
CE 817 - Advanced Network Security
Worms II

Lecture 10

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources.
Reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Fall 1393 Ce 817 -Lecture 10

Introduction

• Problem: how to react quickly to worms?
• CodeRed 2001

• Infected ~360,000 hosts within 11 hours
• Sapphire/Slammer (376 bytes) 2002

• Infected ~75,000 hosts within 10 minutes

[Wang05]

Fall 1393 Ce 817 -Lecture 10

The SQL Slammer Worm: 30 Minutes After
“Release”

- Infections doubled every 8.5 seconds
- Spread 100X faster than Code Red
- At peak, scanned 55 million hosts per second.

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Network Effects Of The SQL Slammer Worm

• At the height of infections
• Several ISPs noted significant bandwidth consumption at peering points
• Average packet loss approached 20%
• South Korea lost almost all Internet service for period of time
• Financial ATMs were affected
• Some airline ticketing systems overwhelmed

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Current Detection Methods

• Typically an IDS helps the administrators
• Isolation of the worm
• Security experts create the worms signature
• Updates to antivirus and network filtering software
• Correct but expensive, slow and manual procedure.
• Reaction time should be max 60 sec to contain a worm

[hy558]

Fall 1393 Ce 817 -Lecture 10

Background

• CodeRed in 2001
• Repair rate : 2% per day - With media attention
• Automatic Intervention is necessary

• Signature-based models can halt all matching network activity, when the
worm’s signature is created

[hybb]

Fall 1393 Ce 817 -Lecture 10

Worm Detection

• Three classes of methods
• Scan detection
• Honeypots
• Behavioral techniques

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Scan Detection

• Look for unusual frequency and distribution of address scanning
• Here is where a telescope would be useful

• Limitations
• Not suited to worms that spread in a non-random fashion (i.e. emails, IM,

P2P apps)
• Based on a target list
• Spread topologically

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Scan Detection

• More limitations
• Detects infected sites
• Does not produce a signature

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Honeypots

• Monitored idle hosts with untreated vulnerabilities
• Used to isolate worms

• Limitations
• Manual extraction of signatures
• Depend on quick infections

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Behavioral Detection

• Looks for unusual system call patterns
• Sending a packet from the same buffer containing a received packet
• Can detect slow moving worms

• Limitations
• Needs application-specific knowledge
• Cannot infer a large-scale outbreak

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Characterization

• Process of analyzing and identifying a new worm
• Current approaches

• Use a priori vulnerability signatures
• Automated signature extraction

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Vulnerability Signatures

• Example
• Slammer Worm

• UDP traffic on port 1434 that is longer than 100 bytes (buffer overflow)
• Can be deployed before the outbreak

• Can only be applied to well-known vulnerabilities

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Some Automated Signature Extraction
Techniques

• Allows worm to infect decoy programs
• Extracts the modified regions of the decoy
• Uses heuristics to identify invariant code strings across infected instances

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Some Automated Signature Extraction
Techniques

• Limitation
• Assumes the presence of a worm in a controlled environment

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Containment

• Mechanism used to deter the spread of an active worm
• Host quarantine

• Via IP ACLs on routers or firewalls
• String-matching
• Connection throttling

• On all outgoing connections

[Wang05]

Automated Worm Fingerprinting, Sumeet Singh, Cristian
Estan, George Varghese and Stefan Savage, Proceedings of the
ACM/USENIX Symposium on Operating System Design and
Implementation, San Francisco, CA, December 2004.

Fall 1393 Ce 817 -Lecture 10

Earlybird

• Automatic detection and containment of new worms
• Content Sifting:

• Content of worm traffic is invariant
• Worm spread dynamics atypical of Internet Applications

• Frequently repeated and widely dispersed content strings -> new worm

[hy558]

Fall 1393 Ce 817 -Lecture 10

Defining Worm Behavior

• Content invariance
• Portions of a worm are invariant (e.g. the decryption routine)

• Content prevalence
• Appears frequently on the network

• Address dispersion
• Distribution of destination addresses more uniform to spread fast

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Finding Worm Signatures

• Traffic pattern is sufficient for detecting worms
• Relatively straightforward
• Extract all possible substrings
• Raise an alarm when

• FrequencyCounter[substring] > threshold1
• SourceCounter[substring] > threshold2
• DestCounter[substring] > threshold3

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Practical Content Sifting

• Characteristics
• Small processing requirements
• Small memory requirements
• Allows arbitrary deployment strategies

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Estimating Content Prevalence

• Finding the packet payloads that appear at least x times among the N
packets sent
• During a given interval

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Estimating Content Prevalence

• Given a 1Gbps
• Table[payload]

• 1 GB table filled in less than 10 seconds
• Table[hash[payload]]

• 1 GB table filled in 4 minutes
• Tracking millions of ants to track a few elephants
• Collisions...false positives

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

stream memoryArray of
counters

Hash(Pink)

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memoryArray of
counters

Hash(Green)

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memoryArray of
counters

Hash(Green)

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memory

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memoryCollisions
are OK

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memory

packet1 1

Insert

Reached
threshold

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memory

packet1 1

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

packet memory

packet1 1

packet2 1

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Multistage Filters

Stage 2

packet memory

packet1 1

Stage 1

No false negatives!

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Estimating Address Dispersion

• Not sufficient to count the number of source and destination pairs
• e.g. send a mail to a mailing list

• Two sources—mail server and the sender
• Many destinations

• Need to track the distinct source and destination IP addresses
• For each substring

• Simple list or hash table is too expensive
• Use Bitmap data structure

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Putting It Together

header payload

substring fingerprints
substring fingerprints

key src cnt dest cnt

AD entry exist?
update counters

key cntelse
update
counter

cnt > prevalence threshold?
create AD entry

Content Prevalence Table

Address Dispersion Table

counters > dispersion threshold?
report key as suspicious worm

substring fingerprints
substring fingerprints

[Singh04]

Fall 1393 Ce 817 -Lecture 10

System Design

• Two major components
• Sensors

• Sift through traffic for a given address space
• Report signatures

• An aggregator
• Coordinates real-time updates
• Distributes signatures

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Implementation and Environment

• Written in C and MySQL (5,000
lines)

• rrd-tools library for graphical
reporting

• PHP scripting for administrative
control

• Prototype executes on a 1.6Ghz
AMD Opteron 242 1U Server
• Linux 2.6 kernel

• Processes 1TB of traffic per day
• Can keep up with 200Mbps of

continuous traffic

[Singh04]

Fall 1393 Ce 817 -Lecture 10

Content prevalence threshold

• Using a 60 second measurement interval and a whole packet CRC, over 97
percent of all signatures repeat two or fewer times and 94.5 percent are only
observed once

• Using a finer grained content hash or a longer measurement interval increases
these numbers even further

• Default: 3 repetitions

[Singh04]

Fall 1393 Ce 817 -Lecture 10

Address dispersion threshold

• After 10 minutes there are over 1000 signatures with a low dispersion
threshold of 2

• Using a threshold of 30, there are only 5 or 6 prevalent strings meeting the
dispersion criteria

• Default: 30 sources and 30 destinations

[Singh04]

Fall 1393 Ce 817 -Lecture 10

Garbage Collection

• When the timeout is set to 100 seconds, then almost 60 percent of all
signatures are garbage collected before a subsequent update

• Using a timeout of 1000 seconds, this number is reduced to roughly 20
percent of signatures

• Default: several hours

[Singh04]

Fall 1393 Ce 817 -Lecture 10

Performance Processing Time

• Value sampling brings per-byte processing down to 0.042 ms

[Singh04]

Fall 1393 Ce 817 -Lecture 10

Performance
Memory Consumption

• Prevalence table. Totals to 2 MB
• Address Dispersion Table utilizes well under 1MB

• Total less than 4MB

[hy558]

Fall 1393 Ce 817 -Lecture 10

Trace-Based Verification

• Two main sources of false positives
• 2,000 common protocol headers

• e.g. HTTP, SMTP
• Whitelisted

• SPAM e-mails
• BitTorrent

• Many-to-many download

[Wang05]

Fall 1393 Ce 817 -Lecture 10

False Negatives

• So far none
• Detected every worm outbreak

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Evasions

• An attacker might evade detection by splitting an invariant string across
packets
• Have fingerprints across packets

• Traffic normalization
• remember attacks on IDS

• Polymorphic viruses
• Semantically equivalent but textually distinct code
• Invariant decoding routine

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Live Experience with EarlyBird

• Detected precise signatures
• CodeRed variants
• MyDoom mail worm
• Sasser
• Kibvu.B

[Wang05]

Fall 1393 Ce 817 -Lecture 10

Extensions

• Self configuration
• Slow worms
• Variant Content in worms, Compression, VPNs, SSL

[Wang05]

POLYGRAPH: Automatically Generating Signatures
for Polymorphic Worms, James Newsome, Brad Karp,
Dawn Song,IEEE Security and Privacy Symposium, May 2005.

Fall 1393 Ce 817 -Lecture 10

Challenge: Polymorphic Worms

• Polymorphic worms minimize invariant content
• Encrypted payload
• Obfuscated decryption routine

• Polymorphic tools are already available
• Clet,ADMmutateDo good signatures for polymorphic worms exist?

Can we generate them automatically?

[Newsome05] 48

Fall 1393 Ce 817 -Lecture 10

Good News: Still some invariant content

• Protocol framing
• Needed to make server go down vulnerable code path

• Overwritten Return Address
• Needed to redirect execution to worm code

• Decryption routine
• Needed to decrypt main payload
• BUT, code obfuscation can eliminate patterns here

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

[Newsome05] 49

Fall 1393 Ce 817 -Lecture 10

Bad News: Previous Approaches Insufficient

• Previous approaches use a common substring
• Longest substring

• “HTTP/1.1”
• 93% false positive rate

• Most specific substring
• “\xff\xbf”
• .008% false positive rate (10 / 125,301)

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

[Newsome05] 50

Fall 1393 Ce 817 -Lecture 10

What to do?

• No one substring is specific enough
• BUT, there are multiple substrings

• Protocol framing
• Value used to overwrite return address
• (Parts of poorly obfuscated code)

• Our approach: combine the substrings

[Newsome05] 51

Fall 1393 Ce 817 -Lecture 10

Goals

• Identify classes of signatures that can:
• Accurately describe polymorphic worms
• Be used to filter a high speed network line
• Be generated automatically and efficiently

• Design and implement a system to automatically generate signatures of these
classes

[Newsome05] 52

Fall 1393 Ce 817 -Lecture 10

Signature Class (I): Conjunction

• Signature is a set of strings (tokens)
• Flow matches signature if it contains all tokens in the signature
• O(n) time to match (n is flow length)
• Generated signature:

• “GET” and “HTTP/1.1” and “\r\nHost:” and “\r\nHost:” and “\xff\xbf”
• .0024% false positive rate (3 / 125,301)

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

[Newsome05] 53

Fall 1393 Ce 817 -Lecture 10

Signature Class (II): Token Subsequence

• Signature is an ordered set of tokens
• Flow matches if it contains all the tokens in signature, in the given order
• O(n) time to match (n is flow length)
• Generated signature:

• GET.*HTTP/1.1.*\r\nHost:.*\r\nHost:.*\xff\xbf
• .0008% false positive rate (1 / 125,301)

Decryption
Routine

Decryption
Key

Encrypted
Payload \xff\xbfNOP

slide

GET Host: Payload
Part 2HTTP/1.1URL Host: Payload

Part 1
Random
Headers

Random
Headers

Random
Headers

[Newsome05] 54

Fall 1393 Ce 817 -Lecture 10

Experiment: Signature Generation

• How many worm samples do we need?
• Too few samples --> signature is too specific --> false negatives
• Experimental setup

• Using a 15 day port 80 trace from lab perimeter
• Innocuous pool: First 5 days (45,111 streams)
• Suspicious Pool:

• Using Apache exploit described in paper
• Non-invariant portions filled with random bytes

• Signature evaluation:
• False positives: Last 10 days (125,301 streams)
• False negatives: 1000 generated worm samples

[Newsome05] 55

Fall 1393 Ce 817 -Lecture 10

Signature Generation Results

Worm
Samples

Conjunction Subseq

2 100% FN 100% FN

3 to 100 0% FN .0024%
FP

0% FN
.0008% FP

GET .* HTTP/1.1\r\n.*\r\nHost: .*\xee\xb7.*\xb2\x1e.*\r\nHost: .*\xef
\xa3.*\x8b\xf4.*\x89\x8b.*E\xeb.*\xff\xbf

GET .* HTTP/1.1\r\n.*\r\nHost: .*\r\nHost:.*\xff\xbf

[Newsome05] 56

Fall 1393 Ce 817 -Lecture 10

Acknowledgments/References

• [Singh04] Automated Worm Fingerprinting, Sumeet Singh, Cristian Estan,
George Varghese and Stefan Savage, Proceedings of the ACM/USENIX
Symposium on Operating System Design and Implementation, San Francisco,
CA, December 2004.

• [Wang05] FSU COP 5611 (Spring 2005) Advanced Operating Systems by
Andy Wang.

• [kuzma] ww.cs.northwestern.edu/~akuzma/classes/CS495-s05/doc/awf.ppt
• [hy558] ww.csd.uoc.gr/~hy558/reports/itsomp_fingerprinting.ppt
• [zou07] Research in Computer and Network Security, CDA6938, Cliff Zou,

2007
• [Newsome05] POLYGRAPH: Automatically Generating Signatures for

Polymorphic Worms, James Newsome, Brad Karp, Dawn Song, presentation
at IEEE Security and Privacy Symposium, May 2005.

57

