.



1.3 Network Architecture 29

Data Interface (FDDI) protocols at this layer. (These protocols in turn may actually in-
volve several sublayers, but the Internet architecture does not presume anything about
them.) The second layer consists of a single protocol—the Internet Protocol (IP). This
is the protocol that supports the interconnection of multiple networking technologies
into a single, logical internetwork. The third layer contains two main protocols—the
Transmission Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP and
UDP provide alternative logical channels to application programs: TCP provides a re-
liable byte-stream channel, and UDP provides an unreliable datagram delivery channel
(datagram may be thought of as a synonym for message). In the language of the Internet,
TCP and UDP are sometimes called end-to-end protocols, although it is equally correct
to refer to them as transport protocols.

Running above the transport layer are a range of application protocols, such as
FTP, TFTP (Trivial File Transport Protocol), Telnet (remote login), and SMTP (Sim-
ple Mail Transfer Protocol, or electronic mail), that enable the interoperation of popular
applications. To understand the difference between an application layer protocol and
an application, think of all the different World Wide Web browsers that are available
(Firefox, Safari, Internet Explorer, Lynx, etc.). There is a similarly large number of dif-
ferent implementations of web servers. The reason that you can use any one of these
application programs to access a particular site on the Web is because they all conform
to the same application layer protocol: HTTP (HyperText Transport Protocol). Confus-
ingly, the same word sometimes applies to both an application and the application layer
protocol that it uses (e.g., FTP).

The Internet architecture has three features that are worth highlighting. First, as
best illustrated by Figure 1.15, the Internet architecture does not imply strict layering.
The application is free to bypass the defined transport layers and to directly use IP or
one of the underlying networks. In fact, programmers are free to define new channel
abstractions or applications that run on top of any of the existing protocols.

Second, if you look closely at the protocol graph in Figure 1.14, you will notice an
hourglass shape—wide at the top, narrow in the middle, and wide at the bottom. This
shape actually reflects the central philosophy of the architecture. That is, IP serves as
the focal point for the architecture—it defines a common method for exchanging pack-
ets among a wide collection of networks. Above IP can be arbitrarily many transport
protocols, each offering a different channel abstraction to application programs. Thus,
the issue of delivering messages from host to host is completely separated from the issue
of providing a useful process-to-process communication service. Below IP, the architec-
ture allows for arbitrarily many different network technologies, ranging from Ethernet
to wireless to single point-to-point links.

A final attribute of the Internet architecture (or more accurately, of the IETF cul-
ture) is that in order for a new protocol to be officially included in the architecture, there



30 1 Foundation

needs to be both a protocol specification and at least one (and preferably two) represen-
tative implementations of the specification. The existence of working implementations
is required for standards to be adopted by the IETF. This cultural assumption of the
design community helps to ensure that the architecture’s protocols can be efficiently im-
plemented. Perhaps the value the Internet culture places on working software is best
exemplified by a quote on T-shirts commonly worn at IETF meetings:

We reject kings, presidents, and voting. We believe in rough consensus and running code.
(Dave Clark)

▲

Of these three attributes of the Internet architecture, the hourglass design philos-
ophy is important enough to bear repeating. The hourglass’s narrow waist represents
a minimal and carefully chosen set of global capabilities that allows both higher-level
applications and lower-level communication technologies to coexist, share capabilities,
and evolve rapidly. The narrow-waisted model is critical to the Internet’s ability to adapt
rapidly to new user demands and changing technologies.

1.4 Implementing Network Software
Network architectures and protocol specifications are essential things, but a good blue-
print is not enough to explain the phenomenal success of the Internet: The number of
computers connected to the Internet has roughly doubled every 12 to 18 months since
1981, and is now estimated at 350 million; the number of people that use the Internet
is estimated at 1 billion; and it is believed that the number of bits transmitted over the
Internet, which has also grown exponentially, surpassed the corresponding figure for the
voice phone system sometime in 2001.

What explains the success of the Internet? There are certainly many contributing
factors (including a good architecture), but one thing that has made the Internet such
a runaway success is the fact that so much of its functionality is provided by software
running in general-purpose computers. The significance of this is that new functionality
can be added readily with “just a small matter of programming.” As a result, new appli-
cations and services—electronic commerce, videoconferencing, and packet telephony, to
name a few—have been showing up at a phenomenal pace.

A related factor is the massive increase in computing power available in commodity
machines. Although computer networks have always been capable in principle of trans-
porting any kind of information, such as digital voice samples, digitized images, and so
on, this potential was not particularly interesting if the computers sending and receiving
that data were too slow to do anything useful with the information. Virtually all of to-
day’s computers are capable of playing back digitized voice at full speed and can display
video at a speed and resolution that is useful for some (but by no means all) applications.



1.4 Implementing Network Software 31

Thus, today’s networks have begun to support multimedia, and their support for it will
only improve as computing hardware becomes faster.

The point to take away from this is that knowing how to implement network soft-
ware is an essential part of understanding computer networks. With this in mind, this
section first introduces some of the issues involved in implementing an application pro-
gram on top of a network, and then goes on to identify the issues involved in implement-
ing the protocols running within the network. In many respects, network applications
and network protocols are very similar—the way an application engages the services of
the network is pretty much the same as the way a high-level protocol invokes the services
of a low-level protocol. As we will see later in the section, however, there are a couple of
important differences.

1.4.1 Application Programming Interface (Sockets)
The place to start when implementing a network application is the interface exported by
the network. Since most network protocols are implemented in software (especially those
high in the protocol stack), and nearly all computer systems implement their network
protocols as part of the operating system, when we refer to the interface “exported by
the network,” we are generally referring to the interface that the OS provides to its
networking subsystem. This interface is often called the network application programming
interface (API).

Although each operating system is free to define its own network API (and most
have), over time certain of these APIs have become widely supported; that is, they have
been ported to operating systems other than their native system. This is what has hap-
pened with the socket interface originally provided by the Berkeley distribution of Unix,
which is now supported in virtually all popular operating systems. The advantage of
industry-wide support for a single API is that applications can be easily ported from one
OS to another, and that developers can easily write applications for multiple OSs. It is
important to keep in mind, however, that application programs typically interact with
many parts of the OS other than the network; for example, they read and write files,
fork concurrent processes, and output to the graphical display. Just because two systems
support the same network API does not mean that their file system, process, or graphic
interfaces are the same. Still, understanding a widely adopted API like Unix sockets gives
us a good place to start.

Before describing the socket interface, it is important to keep two concerns separate
in your mind. Each protocol provides a certain set of services, and the API provides a
syntax by which those services can be invoked in this particular OS. The implementation
is then responsible for mapping the tangible set of operations and objects defined by the
API onto the abstract set of services defined by the protocol. If you have done a good
job of defining the interface, then it will be possible to use the syntax of the interface to



32 1 Foundation

invoke the services of many different protocols. Such generality was certainly a goal of
the socket interface, although it’s far from perfect.

The main abstraction of the socket interface, not surprisingly, is the socket. A good
way to think of a socket is as the point where a local application process attaches to the
network. The interface defines operations for creating a socket, attaching the socket to
the network, sending/receiving messages through the socket, and closing the socket. To
simplify the discussion, we will limit ourselves to showing how sockets are used with
TCP.

The first step is to create a socket, which is done with the following operation:

int socket(int domain, int type, int protocol)

The reason that this operation takes three arguments is that the socket interface was
designed to be general enough to support any underlying protocol suite. Specifi-
cally, the domain argument specifies the protocol family that is going to be used:
PF_INET denotes the Internet family; PF_UNIX denotes the Unix pipe facility; and
PF_PACKET denotes direct access to the network interface (i.e., it bypasses the TCP/IP
protocol stack). The type argument indicates the semantics of the communication.
SOCK_STREAM is used to denote a byte stream. SOCK_DGRAM is an alternative
that denotes a message-oriented service, such as that provided by UDP. The protocol
argument identifies the specific protocol that is going to be used. In our case, this ar-
gument is UNSPEC because the combination of PF_INET and SOCK_STREAM
implies TCP. Finally, the return value from socket is a handle for the newly created
socket, that is, an identifier by which we can refer to the socket in the future. It is given
as an argument to subsequent operations on this socket.

The next step depends on whether you are a client or a server. On a server machine,
the application process performs a passive open—the server says that it is prepared to
accept connections, but it does not actually establish a connection. The server does this
by invoking the following three operations:

int bind(int socket, struct sockaddr *address, int addr_len)
int listen(int socket, int backlog)
int accept(int socket, struct sockaddr *address, int *addr_len)

The bind operation, as its name suggests, binds the newly created socket to the
specified address. This is the network address of the local participant—the server. Note
that, when used with the Internet protocols, address is a data structure that includes
both the IP address of the server and a TCP port number. (As we will see in Chapter 5,
ports are used to indirectly identify processes. They are a form of demux keys as defined
in Section 1.3.1.) The port number is usually some well-known number specific to the
service being offered; for example, web servers commonly accept connections on port 80.



1.4 Implementing Network Software 33

The listen operation then defines how many connections can be pending on the
specified socket. Finally, the accept operation carries out the passive open. It is a
blocking operation that does not return until a remote participant has established a con-
nection, and when it does complete, it returns a new socket that corresponds to this just-
established connection, and the address argument contains the remote participant’s
address. Note that when accept returns, the original socket that was given as an argu-
ment still exists and still corresponds to the passive open; it is used in future invocations
of accept.

On the client machine, the application process performs an active open; that is, it
says who it wants to communicate with by invoking the following single operation:

int connect(int socket, struct sockaddr *address, intaddr_len)

This operation does not return until TCP has successfully established a connection, at
which time the application is free to begin sending data. In this case, address contains
the remote participant’s address. In practice, the client usually specifies only the remote
participant’s address and lets the system fill in the local information. Whereas a server
usually listens for messages on a well-known port, a client typically does not care which
port it uses for itself; the OS simply selects an unused one.

Once a connection is established, the application processes invoke the following
two operations to send and receive data:

int send(int socket, char *message, int msg_len, int flags)
int recv(int socket, char *buffer, int buf_len, int flags)

The first operation sends the given message over the specified socket, while the sec-
ond operation receives a message from the specified socket into the given buffer. Both
operations take a set of flags that control certain details of the operation.

1.4.2 Example Application
We now show the implementation of a simple client/server program that uses the socket
interface to send messages over a TCP connection. The program also uses other Unix
networking utilities, which we introduce as we go. Our application allows a user on one
machine to type in and send text to a user on another machine. It is a simplified version
of the Unix talk program, which is similar to the program at the core of a web chat
room.

Client

We start with the client side, which takes the name of the remote machine as an argu-
ment. It calls the Unix utility gethostbyname to translate this name into the remote



34 1 Foundation

host’s IP address. The next step is to construct the address data structure (sin) expected
by the socket interface. Notice that this data structure specifies that we’ll be using the
socket to connect to the Internet (AF_INET). In our example, we use TCP port 5432 as
the well-known server port; this happens to be a port that has not been assigned to any
other Internet service. The final step in setting up the connection is to call socket and
connect. Once the connect operation returns, the connection is established and the
client program enters its main loop, which reads text from standard input and sends it
over the socket.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>

#define SERVER_PORT 5432

#define MAX_LINE 256

int

main(int argc, char * argv[])

{

FILE *fp;

struct hostent *hp;

struct sockaddr_in sin;

char *host;

char buf[MAX_LINE];

int s;

int len;

if (argc==2) {

host = argv[1];

}

else {

fprintf(stderr, "usage: simplex-talk host\n");

exit(1);

}

/* translate host name into peer’s IP address */

hp = gethostbyname(host);

if (!hp) {

fprintf(stderr, "simplex-talk: unknown host: %s\n", host);

exit(1);



1.4 Implementing Network Software 35

}

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

bcopy(hp->h_addr, (char *)&sin.sin_addr, hp->h_length);

sin.sin_port = htons(SERVER_PORT);

/* active open */

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");

exit(1);

}

if (connect(s, (struct sockaddr *)&sin, sizeof(sin)) < 0) {

perror("simplex-talk: connect");

close(s);

exit(1);

}

/* main loop: get and send lines of text */

while (fgets(buf, sizeof(buf), stdin)) {

buf[MAX_LINE-1] = ’\0’;

len = strlen(buf) + 1;

send(s, buf, len, 0);

}

}

Server
The server is equally simple. It first constructs the address data structure by filling in
its own port number (SERVER_PORT). By not specifying an IP address, the appli-
cation program is willing to accept connections on any of the local host’s IP addresses.
Next, the server performs the preliminary steps involved in a passive open: creates the
socket, binds it to the local address, and sets the maximum number of pending connec-
tions to be allowed. Finally, the main loop waits for a remote host to try to connect,
and when one does, receives and prints out the characters that arrive on the connec-
tion.

#include <stdio.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <netinet/in.h>

#include <netdb.h>



36 1 Foundation

#define SERVER_PORT 5432

#define MAX_PENDING 5

#define MAX_LINE 256

int

main()

{

struct sockaddr_in sin;

char buf[MAX_LINE];

int len;

int s, new_s;

/* build address data structure */

bzero((char *)&sin, sizeof(sin));

sin.sin_family = AF_INET;

sin.sin_addr.s_addr = INADDR_ANY;

sin.sin_port = htons(SERVER_PORT);

/* setup passive open */

if ((s = socket(PF_INET, SOCK_STREAM, 0)) < 0) {

perror("simplex-talk: socket");

exit(1);

}

if ((bind(s, (struct sockaddr *)&sin, sizeof(sin))) < 0) {

perror("simplex-talk: bind");

exit(1);

}

listen(s, MAX_PENDING);

/* wait for connection, then receive and print text */

while(1) {

if ((new_s = accept(s, (struct sockaddr *)&sin, &len)) < 0) {

perror("simplex-talk: accept");

exit(1);

}

while (len = recv(new_s, buf, sizeof(buf), 0))

fputs(buf, stdout);

close(new_s);

}

}



1.4 Implementing Network Software 37

1.4.3 Protocol Implementation Issues
As mentioned at the beginning of this section, the way application programs interact
with the underlying network is similar to the way a high-level protocol interacts with a
low-level protocol. For example, TCP needs an interface to send outgoing messages to IP,
and IP needs to be able to deliver incoming messages to TCP. This is exactly the service
interface introduced in Section 1.3.1.

Since we already have a network API (e.g., sockets), we might be tempted to use
this same interface between every pair of protocols in the protocol stack. Although cer-
tainly an option, in practice the socket interface is not used in this way. The reason is
that there are inefficiencies built into the socket interface that protocol implementers
are not willing to tolerate. Application programmers tolerate them because they simplify
their programming task, and because the inefficiency only has to be tolerated once, but
protocol implementers are often obsessed with performance and must worry about get-
ting a message through several layers of protocols. The rest of this section discusses the
two primary differences between the network API and the protocol-to-protocol interface
found lower in the protocol graph.

Process Model

Most operating systems provide an abstraction called a process, or alternatively, a thread.
Each process runs largely independently of other processes, and the OS is responsible
for making sure that resources, such as address space and CPU cycles, are allocated to all
the current processes. The process abstraction makes it fairly straightforward to have a
lot of things executing concurrently on one machine; for example, each user application
might execute in its own process, and various things inside the OS might execute as
other processes. When the OS stops one process from executing on the CPU and starts
up another one, we call the change a context switch.

When designing the network subsystem, one of the first questions to answer is,
“Where are the processes?” There are essentially two choices, as illustrated in Figure 1.16.
In the first, which we call the process-per-protocol model, each protocol is implemented
by a separate process. This means that as a message moves up or down the protocol
stack, it is passed from one process/protocol to another—the process that implements
protocol i processes the message, then passes it to protocol i − 1, and so on. How
one process/protocol passes a message to the next process/protocol depends on the sup-
port the host OS provides for interprocess communication. Typically, there is a simple
mechanism for enqueuing a message with a process. The important point, however, is
that a context switch is required at each level of the protocol graph—typically a time-
consuming operation.

The alternative, which we call the process-per-message model, treats each protocol
as a static piece of code and associates the processes with the messages. That is, when a



38 1 Foundation

Figure 1.16 Alternative process models: (a) process-per-protocol;

(b) process-per-message.

message arrives from the network, the OS dispatches a process that it makes responsible
for the message as it moves up the protocol graph. At each level, the procedure that
implements that protocol is invoked, which eventually results in the procedure for the
next protocol being invoked, and so on. For outbound messages, the application’s process
invokes the necessary procedure calls until the message is delivered. In both directions,
the protocol graph is traversed in a sequence of procedure calls.

Although the process-per-protocol model is sometimes easier to think about—
I implement my protocol in my process, and you implement your protocol in your
process—the process-per-message model is generally more efficient for a simple reason:
A procedure call is an order of magnitude more efficient than a context switch on most



1.4 Implementing Network Software 39

computers. The former model requires the expense of a context switch at each level,
while the latter model costs only a procedure call per level.

Message Buffers

A second inefficiency of the socket interface is that the application process provides the
buffer that contains the outbound message when calling send, and similarly it provides
the buffer into which an incoming message is copied when invoking the receive opera-
tion. This forces the topmost protocol to copy the message from the application’s buffer
into a network buffer, and vice versa, as shown in Figure 1.17. It turns out that copying
data from one buffer to another is one of the most expensive things a protocol imple-
mentation can do. This is because while processors are becoming faster at an incredible
pace, memory is not getting faster as quickly as processors are. Relative to processors,
memory is getting slower.

Instead of copying message data from one buffer to another at each layer in the
protocol stack, most network subsystems define an abstract data type for messages that
is shared by all protocols in the protocol graph. Not only does this abstraction permit
messages to be passed up and down the protocol graph without copying, but it usu-
ally provides copy-free ways of manipulating messages in other ways, such as adding
and stripping headers, fragmenting large messages into a set of small messages, and re-
assembling a collection of small messages into a single large message. The exact form of
this message abstraction differs from OS to OS, but it generally involves a linked-list of
pointers to message buffers, similar to the one shown in Figure 1.18. We leave it as an
exercise for the reader to define a general copy-free message abstraction.

Figure 1.17 Copying incoming/outgoing messages between application buffer and

network buffer.



40 1 Foundation

Figure 1.18 Example message data structure.

1.5 Performance
Up to this point, we have focused primarily on the functional aspects of a network. Like
any computer system, however, computer networks are also expected to perform well.
This is because the effectiveness of computations distributed over the network often
depends directly on the efficiency with which the network delivers the computation’s
data. While the old programming adage “first get it right and then make it fast” is valid
in many settings, in networking it is usually necessary to “design for performance.” It is,
therefore, important to understand the various factors that impact network performance.

1.5.1 Bandwidth and Latency
Network performance is measured in two fundamental ways: bandwidth (also called
throughput) and latency (also called delay). The bandwidth of a network is given by the
number of bits that can be transmitted
over the network in a certain period of
time. For example, a network might have
a bandwidth of 10 million bits/second
(Mbps), meaning that it is able to de-
liver 10 million bits every second. It is
sometimes useful to think of bandwidth
in terms of how long it takes to transmit
each bit of data. On a 10-Mbps network,
for example, it takes 0.1 microsecond (µs)
to transmit each bit.

While you can talk about the band-
width of the network as a whole, some-
times you want to be more precise,
focusing, for example, on the bandwidth

Bandwidth and Throughput

Bandwidth and throughput are two
of the most confusing terms used in
networking. While we could try to
give you a precise definition of each
term, it is important that you know
how other people might use them and
for you to be aware that they are of-
ten used interchangeably. First of all,
bandwidth is literally a measure of the
width of a frequency band. For exam-
ple, a voice-grade telephone line sup-
ports a frequency band ranging from



1.5 Performance 41

300 to 3,300 Hz; it is said to have a
bandwidth of 3,300 Hz − 300 Hz =
3,000 Hz. If you see the word “band-
width” used in a situation in which
it is being measured in hertz, then it
probably refers to the range of signals
that can be accommodated.

When we talk about the band-
width of a communication link, we
normally refer to the number of bits
per second that can be transmitted
on the link. We might say that the
bandwidth of an Ethernet is 10 Mbps.
A useful distinction might be made,
however, between the bandwidth that
is available on the link and the num-
ber of bits per second that we can ac-
tually transmit over the link in prac-
tice. We tend to use the word “through-
put” to refer to the measured perfor-
mance of a system. Thus, because of

of a single physical link or a logical process-
to-process channel. At the physical level,
bandwidth is constantly improving, with
no end in sight. Intuitively, if you think
of a second of time as a distance you
could measure with a ruler, and band-
width as how many bits fit in that dis-
tance, then you can think of each bit
as a pulse of some width. For exam-
ple, each bit on a 1-Mbps link is 1 µs
wide, while each bit on a 2-Mbps link
is 0.5 µs wide, as illustrated in Fig-
ure 1.19. The more sophisticated the
transmitting and receiving technology, the
narrower each bit can become, and thus,
the higher the bandwidth. For logical
process-to-process channels, bandwidth
is also influenced by other factors, in-
cluding how many times the software
that implements the channel has to han-
dle, and possibly transform, each bit of
data.

The second performance metric, latency, corresponds to how long it takes a mes-
sage to travel from one end of a network to the other. (As with bandwidth, we could be
focused on the latency of a single link or an end-to-end channel.) Latency is measured
strictly in terms of time. For example, a transcontinental network might have a latency of

Figure 1.19 Bits transmitted at a particular bandwidth can be regarded as having

some width: (a) bits transmitted at 1 Mbps (each bit 1 µs wide); (b) bits transmitted at

2 Mbps (each bit 0.5 µs wide).



42 1 Foundation

24 milliseconds (ms); that is, it takes a
message 24 ms to travel from one end
of North America to the other. There are
many situations in which it is more impor-
tant to know how long it takes to send a
message from one end of a network to the
other and back, rather than the one-way
latency. We call this the round-trip time
(RTT) of the network.

We often think of latency as having
three components. First, there is the speed-
of-light propagation delay. This delay oc-
curs because nothing, including a bit on
a wire, can travel faster than the speed of
light. If you know the distance between
two points, you can calculate the speed-
of-light latency, although you have to be
careful because light travels across different
mediums at different speeds: It travels at
3.0 × 108 m/s in a vacuum, 2.3 × 108 m/s
in a cable, and 2.0 × 108 m/s in a fiber.
Second, there is the amount of time it

various inefficiencies of implementa-
tion, a pair of nodes connected by a
link with a bandwidth of 10 Mbps
might achieve a throughput of only
2 Mbps. This would mean that an ap-
plication on one host could send data
to the other host at 2 Mbps.

Finally, we often talk about the
bandwidth requirements of an appli-
cation. This is the number of bits
per second that it needs to transmit
over the network to perform accept-
ably. For some applications, this might
be “whatever I can get”; for others, it
might be some fixed number (prefer-
ably no more than the available link
bandwidth); and for others, it might
be a number that varies with time. We
will provide more on this topic later in
this section.

takes to transmit a unit of data. This is a function of the network bandwidth and the
size of the packet in which the data is carried. Third, there may be queuing delays inside
the network, since packet switches generally need to store packets for some time before
forwarding them on an outbound link, as discussed in Section 1.2.2. So, we could define
the total latency as

Latency = Propagation + Transmit + Queue
Propagation = Distance/SpeedOfLight

Transmit = Size/Bandwidth

where Distance is the length of the wire over which the data will travel, Speed-
OfLight is the effective speed of light over that wire, Size is the size of the packet,
and Bandwidth is the bandwidth at which the packet is transmitted. Note that if the
message contains only one bit and we are talking about a single link (as opposed to a
whole network), then the Transmit and Queue terms are not relevant, and latency
corresponds to the propagation delay only.

Bandwidth and latency combine to define the performance characteristics of a
given link or channel. Their relative importance, however, depends on the application.



1.5 Performance 43

For some applications, latency dominates bandwidth. For example, a client that sends
a 1-byte message to a server and receives a 1-byte message in return is latency bound.
Assuming that no serious computation is involved in preparing the response, the appli-
cation will perform much differently on a transcontinental channel with a 100-ms RTT
than it will on an across-the-room channel with a 1-ms RTT. Whether the channel is
1 Mbps or 100 Mbps is relatively insignificant, however, since the former implies that the
time to transmit a byte (Transmit) is 8 µs and the latter implies Transmit = 0.08 µs.

In contrast, consider a digital library program that is being asked to fetch a 25-
megabyte (MB) image—the more bandwidth that is available, the faster it will be able to
return the image to the user. Here, the bandwidth of the channel dominates performance.
To see this, suppose that the channel has a bandwidth of 10 Mbps. It will take 20 seconds
to transmit the image, making it relatively unimportant if the image is on the other side
of a 1-ms channel or a 100-ms channel; the difference between a 20.001-second response
time and a 20.1-second response time is negligible.

Figure 1.20 gives you a sense of how latency or bandwidth can dominate perfor-
mance in different circumstances. The graph shows how long it takes to move objects of

Figure 1.20 Perceived latency (response time) versus round-trip time for various

object sizes and link speeds.



44 1 Foundation

various sizes (1 byte, 2 KB, 1 MB) across networks with RTTs ranging from 1 to 100 ms
and link speeds of either 1.5 or 10 Mbps. We use logarithmic scales to show relative
performance. For a 1-byte object (say, a keystroke), latency remains almost exactly equal
to the RTT, so that you cannot distinguish between a 1.5-Mbps network and a 10-Mbps
network. For a 2-KB object (say, an email message), the link speed makes quite a dif-
ference on a 1-ms-RTT network but a negligible difference on a 100-ms-RTT network.
And for a 1-MB object (say, a digital image), the RTT makes no difference—it is the
link speed that dominates performance across the full range of RTT.

Note that throughout this book we use the terms latency and delay in a generic way,
that is, to denote how long it takes to perform a particular function such as delivering
a message or moving an object. When we are referring to the specific amount of time it
takes a signal to propagate from one end of a link to another, we use the term propagation
delay. Also, we make it clear in the context of the discussion whether we are referring to
the one-way latency or the round-trip time.

As an aside, computers are becoming so fast that when we connect them to net-
works, it is sometimes useful to think, at least figuratively, in terms of instructions per
mile. Consider what happens when a computer that is able to execute 1 billion instruc-
tions per second sends a message out on a channel with a 100-ms RTT. (To make the
math easier, assume that the message covers a distance of 5,000 miles.) If that computer
sits idle the full 100 ms waiting for a reply message, then it has forfeited the ability to
execute 100 million instructions, or 20,000 instructions per mile. It had better have been
worth going over the network to justify this waste.

1.5.2 Delay × Bandwidth Product
It is also useful to talk about the product of these two metrics, often called the delay ×
bandwidth product . Intuitively, if we think of a channel between a pair of processes as a
hollow pipe (see Figure 1.21), where the latency corresponds to the length of the pipe
and the bandwidth gives the diameter of the pipe, then the delay × bandwidth product
gives the volume of the pipe—the maximum number of bits that could be in transit
through the pipe at any given instant. Said another way, if latency (measured in time)
corresponds to the length of the pipe, then given the width of each bit (also measured in
time), you can calculate how many bits fit in the pipe. For example, a transcontinental
channel with a one-way latency of 50 ms and a bandwidth of 45 Mbps is able to hold

50 × 10−3 sec × 45 × 106 bits/sec

= 2.25 × 106 bits

or approximately 280 KB of data. In other words, this example channel (pipe) holds as
many bytes as the memory of a personal computer from the early 1980s could hold.



1.5 Performance 45

Figure 1.21 Network as a pipe.

How Big Is a Mega?

There are several pitfalls you need to
be aware of when working with the
common units of networking—MB,
Mbps, KB, and Kbps. The first is to
distinguish carefully between bits and
bytes. Throughout this book, we al-
ways use a lowercase b for bits and a
capital B for bytes. The second is to
be sure you are using the appropriate
definition of mega (M) and kilo (K).
Mega, for example, can mean either
220 or 106. Similarly, kilo can be either
210 or 103. What is worse, in net-
working we typically use both defini-
tions. Here’s why.

Network bandwidth, which is
often specified in terms of Mbps, is
typically governed by the speed of the
clock that paces the transmission of
the bits. A clock that is running at
10 MHz is used to transmit bits at
10 Mbps. Because the mega in MHz
means 106 hertz, Mbps is usually also
defined as 106 bits per second. (Sim-
ilarly, Kbps is 103 bits per second.)
On the other hand, when we talk
about a message that we want to trans-
mit, we often give its size in kilobytes.

The delay × bandwidth product is
important to know when constructing
high-performance networks because it cor-
responds to how many bits the sender
must transmit before the first bit arrives
at the receiver. If the sender is expecting
the receiver to somehow signal that bits
are starting to arrive, and it takes another
channel latency for this signal to propa-
gate back to the sender (i.e., we are in-
terested in the channel’s RTT rather than
just its one-way latency), then the sender
can send up to two delay × bandwidths
worth of data before hearing from the re-
ceiver that all is well. The bits in the pipe
are said to be “in flight,” which means
that if the receiver tells the sender to stop
transmitting, it might receive up to a de-
lay × bandwidth’s worth of data before
the sender manages to respond. In our
example above, that amount corresponds
to 5.5 × 106 bits (671 KB) of data. On
the other hand, if the sender does not fill
the pipe—send a whole delay×bandwidth
product’s worth of data before it stops to
wait for a signal—the sender will not fully
utilize the network.

Note that most of the time we are
interested in the RTT scenario, which we
simply refer to as the delay × bandwidth
product, without explicitly saying that this



46 1 Foundation

Bandwidth Distance

Link Type (Typical) (Typical) Round-trip Delay Delay × BW

Dial-up 56 Kbps 10 km 87 µs 5 bits

Wireless LAN 54 Mbps 50 m 0.33 µs 18 bits

Satellite 45 Mbps 35,000 km 230 ms 10 Mb

Cross-country fiber 10 Gbps 4,000 km 40 ms 400 Mb

Table 1.1 Sample delay × bandwidth products.

product is multiplied by two. Again,
whether the “delay” in “delay × band-
width” means one-way latency or RTT is
made clear by the context. Table 1.1 shows
some examples of delay × bandwidth
products for some typical network links.

1.5.3 High-Speed Networks
The bandwidths available on today’s net-
works are increasing at a dramatic rate,
and there is eternal optimism that network
bandwidth will continue to improve. This
causes network designers to start thinking
about what happens in the limit, or stated
another way, what is the impact on net-
work design of having infinite bandwidth
available.

Although high-speed networks bring
a dramatic change in the bandwidth avail-
able to applications, in many respects their
impact on how we think about network-
ing comes in what does not change as
bandwidth increases: the speed of light.
To quote Scotty from Star Trek, “You can-
nae change the laws of physics.” In other
words, “high speed” does not mean that
latency improves at the same rate as band-

Because messages are stored in the
computer’s memory, and memory is
typically measured in powers of two,
the K in KB is usually taken to mean
210. (Similarly, MB usually means
220.) When you put the two together,
it is not uncommon to talk about
sending a 32-KB message over a 10-
Mbps channel, which should be inter-
preted to mean 32 × 210 × 8 bits are
being transmitted at a rate of 10×106

bits per second. This is the interpreta-
tion we use throughout the book, un-
less explicitly stated otherwise.

The good news is that many
times we are satisfied with a back-
of-the-envelope calculation, in which
case it is perfectly reasonable to pre-
tend that a byte has 10 bits in it (mak-
ing it easy to convert between bits
and bytes) and that 106 is really equal
to 220 (making it easy to convert be-
tween the two definitions of mega).
Notice that the first approximation
introduces a 20% error, while the lat-
ter introduces only a 5% error.



1.5 Performance 47

To help you in your quick-and-
dirty calculations, 100 ms is a reason-
able number to use for a cross-country
round-trip time—at least when the
country in question is the United
States—and 1 ms is a good approxi-
mation of an RTT across a local area
network. In the case of the former, we
increase the 48-ms round-trip time
implied by the speed of light over
a fiber to 100 ms because there are,
as we have said, other sources of de-
lay, such as the queueing time in the
switches inside the network. You can
also be sure that the path taken by the
fiber between two points will not be a
straight line.

width; the transcontinental RTT of a
1-Gbps link is the same 100 ms as it is
for a 1-Mbps link.

To appreciate the significance of
ever-increasing bandwidth in the face of
fixed latency, consider what is required to
transmit a 1-MB file over a 1-Mbps net-
work versus over a 1-Gbps network, both
of which have an RTT of 100 ms. In the
case of the 1-Mbps network, it takes 80
round-trip times to transmit the file; dur-
ing each RTT, 1.25% of the file is sent. In
contrast, the same 1-MB file doesn’t even
come close to filling 1 RTT’s worth of the
1-Gbps link, which has a delay × band-
width product of 12.5 MB.

Figure 1.22 illustrates the difference
between the two networks. In effect, the
1-MB file looks like a stream of data that

needs to be transmitted across a 1-Mbps network, while it looks like a single packet on a
1-Gbps network. To help drive this point home, consider that a 1-MB file is to a 1-Gbps
network what a 1-KB packet is to a 1-Mbps network.▲

Another way to think about the situation is that more data can be transmitted
during each RTT on a high-speed network, so much so that a single RTT becomes a
significant amount of time. Thus, while you wouldn’t think twice about the difference
between a file transfer taking 101 RTTs rather than 100 RTTs (a relative difference of
only 1%), suddenly the difference between 1 RTT and 2 RTTs is significant—a 100%
increase. In other words, latency, rather than throughput, starts to dominate our thinking
about network design.

Perhaps the best way to understand the relationship between throughput and la-
tency is to return to basics. The effective end-to-end throughput that can be achieved
over a network is given by the simple relationship

Throughput = TransferSize/TransferTime

where TransferTime includes not only the elements of one-way Latency identified
earlier in this section, but also any additional time spent requesting or setting up the
transfer. Generally, we represent this relationship as

TransferTime = RTT + 1/Bandwidth x TransferSize



48 1 Foundation

Figure 1.22 Relationship between bandwidth and latency. A 1-MB file would fill the

1-Mbps link 80 times, but only fill the 1-Gbps link 1/12 of one time.

We use RTT in this calculation to account for a request message being sent across the
network and the data being sent back. For example, consider a situation where a user
wants to fetch a 1-MB file across a 1-Gbps network with a round-trip time of 100 ms.
The TransferTime includes both the transmit time for 1 MB (1/1 Gbps × 1 MB =
8 ms), and the 100-ms RTT, for a total transfer time of 108 ms. This means that the
effective throughput will be

1 MB/108 ms = 74.1 Mbps

not 1 Gbps. Clearly, transferring a larger amount of data will help improve the effective
throughput, where in the limit, an infinitely large transfer size will cause the effective
throughput to approach the network bandwidth. On the other hand, having to endure
more than 1 RTT—for example, to retransmit missing packets—will hurt the effective
throughput for any transfer of finite size and will be most noticeable for small transfers.

1.5.4 Application Performance Needs
The discussion in this section has taken a network-centric view of performance; that
is, we have talked in terms of what a given link or channel will support. The unstated
assumption has been that application programs have simple needs—they want as much
bandwidth as the network can provide. This is certainly true of the aforementioned
digital library program that is retrieving a 25-MB image; the more bandwidth that is
available, the faster the program will be able to return the image to the user.



1.5 Performance 49

However, some applications are able to state an upper limit on how much band-
width they need. Video applications are a prime example. Suppose one wants to stream
a video image; that is one-quarter the size of a standard TV image; that is, it has a res-
olution of 352 by 240 pixels. If each pixel is represented by 24 bits of information, as
would be the case for 24-bit color, then the size of each frame would be

(352 × 240 × 24)/8 = 247.5 KB

If the application needs to support a frame rate of 30 frames per second, then it might
request a throughput rate of 75 Mbps. The ability of the network to provide more band-
width is of no interest to such an application because it has only so much data to transmit
in a given period of time.

Unfortunately, the situation is not as simple as this example suggests. Because the
difference between any two adjacent frames in a video stream is often small, it is possible
to compress the video by transmitting only the differences between adjacent frames. This
compressed video does not flow at a constant rate, but varies with time according to fac-
tors such as the amount of action and detail in the picture and the compression algorithm
being used. Therefore, it is possible to say what the average bandwidth requirement will
be, but the instantaneous rate may be more or less.

The key issue is the time interval over which the average is computed. Suppose
that this example video application can be compressed down to the point that it needs
only 2 Mbps, on average. If it transmits 1 Mb in a 1-second interval and 3 Mb in
the following 1-second interval, then over the 2-second interval it is transmitting at an
average rate of 2 Mbps; however, this will be of little consolation to a channel that was
engineered to support no more than 2 Mb in any one second. Clearly, just knowing the
average bandwidth needs of an application will not always suffice.

Generally, however, it is possible to put an upper bound on how large a burst an
application like this is likely to transmit. A burst might be described by some peak rate
that is maintained for some period of time. Alternatively, it could be described as the
number of bytes that can be sent at the peak rate before reverting to the average rate or
some lower rate. If this peak rate is higher than the available channel capacity, then the
excess data will have to be buffered somewhere, to be transmitted later. Knowing how big
of a burst might be sent allows the network designer to allocate sufficient buffer capacity
to hold the burst. We will return to the subject of describing bursty traffic accurately in
Chapter 6.

Analogous to the way an application’s bandwidth needs can be something other
than “all it can get,” an application’s delay requirements may be more complex than
simply “as little delay as possible.” In the case of delay, it sometimes doesn’t matter so
much whether the one-way latency of the network is 100 ms or 500 ms as how much
the latency varies from packet to packet. The variation in latency is called jitter.



50 1 Foundation

Figure 1.23 Network-induced jitter.

Consider the situation in which the source sends a packet once every 33 ms, as
would be the case for a video application transmitting frames 30 times a second. If the
packets arrive at the destination spaced out exactly 33 ms apart, then we can deduce that
the delay experienced by each packet in the network was exactly the same. If the spacing
between when packets arrive at the destination—sometimes called the interpacket gap—
is variable, however, then the delay experienced by the sequence of packets must have also
been variable, and the network is said to have introduced jitter into the packet stream,
as shown in Figure 1.23. Such variation is generally not introduced in a single physical
link, but it can happen when packets experience different queuing delays in a multihop
packet-switched network. This queuing delay corresponds to the Queue component of
latency defined earlier in this section, which varies with time.

To understand the relevance of jitter, suppose that the packets being transmitted
over the network contain video frames, and in order to display these frames on the screen
the receiver needs to receive a new one every 33 ms. If a frame arrives early, then it can
simply be saved by the receiver until it is time to display it. Unfortunately, if a frame
arrives late, then the receiver will not have the frame it needs in time to update the screen,
and the video quality will suffer; it will not be smooth. Note that it is not necessary to
eliminate jitter, only to know how bad it is. The reason for this is that if the receiver
knows the upper and lower bounds on the latency that a packet can experience, it can
delay the time at which it starts playing back the video (i.e., displays the first frame) long
enough to ensure that in the future it will always have a frame to display when it needs
it. The receiver delays the frame, effectively smoothing out the jitter, by storing it in a
buffer. We return to the topic of jitter in Chapter 6.

1.6 Summary
Computer networks like the Internet have experienced enormous growth over the past
decade and are now positioned to provide a wide range of services—remote file ac-
cess, digital libraries, videoconferencing—to hundreds of millions of users. Much of this
growth can be attributed to the general-purpose nature of computer networks, and in



1.6 Summary 51

particular to the ability to add new functionality to the network by writing software that
runs on affordable, high-performance computers. With this in mind, the overriding goal
of this book is to describe computer networks in such a way that when you finish reading
it, you should feel that if you had an army of programmers at your disposal, you could
actually build a fully-functional computer network from the ground up. This chapter
lays the foundation for realizing this goal.

The first step we have taken toward this goal is to carefully identify exactly what we
expect from a network. For example, a network must first provide cost-effective connec-
tivity among a set of computers. This is accomplished through a nested interconnection
of nodes and links, and by sharing this hardware base through the use of statistical mul-
tiplexing. This results in a packet-switched network, on top of which we then define a
collection of process-to-process communication services.

The second step is to define a layered architecture that will serve as a blueprint
for our design. The central objects of this architecture are network protocols. Protocols
both provide a communication service to higher-level protocols and define the form and
meaning of messages exchanged with their peers running on other machines. We have
briefly surveyed two of the most widely used architectures: the OSI architecture and the
Internet architecture. This book most closely follows the Internet architecture, both in
its organization and as a source of examples.

The third step is to implement the network’s protocols and application programs,
usually in software. Both protocols and applications need an interface by which they in-
voke the services of other protocols in the network subsystem. The socket interface is the
most widely used interface between application programs and the network subsystem,
but a slightly different interface is typically used within the network subsystem.

Finally, the network as a whole must offer high performance, where the two per-
formance metrics we are most interested in are latency and throughput. As we will see in
later chapters, it is the product of these two metrics—the so-called delay × bandwidth
product—that often plays a critical role in protocol design.

There is little doubt that com-
puter networks are becoming an in-
tegral part of the everyday lives of
vast numbers of people. What began
over 35 years ago as experimental sys-
tems like the ARPANET—connecting
mainframe computers over long-

O P E N I S S U E

Ubiquitous Networking

distance telephone lines—has turned into big business. And where there is big business,
there are lots of players. In this case, there is the computing industry, which has become



52 1 Foundation

increasingly involved in supporting packet-switched networking products; the telephone
carriers, which recognize the market for carrying all sorts of data, not just voice; and the
cable TV industry, which in parts of the world involved in both the delivery of “content”
(e.g. video-on-demand) and the provision of high-speed residential connections to the
Internet. And this list does not even include the many players involved in delivery of
services over the Internet such as voiceover IP (VoIP) and electronic commerce.

Assuming that the goal is ubiquitous networking—to bring the network into every
household—the first problem that must be addressed is how to establish the necessary
physical links. The most widely discussed options in most parts of the world make use of
either the existing cable TV facilities or the copper pairs used to deliver telephone service.
Fiber to the home, or to the apartment building, which not long ago looked like a pipe
dream, is gathering momentum in some areas. There have also been developments in the
technology to deliver network connectivity over power lines, and, as we will see in the
next chapter, there is now an abundance of wireless networking technologies. Increas-
ingly this is leading to an expectation that access to the Internet is available everywhere,
not just in the workplace or at home.

How the struggle between the computer companies, the telephone companies, the
cable industry, and other stakeholders in the networking business will play out in the
marketplace is anyone’s guess. (If we knew the answer, we’d be charging a lot more for
this book.) All we know is that there are many technical obstacles—issues of connectivity,
levels of service, performance, reliability, security, and fairness—that stand between the
current state-of-the-art and the sort of global, ubiquitous, heterogeneous network that
we believe is possible and desirable. It is these challenges that are the focus of this book.

F U R T H E R R E A D I N G
Computer networks are not the first communication-oriented technology to have found
their way into the everyday fabric of our society. For example, the early part of this
century saw the introduction of the telephone, and then during the 1950s television
became widespread. When considering the future of networking—how widely it will
spread and how we will use it—it is instructive to study this history. Our first reference
is a good starting point for doing this (the entire issue is devoted to the first 100 years of
telecommunications).

The second and third papers are the seminal papers on the OSI and Internet ar-
chitectures, respectively. The Zimmerman paper introduces the OSI architecture, and
the Clark paper is a retrospective. The final two papers are not specific to networking,
but present viewpoints that capture the “systems approach” of this book. The Saltzer
et al. paper motivates and describes one of the most widely applied rules of network
architecture—the end-to-end argument. The paper by Mashey describes the thinking be-



Further Reading 53

hind RISC architectures; as we will soon discover, making good judgments about where
to place functionality in a complex system is what system design is all about.

■ Pierce, J. “Telephony—A Personal View.” IEEE Communications 22(5):116–
120, May 1984.

■ Zimmerman, H. “OSI Reference Model—The ISO Model of Architecture for
Open Systems Interconnection.” IEEE Transactions on Communications COM-
28(4):425–432, April 1980.

■ Clark, D. “The Design Philosophy of the DARPA Internet Protocols.” Proceed-
ings of the SIGCOMM ’88 Symposium, pp. 106–114, August 1988.

■ Saltzer, J., D. Reed, and D. Clark. “End-to-End Arguments in System Design.”
ACM Transactions on Computer Systems 2(4):277–288, November 1984.

■ Mashey, J. “RISC, MIPS, and the Motion of Complexity.” UniForum 1986
Conference Proceedings, pp. 116–124, 1986.

Several texts offer an introduction to computer networking: Stallings gives an ency-
clopedic treatment of the subject, with an emphasis on the lower levels of the OSI hierar-
chy [Sta07]; Tanenbaum uses the OSI architecture as an organizational model [Tan03];
Comer gives an overview of the Internet architecture [Com00]; and Bertsekas and Gal-
lager discuss networking from a performance modeling perspective [BG92].

To put computer networking into a larger context, two books—one dealing with
the past and the other looking toward the future—are must reading. The first is Holz-
mann and Pehrson’s The Early History of Data Networks [HP95]. Surprisingly, many of
the ideas covered in the book you are now reading were invented during the 1700s. The
second is Realizing the Information Future: The Internet and Beyond, a book prepared by
the Computer Science and Telecommunications Board of the National Research Council
[NRC94].

To follow the history of the Internet from its beginning, the reader is encouraged to
peruse the Internet’s Request for Comments (RFC) series of documents. These documents,
which include everything from the TCP specification to April Fools’ jokes, are retrievable
at http://www.ietf.org/rfc.html. For example, the protocol specifications for TCP,
UDP, and IP are available in RFC 793, 768, and 791, respectively.

To gain a better appreciation for the Internet philosophy and culture, two refer-
ences are recommended; both are also quite entertaining. Padlipsky gives a good de-
scription of the early days, including a pointed comparison of the Internet and OSI
architectures [Pad85]. For an account of what really happens behind the scenes at the
Internet Engineering Task Force, we recommend Boorsook’s article [Boo95].



54 1 Foundation

There are a wealth of articles discussing various aspects of protocol implementa-
tions. A good starting point is to understand two complete protocol implementation
environments: the Stream mechanism from System V Unix [Rit84] and the x-kernel
[HP91]. In addition, [LMKQ89] and [SW95] describe the widely used Berkeley Unix
implementation of TCP/IP.

More generally, there is a large body of work addressing the issue of structuring and
optimizing protocol implementations. Clark was one of the first to discuss the relation-
ship between modular design and protocol performance [Cla82]. Later papers then in-
troduce the use of upcalls in structuring protocol code [Cla85] and study the processing
overheads in TCP [CJRS89]. Finally, [WM87] describes how to gain efficiency through
appropriate design and implementation choices.

Several papers have introduced specific techniques and mechanisms that can be
used to improve protocol performance. For example, [HMPT89] describes some of the
mechanisms used in the x-kernel, [MD93] discusses various implementations of demul-
tiplexing tables, [VL87] introduces the timing-wheel mechanism used to manage pro-
tocol events, and [DP93] describes an efficient buffer management strategy. Also, the
performance of protocols running on parallel processors—locking is a key issue in such
environments—is discussed in [BG93] and [NYKT94].

Because many aspects of protocol implementation depend on an understanding of
the basics of operating systems, we recommend Finkel [Fin88], Bic and Shaw [BS88],
and Tanenbaum [Tan01] for an introduction to OS concepts.

Finally, we conclude the Further Reading section of each chapter with a set of live
references; that is, URLs for locations on the World Wide Web where you can learn more
about the topics discussed in that chapter. Since these references are live, it is possible that
they will not remain active for an indefinite period of time. For this reason, we limit the
set of live references at the end of each chapter to sites that either export software, provide
a service, or report on the activities of an ongoing working group or standardization
body. In other words, we only give URLs for the kinds of material that cannot easily be
referenced using standard citations. For this chapter, we include four live references:

■ http://www.mkp.com/pd4e: Information about this book, including sup-
plements, addenda, and so on.

■ http://www.acm.org/sigcomm/sos.html: Status of various networking
standards, including those of the IETF, ISO, and IEEE.

■ http://www.ietf.org/: Information about the IETF and its working groups.

■ http://edas.info/S.cgi?search=1: Searchable bibliography of network-
related research papers.



Exercises 55

E X E R C I S E S
1 Use anonymous FTP to connect to ftp.isi.edu (directory in-notes), and

retrieve the RFC index. Also retrieve the protocol specifications for TCP, IP,
and UDP.

2 Look up the website

http://www.cs.princeton.edu/nsg

Here you can read about current network research underway at Princeton Uni-
versity and see a picture of author Larry Peterson. Follow links to find a biog-
raphy of author Bruce Davie.

3 Use a Web search tool to locate useful, general, and noncommercial informa-
tion about the following topics: MBone, ATM, MPEG, IPv6, and Ethernet.

4 The Unix utility whois can be used to find the domain name correspond-
ing to an organization, or vice versa. Read the man page documentation for
whois and experiment with it. Try whois princeton.edu and whois
princeton, for starters. As an alternative, explore the whois interface at
http://www.internic.net/whois.html.

5 Calculate the total time required to transfer a 1,000-KB file in the following
cases, assuming an RTT of 100 ms, a packet size of 1-KB data, and an initial
2 × RTT of “handshaking” before data is sent.

(a) The bandwidth is 1.5 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 1.5 Mbps, but after we finish sending each data packet
we must wait one RTT before sending the next.

(c) The bandwidth is “infinite,” meaning that we take transmit time to be
zero, and up to 20 packets can be sent per RTT.

(d) The bandwidth is infinite, and during the first RTT we can send one
packet (21−1), during the second RTT we can send two packets (22−1),
during the third we can send four (23−1), and so on. (A justification for
such an exponential increase will be given in Chapter 6.)

✓ 6 Calculate the total time required to transfer a 1.5 MB file in the following cases,
assuming a RTT of 80 ms, a packet size of 1 KB data, and an initial 2×RTT of
“handshaking” before data is sent.



56 1 Foundation

(a) The bandwidth is 10 Mbps, and data packets can be sent continuously.

(b) The bandwidth is 10 Mbps, but after we finish sending each data packet
we must wait one RTT before sending the next.

(c) The link allows infinitely fast transmit, but limits bandwidth such that
only 20 packets can be sent per RTT.

(d) Zero transmit time as in (c), but during the first RTT we can send one
packet, during the second RTT we can send two packets, during the third
we can send four = 23−1, and so on. (A justification for such an exponen-
tial increase will be given in Chapter 6.)

7 Consider a point-to-point link 2 km in length. At what bandwidth would prop-
agation delay (at a speed of 2 × 108m/sec) equal transmit delay for 100-byte
packets? What about 512-byte packets?

✓ 8 Consider a point-to-point link 50 km in length. At what bandwidth would
propagation delay (at a speed of 2 × 108 m/sec) equal transmit delay for 100-
byte packets? What about 512-byte packets?

9 What properties of postal addresses would be likely to be shared by a network
addressing scheme? What differences might you expect to find? What proper-
ties of telephone numbering might be shared by a network addressing scheme?

10 One property of addresses is that they are unique; if two nodes had the same
address it would be impossible to distinguish between them. What other prop-
erties might be useful for network addresses to have? Can you think of any
situations in which network (or postal or telephone) addresses might not be
unique?

11 Give an example of a situation in which multicast addresses might be beneficial.

12 What differences in traffic patterns account for the fact that STDM is a cost-
effective form of multiplexing for a voice telephone network and FDM is a
cost-effective form of multiplexing for television and radio networks, yet we
reject both as not being cost-effective for a general-purpose computer network?

13 How “wide” is a bit on a 1-Gbps link? How long is a bit in copper wire, where
the speed of propagation is 2.3 × 108 m/s?

14 How long does it take to transmit x KB over a y-Mbps link? Give your answer
as a ratio of x and y.



Exercises 57

15 Suppose a 100-Mbps point-to-point link is being set up between Earth and
a new lunar colony. The distance from the moon to Earth is approximately
385,000 km, and data travels over the link at the speed of light—3 × 108 m/s.

(a) Calculate the minimum RTT for the link.

(b) Using the RTT as the delay, calculate the delay × bandwidth product for
the link.

(c) What is the significance of the delay × bandwidth product computed
in (b)?

(d) A camera on the lunar base takes pictures of Earth and saves them in digital
format to disk. Suppose Mission Control on Earth wishes to download the
most current image, which is 25 MB. What is the minimum amount of
time that will elapse between when the request for the data goes out and
the transfer is finished?

✓ 16 Suppose a 128-Kbps point-to-point link is set up between Earth and a rover
on Mars. The distance from Earth to Mars (when they are closest together) is
approximately 55 Gm, and data travels over the link at the speed of light—
3 × 108 m/sec.

(a) Calculate the minimum RTT for the link.

(b) Calculate the delay × bandwidth product for the link.

(c) A camera on the rover takes pictures of its surroundings and sends these to
Earth. How quickly after a picture is taken can it reach Mission Control
on Earth? Assume that each image is 5 MB in size.

17 For each of the following operations on a remote file server, discuss whether
they are more likely to be delay sensitive or bandwidth sensitive.

(a) Open a file.

(b) Read the contents of a file.

(c) List the contents of a directory.

(d) Display the attributes of a file.



58 1 Foundation

18 Calculate the latency (from first bit sent to last bit received) for the following:

(a) A 10-Mbps Ethernet with a single store-and-forward switch in the path,
and a packet size of 5,000 bits. Assume that each link introduces a propaga-
tion delay of 10 µs, and that the switch begins retransmitting immediately
after it has finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (a) but assume the switch implements “cut-through” switching: it
is able to begin retransmitting the packet after the first 200 bits have been
received.

✓ 19 Calculate the latency (from first bit sent to last bit received) for:

(a) A 1-Gbps Ethernet with a single store-and-forward switch in the path, and
a packet size of 5,000 bits. Assume that each link introduces a propagation
delay of 10 µs and that the switch begins retransmitting immediately after
it has finished receiving the packet.

(b) Same as (a) but with three switches.

(c) Same as (b) but assume the switch implements cut-through switching: it
is able to begin retransmitting the packet after the first 128 bits have been
received.

20 Calculate the effective bandwidth for the following cases. For (a) and (b) as-
sume there is a steady supply of data to send; for (c) simply calculate the average
over 12 hours.

(a) A 10-Mbps Ethernet through three store-and-forward switches as in Exer-
cise 18(b). Switches can send on one link while receiving on the other.

(b) Same as (a) but with the sender having to wait for a 50-byte acknowledg-
ment packet after sending each 5,000-bit data packet.

(c) Overnight (12-hour) shipment of 100 compact discs (650 MB each).

21 Calculate the bandwidth × delay product for the following links. Use one-way
delay, measured from first bit sent to first bit received.

(a) A 10-Mbps Ethernet with a delay of 10 µs.



Exercises 59

Figure 1.24 Diagram for Exercise 22.

(b) A 10-Mbps Ethernet with a single store-and-forward switch like that of
Exercise 18(a), packet size 5,000 bits, and 10 µs per link propagation delay.

(c) A 1.5-Mbps T1 link, with a transcontinental one-way delay of 50 ms.

(d) A 1.5-Mbps T1 link through a satellite in geosynchronous orbit, 35,900-
km high. The only delay is speed-of-light propagation delay.

22 Hosts A and B are each connected to a switch S via 10-Mbps links as in Fig-
ure 1.24. The propagation delay on each link is 20 µs. S is a store-and-forward
device; it begins retransmitting a received packet 35 µs after it has finished
receiving it. Calculate the total time required to transmit 10,000 bits from
A to B.

(a) As a single packet.

(b) As two 5,000-bit packets sent one right after the other.

23 Suppose a host has a 1-MB file that is to be sent to another host. The file takes
1 second of CPU time to compress 50%, or 2 seconds to compress 60%.

(a) Calculate the bandwidth at which each compression option takes the same
total compression + transmission time.

(b) Explain why latency does not affect your answer.

24 Suppose that a certain communications protocol involves a per-packet over-
head of 100 bytes for headers and framing. We send 1 million bytes of data
using this protocol; however, one data byte is corrupted and the entire packet
containing it is thus lost. Give the total number of overhead + loss bytes for
packet data sizes of 1,000, 5,000, 10,000, and 20,000 bytes. Which size is
optimal?

25 Assume you wish to transfer an n B file along a path composed of the source,
destination, seven point-to-point links, and five switches. Suppose each link
has a propagation delay of 2 ms, bandwidth of 4 Mbps, and that the switches
support both circuit and packet switching. Thus, you can either break the file



60 1 Foundation

up into 1-KB packets, or set up a circuit through the switches and send the file
as one contiguous bitstream. Suppose that packets have 24 B of packet header
information and 1,000 B of payload, that store-and-forward packet processing
at each switch incurs a 1-ms delay after the packet had been completely re-
ceived, that packets may be sent continuously without waiting for acknowledg-
ments, and that circuit setup requires a 1-KB message to make one round-trip
on the path incurring a 1-ms delay at each switch after the message has been
completely received. Assume switches introduce no delay to data traversing a
circuit. You may also assume that file size is a multiple of 1,000 B.

(a) For what file size n B is the total number of bytes sent across the network
less for circuits than for packets?

(b) For what file size n B is the total latency incurred before the entire file
arrives at the destination less for circuits than for packets?

(c) How sensitive are these results to the number of switches along the path?
To the bandwidth of the links? To the ratio of packet size to packet header
size?

(d) How accurate do you think this model of the relative merits of circuits and
packets is? Does it ignore important considerations that discredit one or
the other approach? If so, what are they?

26 Consider a network with a ring topology, link bandwidths of 100 Mbps, and
propagation speed 2 × 108 m/s. What would the circumference of the loop
be to exactly contain one 250-byte packet, assuming nodes do not introduce
delay? What would the circumference be if there was a node every 100 m, and
each node introduced 10 bits of delay?

27 Compare the channel requirements for voice traffic with the requirements for
the real-time transmission of music, in terms of bandwidth, delay, and jitter.
What would have to improve? By approximately how much? Could any chan-
nel requirements be relaxed?

28 For the following, assume that no data compression is done; this would in
practice almost never be the case. For (a)–(c), calculate the bandwidth necessary
for transmitting in real time:

(a) Video at a resolution of 640 × 480, 3 bytes/pixel, 30 frames/second.

(b) 160 × 120 video, 1 byte/pixel, 5 frames/second.



Exercises 61

(c) CD-ROM music, assuming one CD holds 75 minutes’ worth and takes
650 MB.

(d) Assume a fax transmits an 8 × 10-inch black-and-white image at a reso-
lution of 72 pixels per inch. How long would this take over a 14.4-Kbps
modem?

✓ 29 For the following, as in the previous problem, assume that no data compression
is done. Calculate the bandwidth necessary for transmitting in real time:

(a) HDTV high-definition video at a resolution of 1,920 × 1,080, 24
bits/pixel, 30 frames/sec.

(b) Plain old telephone service (POTS) voice audio of 8-bit samples at 8 KHz.

(c) GSM mobile voice audio of 260-bit samples at 50 Hz.

(d) HDCD high-definition audio of 24-bit samples at 88.2 kHz.

30 Discuss the relative performance needs of the following applications, in terms
of average bandwidth, peak bandwidth, latency, jitter, and loss tolerance:

(a) File server.

(b) Print server.

(c) Digital library.

(d) Routine monitoring of remote weather instruments.

(e) Voice.

(f ) Video monitoring of a waiting room.

(g) Television broadcasting.

31 Suppose a shared medium M offers to hosts A1,A2, . . . ,AN in round-robin
fashion an opportunity to transmit one packet; hosts that have nothing to send
immediately relinquish M. How does this differ from STDM? How does net-
work utilization of this scheme compare with STDM?

★ 32 Consider a simple protocol for transferring files over a link. After some initial
negotiation, A sends data packets of size 1 KB to B; B then replies with an
acknowledgment. A always waits for each ACK before sending the next data



62 1 Foundation

packet; this is known as stop-and-wait. Packets that are overdue are presumed
lost and are retransmitted.

(a) In the absence of any packet losses or duplications, explain why it is not
necessary to include any “sequence number” data in the packet headers.

(b) Suppose that the link can lose occasional packets, but that packets that do
always arrive in the order sent. Is a 2-bit sequence number (that is, N mod
4) enough for A and B to detect and resend any lost packets? Is a 1-bit
sequence number enough?

(c) Now suppose that the link can deliver out of order, and that sometimes
a packet can be delivered as much as 1 minute after subsequent packets.
How does this change the sequence number requirements?

★ 33 Suppose hosts A and B are connected by a link. Host A continuously transmits
the current time from a high-precision clock, at a regular rate, fast enough to
consume all the available bandwidth. Host B reads these time values and writes
them each paired with its own time from a local clock synchronized with A’s.
Give qualitative examples of B’s output assuming the link has

(a) High bandwidth, high latency, low jitter.

(b) Low bandwidth, high latency, high jitter.

(c) High bandwidth, low latency, low jitter, occasional lost data.

For example, a link with zero jitter, a bandwidth high enough to write on
every other clock tick, and a latency of 1 tick might yield something like
(0000,0001), (0002,0003), (0004,0005).

34 Obtain and build the simplex-talk sample socket program shown in the text.
Start one server and one client in separate windows. While the first client is run-
ning, start 10 other clients that connect to the same server; these other clients
should most likely be started in the background with their input redirected
from a file. What happens to these 10 clients? Do their connect()s fail, or
time out, or succeed? Do any other calls block? Now let the first client exit.
What happens? Try this with the server value MAX_PENDING set to 1 as
well.

35 Modify the simplex-talk socket program so that each time the client sends a
line to the server, the server sends the line back to the client. The client (and
server) will now have to make alternating calls to recv() and send().



Exercises 63

36 Modify the simplex-talk socket program so that it uses UDP as the trans-
port protocol, rather than TCP. You will have to change SOCK_STREAM to
SOCK_DGRAM in both client and server. Then, in the server, remove the
calls to listen() and accept(), and replace the two nested loops at the end
with a single loop that calls recv() with socket s. Finally, see what happens
when two such UDP clients simultaneously connect to the same UDP server,
and compare this to the TCP behavior.

37 Investigate the different options and parameters one can set for a TCP connec-
tion. (Do “man tcp” on Unix.) Experiment with various parameter settings
to see how they effect TCP performance.

38 The Unix utility ping can be used to find the RTT to various Inter-
net hosts. Read the man page for ping, and use it to find the RTT to
www.cs.princeton.edu in New Jersey and www.cisco.com in Califor-
nia. Measure the RTT values at different times of day, and compare the results.
What do you think accounts for the differences?

39 The Unix utility traceroute, or its Windows equivalent tracert, can be used
to find the sequence of routers through which a message is routed. Use this to
find the path from your site to some others. How well does the number of hops
correlate with the RTT times from ping? How well does the number of hops
correlate with geographical distance?

40 Use traceroute, above, to map out some of the routers within your organiza-
tion (or to verify none are used).


	Foundation
	Applications
	Requirements
	Network Architecture
	Implementing Network Software
	Performance
	Summary


