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Introduction

• Problem:  how to react quickly to worms?
• CodeRed 2001

• Infected ~360,000 hosts within 11 hours
• Sapphire/Slammer (376 bytes) 2002

• Infected ~75,000 hosts within 10 minutes

[Wang05]
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The SQL Slammer Worm: 30 Minutes After  
“Release”

 
- Infections doubled every 8.5 seconds
- Spread 100X faster than Code Red
- At peak, scanned 55 million hosts per second.

[Wang05]
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Network Effects Of The SQL Slammer Worm

• At the height of infections
• Several ISPs noted significant bandwidth consumption at peering points
• Average packet loss approached 20%
• South Korea lost almost all Internet service for period of time
• Financial ATMs were affected
• Some airline ticketing systems overwhelmed 

[Wang05]
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Current Detection Methods

• Typically an IDS helps the administrators
• Isolation of the worm
• Security experts create the worms signature
• Updates to antivirus and network filtering software
• Correct but expensive, slow and manual procedure.
• Reaction time should be max 60 sec to contain a worm

[hy558]
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Background

• CodeRed in 2001
• Repair rate : 2% per day - With media attention
• Automatic Intervention is necessary

• Signature-based models can halt all matching network activity, when the 
worm’s signature is created

[hybb]
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Worm Detection

• Three classes of methods
• Scan detection
• Honeypots
• Behavioral techniques

[Wang05]
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Scan Detection

• Look for unusual frequency and distribution of address scanning
• Here is where a telescope would be useful

• Limitations
• Not suited to worms that spread in a non-random fashion (i.e. emails, IM, 

P2P apps)
• Based on a target list
• Spread topologically

[Wang05]
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Scan Detection

• More limitations
• Detects infected sites
• Does not produce a signature

[Wang05]
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Honeypots

• Monitored idle hosts with untreated vulnerabilities
• Used to isolate worms

• Limitations
• Manual extraction of signatures
• Depend on quick infections

[Wang05]
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Behavioral Detection

• Looks for unusual system call patterns
• Sending a packet from the same buffer containing a received packet
• Can detect slow moving worms

• Limitations
• Needs application-specific knowledge
• Cannot infer a large-scale outbreak

[Wang05]
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Characterization

• Process of analyzing and identifying a new worm
• Current approaches

• Use a priori vulnerability signatures
• Automated signature extraction

[Wang05]
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Vulnerability Signatures

• Example
• Slammer Worm

• UDP traffic on port 1434 that is longer than 100 bytes (buffer overflow)
• Can be deployed before the outbreak

• Can only be applied to well-known vulnerabilities

[Wang05]
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Some Automated Signature Extraction 
Techniques

• Allows worm to infect decoy programs
• Extracts the modified regions of the decoy 
• Uses heuristics to identify invariant code strings across infected instances

[Wang05]
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Some Automated Signature Extraction 
Techniques

• Limitation
• Assumes the presence of a worm in a controlled environment

[Wang05]
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Containment

• Mechanism used to deter the spread of an active worm
• Host quarantine

• Via IP ACLs on routers or firewalls
• String-matching
• Connection throttling

• On all outgoing connections

[Wang05]



Automated Worm Fingerprinting, Sumeet Singh, Cristian 
Estan, George Varghese and Stefan Savage, Proceedings of the 
ACM/USENIX Symposium on Operating System Design and 
Implementation, San Francisco, CA, December 2004.
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Earlybird

• Automatic detection and containment of new worms
• Content Sifting:

• Content of worm traffic is invariant
• Worm spread dynamics atypical of Internet Applications

• Frequently repeated and widely dispersed content strings -> new worm

[hy558]
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Defining Worm Behavior

• Content invariance
• Portions of a worm are invariant (e.g. the decryption routine)

• Content prevalence
• Appears frequently on the network

• Address dispersion
• Distribution of destination addresses more uniform to spread fast

[Wang05]
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Finding Worm Signatures

• Traffic pattern is sufficient for detecting worms
• Relatively straightforward
• Extract all possible substrings
• Raise an alarm when

• FrequencyCounter[substring] > threshold1
• SourceCounter[substring] > threshold2
• DestCounter[substring] > threshold3

[Wang05]
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Practical Content Sifting

• Characteristics
• Small processing requirements
• Small memory requirements
• Allows arbitrary deployment strategies

[Wang05]
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Estimating Content Prevalence

• Finding the packet payloads that appear at least x times among the N 
packets sent
• During a given interval

[Wang05]
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Estimating Content Prevalence

• Given a 1Gbps
• Table[payload] 

• 1 GB table filled in less than 10 seconds
• Table[hash[payload]]

• 1 GB table filled in 4 minutes
• Tracking millions of ants to track a few elephants
• Collisions...false positives

[Wang05]



Fall 1393 Ce 817 -Lecture 10

Multistage Filters

stream memoryArray of 
counters

Hash(Pink)

[Wang05]
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Multistage Filters

packet memoryArray of 
counters

Hash(Green)

[Wang05]
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Multistage Filters

packet memoryArray of 
counters

Hash(Green)

[Wang05]



Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memory

[Wang05]
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Multistage Filters

packet memoryCollisions  
are OK

[Wang05]
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Multistage Filters

packet memory

packet1   1

Insert

Reached 
threshold

[Wang05]
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Multistage Filters

packet memory

packet1   1

[Wang05]
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Multistage Filters

packet memory

packet1   1

packet2   1

[Wang05]
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Multistage Filters

Stage 2

packet memory

packet1   1

Stage 1

No false negatives!

[Wang05]
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Estimating Address Dispersion

• Not sufficient to count the number of source and destination pairs
• e.g. send a mail to a mailing list

• Two sources—mail server and the sender
• Many destinations

• Need to track the distinct source and destination IP addresses
• For each substring

• Simple list or hash table is too expensive 
• Use Bitmap data structure

[Wang05]
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Putting It Together

header payload

substring fingerprints
substring fingerprints

key src cnt dest cnt

AD entry exist?
update counters

key cntelse
update 
counter

cnt > prevalence threshold?
create AD entry

Content Prevalence Table

Address Dispersion Table

counters > dispersion threshold?
report key as suspicious worm

substring fingerprints
substring fingerprints

[Singh04]
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System Design

• Two major components
• Sensors

• Sift through traffic for a given address space
• Report signatures

• An aggregator
• Coordinates real-time updates
• Distributes signatures

[Wang05]
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Implementation and Environment

• Written in C and MySQL (5,000 
lines)

• rrd-tools library for graphical 
reporting

• PHP scripting for administrative 
control

• Prototype executes on a 1.6Ghz 
AMD Opteron 242 1U Server
• Linux 2.6 kernel

• Processes 1TB of traffic per day
• Can keep up with 200Mbps of 

continuous traffic

[Singh04]
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Content prevalence threshold

• Using a 60 second measurement interval and a whole packet CRC, over 97 
percent of all signatures repeat two or fewer times and 94.5 percent are only 
observed once

• Using a finer grained content hash or a longer measurement interval increases 
these numbers even further

• Default: 3 repetitions

[Singh04]
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Address dispersion threshold

• After 10 minutes there are over 1000 signatures with a low dispersion 
threshold of 2

• Using a threshold of 30, there are only 5 or 6 prevalent strings meeting the 
dispersion criteria

• Default: 30 sources and 30 destinations

[Singh04]
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Garbage Collection

• When the timeout is set to 100 seconds, then almost 60 percent of all 
signatures are garbage collected before a subsequent update

• Using a timeout of 1000 seconds, this number is reduced to roughly 20 
percent of signatures

• Default: several hours

[Singh04]
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Performance Processing Time

• Value sampling brings per-byte processing down to 0.042 ms

[Singh04]
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Performance
Memory Consumption

• Prevalence table. Totals to 2 MB
• Address Dispersion Table utilizes well under 1MB

• Total less than 4MB

[hy558]
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Trace-Based Verification

• Two main sources of false positives
• 2,000 common protocol headers

• e.g. HTTP, SMTP
• Whitelisted

• SPAM e-mails
• BitTorrent

• Many-to-many download 

[Wang05]
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False Negatives

• So far none
• Detected every worm outbreak 

[Wang05]
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Evasions

• An attacker might evade detection by splitting an invariant string across 
packets
• Have fingerprints across packets

• Traffic normalization
• remember attacks on IDS

• Polymorphic viruses
• Semantically equivalent but textually distinct code
• Invariant decoding routine

[Wang05]
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Live Experience with EarlyBird

• Detected precise signatures
• CodeRed variants
• MyDoom mail worm
• Sasser
• Kibvu.B

[Wang05]
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Extensions

• Self configuration
• Slow worms
• Variant Content in worms, Compression, VPNs, SSL

[Wang05]



POLYGRAPH: Automatically Generating Signatures 
for Polymorphic Worms, James Newsome, Brad Karp, 
Dawn Song,IEEE Security and Privacy Symposium, May 2005.



Fall 1393 Ce 817 -Lecture 10

Challenge: Polymorphic Worms

• Polymorphic worms minimize invariant content
• Encrypted payload
• Obfuscated decryption routine

• Polymorphic tools are already available
• Clet,ADMmutateDo good signatures for polymorphic worms exist?

Can we generate them automatically?

[Newsome05] 48
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Good News: Still some invariant content

• Protocol framing
• Needed to make server go down vulnerable code path

• Overwritten Return Address
• Needed to redirect execution to worm code

• Decryption routine
• Needed to decrypt main payload
• BUT, code obfuscation can eliminate patterns here

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

[Newsome05] 49
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Bad News: Previous Approaches Insufficient

• Previous approaches use a common substring
• Longest substring

• “HTTP/1.1”
• 93% false positive rate

• Most specific substring
• “\xff\xbf”
• .008% false positive rate (10 / 125,301)

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

[Newsome05] 50
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What to do?

• No one substring is specific enough
• BUT, there are multiple substrings

• Protocol framing
• Value used to overwrite return address
• (Parts of poorly obfuscated code)

• Our approach: combine the substrings

[Newsome05] 51
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Goals

• Identify classes of signatures that can:
• Accurately describe polymorphic worms
• Be used to filter a high speed network line
• Be generated automatically and efficiently

• Design and implement a system to automatically generate signatures of these 
classes

[Newsome05] 52
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Signature Class (I): Conjunction

• Signature is a set of strings (tokens)
• Flow matches signature if it contains all tokens in the signature
• O(n) time to match (n is flow length)
• Generated signature:

• “GET” and “HTTP/1.1” and “\r\nHost:” and “\r\nHost:” and “\xff\xbf”
• .0024% false positive rate (3 / 125,301)

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

[Newsome05] 53
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Signature Class (II): Token Subsequence

• Signature is an ordered set of tokens
• Flow matches if it contains all the tokens in signature, in the given order
• O(n) time to match (n is flow length)
• Generated signature:

• GET.*HTTP/1.1.*\r\nHost:.*\r\nHost:.*\xff\xbf
• .0008% false positive rate (1 / 125,301)

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

[Newsome05] 54
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Experiment: Signature Generation

• How many worm samples do we need?
• Too few samples --> signature is too specific --> false negatives
• Experimental setup

• Using a 15 day port 80 trace from lab perimeter
• Innocuous pool: First 5 days (45,111 streams)
• Suspicious Pool:

• Using Apache exploit described in paper
• Non-invariant portions filled with random bytes

• Signature evaluation:
• False positives: Last 10 days (125,301 streams)
• False negatives: 1000 generated worm samples

[Newsome05] 55
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Signature Generation Results

# Worm 
Samples

Conjunction Subseq

2 100% FN 100% FN

3 to 100 0% FN .0024% 
FP

0% FN
.0008% FP

GET .* HTTP/1.1\r\n.*\r\nHost: .*\xee\xb7.*\xb2\x1e.*\r\nHost: .*\xef
\xa3.*\x8b\xf4.*\x89\x8b.*E\xeb.*\xff\xbf

GET .* HTTP/1.1\r\n.*\r\nHost: .*\r\nHost:.*\xff\xbf

[Newsome05] 56
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