CE 874 - Secure Software Systems

Control Flow Integrity

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Run-Time protection/enforcement

* In many instances we only have
access to the binary

How do we analyze the binary for
vulnerabilities?

How do we protect the binary from
exploitation?

This would be our topic for the next
few lectures

REAL Programmers code in BINARY.

Spring 1398 Ce 874 - Control Flow Integrity

Op request

Subject
Op response
People Files
Processes Sockets
Computer Operations Computer Operations

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Reference Monitor: Principles

Op request

Reference
Monitor

Subject

Op response Op response

- Complete Mediation: The reference monitor must always be invoked

- Tamper-proof: The reference monitor cannot be changed by unauthorized
subjects or objects

- Verifiable: The reference monitor is small enough to thoroughly understand,
test, and ultimately, verify.

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

INnlined Reterenced Monitor

Op request

Subject Reference
Monitor

Op response

oday’s Example:
Inlining a control flow policy Into a program

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Control-Flow Integrity: Principles, Implementations,
and Applications

Martin Abadi, Mihai Budiu, U’lfar Erlingsson, Jay Ligatti,
CCS 2005

Spring 1398 Ce 874 - Control Flow Integrity

Control Flow Integrity

protects against powerful adversary
- with full control over entire data memory

widely-applicable
 language-neutral; requires binary only

provably-correct & trustworthy
« formal semantics; small verifier

efficient
« hmm... 0-45% in experiments; average 16%

Spring 1398 Ce 874 - Control Flow Integrity

[Brumley’15]

Control Flow Integrity

protects against powerful adversary

- with full control over entire|data memory

widely-applicable
 language-neutral; requires binary only

provably-correct & trustworthy
« formal semantics; small verifier

efficient
« hmm... 0-45% in experiments; average 16%

Spring 1398 Ce 874 - Control Flow Integrity

[Brumley’15]

CFl Adversary Model

Can Can Not

- Overwrite any data memory at any Execute Data

time - NX takes care of that
- stack, heap, data segs Modify Code

- QOverwrite registers in current - text seg usually read-only

context . _
Write to %ip

* tfrue in x86

Overwrite registers in other
contexts

 kernel will restore regs

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

CFIl Overview

- Invariant: Execution must follow a path in a control flow graph (CFG) created
ahead of run time.
\ }

. Method: i

- build CFG statically, e.g., at compile time
* instrument (rewrite) binary, e.g., at install time
- add IDs and ID checks; maintain ID unigueness
- verify CFl instrumentation at load time
- direct jump targets, presence of IDs and ID checks, ID uniqueness
 perform ID checks at run time
* indirect jumps have matching IDs

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Spring 1398

Control Flow Graphs

Ce 874 - Control Flow Integrity

[Brumley’15]

Sasic Block

- Defn Basic Block: A consecutive sequence of instructions / code such that

- the instruction in each position always executes before (dominates) all
those in later positions, and

* nO outside instruction can execute between two instructions in the
sequence

3 static

1 dynamic
"~ basic blocks

~ basic block

6. jmp 3 B

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Sasic Block

control 1s *“‘straight™
(no jump targets except at the beginning,
no jumps except at the end)

3 static

1 dynamic
"~ basic blocks

~ basic block

6. jmp 3
Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

CFG Definition

- A static Control Flow Graph is a graph where
« each vertex vi is a basic block, and

- there is an edge (vi, v)) if there may be a transfer of control from block vi to
block vi;.

- Historically, the scope of a “CFG” is limited to a function or procedure, i.e.,
intra-procedural.

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Call Graph

- Nodes are functions. There is an edge (v, v if function v, calls function v..

vold orange() void red(int X) volid green()
{ { {

l. red(1l); green(); green();
2. red(2); e orange() ;
3. green(); } }

}

orange

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Super Graph

« Superimpose CFGs of all procedures over the call graph

vold orange() void red(int X) volid green()
{ { {

l. red(1); .. green();
2. red(2); } orange();
3. green(); }

}

A context sensitive super-
graph for orange lines 1

and 2.

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Precision: Sensitive or Insensitive

- The more precise the analysis, the more accurate it reflects the “real” program
behavior.

* More precise = more time to compute
* More precise = more space
- Limited by soundness/completeness tradeoff

- Common Terminology in any Static Analysis:
- Context sensitive vs. context insensitive
- Flow sensitive vs. flow insensitive
- Path sensitive vs. path insensitive

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Soundness Completeness

If analysis says X is true, If X is true, then analysis
then X is true. says X Is true.

a5

Things I say

True Things

Trivially Sound: Say nothing Trivially complete: Say everything

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Soundness Completeness

If analysis says X is true, If X is true, then analysis
then X is true. says X Is true.
True Things

Trivially Sound: Say nothing Trivially complete: Say everything

Sound and Complete: Say exactly the set of true things!
Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Soundness, Completeness, Precision, Recall,
False Negative, False Positive, All that Jazz...

Imagine we are building a classifier.
Ground truth: things on the left 1s “in”.
Our classifier: things inside circle 1s “in”.

Sound means FP 1s empty
I'N Complete means FN 1s empty

Precision = TP/(TP+FP)

Recall = TP/(FN+TP)

False Positive Rate = FP/(TP+FP)
False Negative Rate = FN/(FN+TN)
Accuracy = (TP+TN)/(Z everything)

17

Context Sensitive

Whether different calling contexts are distinguished

void yellow() void red(int Xx) volid green()
{ { {

l. red(1l); .. green();
2. red(2); } yellow();
3. green(); }

}

Context sensitive

distinguishes 2 different calls
to red(-)

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Context Sensitive Example

a = void id(int z) Context-Sensitive
{ return z; } (colorodenotes
b o= id(5)s S Tmmrse--- matching call/ret)
Context sensitive can tell one call returns 4, the other 5
a = void id(int z) Context-Insensitive
{ return z; } (note merging)
b = id(5); / Izze----

Context insensitive will say both calls return {4,5}
Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Flow Sensitive

- A flow sensitive analysis considers the order (flow) of statements
« Examples:

* Type checking is flow insensitive since a variable has a single type
regardless of the order of statements

 Detecting uninitialized variables requires flow sensitivity

= ° f -)
X 4 ’ Flow sensitive can
. o o o distinguish values of x,
flow 1nsensitive cannot
X = 53 Y,

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Flow Sensitive Example

~ - N
Flow sensitive:

1. % = 4- X 1s the constant 4 at line 1, x
) ! / 1S the constant 5 at line n
e e o o >_ \ j
n. x = 5; N
- Flow 1nsensitive:
X 1S not a constant
Y,

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Path Sensitive

A path sensitive analysis maintains branch conditions along each execution
path

* Requires extreme care to make scalable
« Subsumes flow sensitivity

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Path Sensitive Example

4 o)
| — path sensitive:
1. 1f(x >= 0) y >= 0 at line 2,
2. Yy = X; — y > 0 at line 4
AN /
3. else -
4 = ; :
° y T —%i path insensitive:
y 1s not a constant
_ J

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Precision

Even path sensitive analysis approximates behavior due to:
* loops/recursion
 unrealizable paths

l. 1f(ar + br = cn && n>2 && a>0 && b>0 && c>0)
2. X = 73

3. else Unrealizable path.

4. X = 8; x will always be 8

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Spring 1398

Control Flow Integrity (Analysis)

Ce 874 - Control Flow Integrity

[Brumley’15]

CFIl Overview

- Invariant: Execution must follow a path in a control flow graph (CFG) created
ahead of run time.

* Method:
- build CFG statically, e.g., at compile time
* instrument (rewrite) binary, e.g., at install time
- add IDs and ID checks; maintain ID unigueness
- verify CFl instrumentation at load time
- direct jump targets, presence of IDs and ID checks, ID uniqueness
 perform ID checks at run time
* indirect jumps have matching IDs

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Suild CFG

bool 1lt(int x, int y) {
return x < y;

}
bool gt(int x, int y) {
return x > y;

}

sort2(int al[], int b[], int len)
{

sort(a, len, 1t);

sort(b, len, gt);

Spring 1398

sort2():

§

call sort™

label 55 W

§

» direct calls

> indirect calls

call sort’

label 55 %

§

ret ..

sort () : 1t():
.......... : § /,v label 17
) call 17,RC §
. - ret 23
L label 23 &7
> \
PO gt () :
~ label 17
- ret 55
//
- 3
N ret 23
\
Two possible
return sites due to
context insensitivity
_ Y

Ce 874 - Control Flow Integrity

[Brumley’15]

Instrument Binary

(
predicated call 17, R: transfer control to R
only when R has label 17
. J
bool 1t(int x, int y) { sort2 () : 'sort() $ / 1t():
return x < y; § X § L v label 17
} o // §
11 o 11 17,R
bool gt(int x, int y) { cass BT e __Loret 23
return x > y; label 55 W label 23 &T
N \
} z N § N gt () :
call sort"'.:. T \\ taked 17
sort2(int a[], int b[], int len)
{ label 554
sort(a, len, 1t); §
sort(b, len, gt); et [predicated ret 23: transfer
} control to only label 23
 Insert a unique number at each destination (

» Two destinations are equivalent if CFG contains edges
to each from the same source

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Verity CFl Instrumentation

» Direct jump targets (e.g. call 0x12345678)
- are all targets valid according to CFG?
* IDs
* is there an ID right after every entry point?
 does any ID appear in the binary by accident?
* ID Checks
- is there a check before every control transfer?
- does each check respect the CFG?

Spring 1398 Ce 874 - Control Flow Integrity

[Brumley’15]

Verity CFl Instrumentation

» Direct jump targets (e.g. call 0x12345678)
- are all targets valid according to CFG?
* IDs
* is there an ID right after every entry point?
 does any ID appear in the binary by accident?
* ID Checks
- is there a check before every control transfer?
- does each check respect the CFG?

easy to implement correctly => trustworthy

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

What about indirect jumps and ret?

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

ID Checks

FF 53 08 call [ebx+8] ; call a function pointer

is instrumented using prefetchnta destination IDs, to become:

8B 43 08 mov eax, [ebx+8] ; load pointer into register

3E 81 78 04 78 56 34 12 cmp [eax+4], 12345678h ; compare opcodes at destination
75 13 jne error_label ; 1f not ID value, then fail

FF DO call eax ; call function pointer

3E OF 18 05 DD CC BB AA prefetchnta [AABBCCDDh] ; label ID, used upon the return

Fig. 4. Our CFI implementation of a call through a function pointer.

Bytes (opcodes) x86 assembly code Comment

C2 10 00 ret 10h ; return, and pop 16 extra bytes

is instrumented using prefetchnta destination IDs, to become:

8B 0C 24 mov ecx, [esp] ; load address into register

83 C4 14 add esp, 14h ; pop 20 bytes off the stack

3E 81 79 04 DD CC BB AA cmp [ecx+4], AABBCCDDh ; compare opcodes at destination
75 13 jne error_label ; i1f not ID value, then fail

FF E1 jmp ecx ; jump to return address

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

ID Checks Check dest label

FF 53 08 call [ebx+8] ; call s

on pointer

is instrumented using prefetchnta destinatio » {0 become:

8B 43 08 mov eax, [ebx+8] oad pointer into register

3E 81 78 04 78 56 34 12 cmp [eax+4],|12345678h |; compare opcodes at destination
75 13 jne error_label ; if not ID value, then fail

FF DO call eax ; call function pointer

3E OF 18 05 DD CC BB AA prefetchnta [AABBCCDDh] ; label ID, used upon the return

Fig. 4. Our CFI implementation of a call through a function pointer.

Bytes (opcodes) x86 assembly code Comment

C2 10 00 ret 10h ; return, and pop 16 extra bytes

is instrumented using prefetchnta destination IDs, to become:

8B 0C 24 mov ecx, [esp] ; load address into register

83 C4 14 add esp, 14h ; pop 20 bytes off the stack

3E 81 79 04 DD CC BB AA cmp [ecx+4], AABBCCDDh ; compare opcodes at destination
75 13 jne error_label ; i1f not ID value, then fail

FF E1 jmp ecx ; jump to return address

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

ID Checks Check dest label

FF 53 08 call [ebx+8] ; call s

on pointer

is instrumented using prefetchnta destinatio » {0 become:

8B 43 08 mov eax, [ebx+8] oad pointer into register

3E 81 78 04 78 56 34 12 cmp [eax+4],|12345678h |; compare opcodes at destination
75 13 jne error_label ; 1f not ID value, then fail

FF DO call eax ; call function pointer

3E OF 18 OSIDD CC BB AA| prefetchnta [AABBCCDDh] ; label ID, used upon the return

Fig. 4. Our CFI implementation of a call through a function pointer.

Bytes (opcodes) x86 assembly code Comment

Check dest label

C2 10 00 ret 10h ; return

is instrumented using prefetchnta destination IDs, tg

8B 0C 24 mov ecx, [esp] ; load@@¥dress into register

83 C4 14 add esp, 14h - b 20 bytes off the stack

3E 81 79 04 DD CC BB AA cmp [ecﬂ+4], hABBCCDDh compare opcodes at destination
75 13 jne error_label ; if not ID value, then fail

FF E1 jmp ecx ; jump to return address

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Performance

- Size: increase 8% avg
« Time: increase 0-45%; 16% avg

® 50% - 45%

(b}

=

O 40% -

@)

T 30% -

)

§ 20% - 16%
S Z
‘% 10% - %

bzip2 crafty eon gap gcc gzip mcf parser twolf vortex vpr AVG

Fig. 6. Execution overhead of inlined CFI enforcement on SPEC2000 benchmarks.
Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Security Guarantees

- Effective against attacks based on illegitimate control-flow transfer
- buffer overflow, ret2libc, pointer subterfuge, etc.

Any check becomes non-circumventable.

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Security Guarantees

- Effective against attacks based on illegitimate control-flow transfer
- buffer overflow, ret2libc, pointer subterfuge, etc.

Any check becomes non-circumventable.

- Allow data-only attacks since they respect CFG!
* incorrect usage (e.g. printf can still dump mem)
- substitution of data (e.g. replace file names)

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Software Fault Isolation

- SFl ensures that a module only accesses memory within its region by adding
checks

* e.dg., a plugin can accesses only its own memory

1f(module_lower < x < module_upper) <[J
SFI Check
z = load[x];

- CFl ensures inserted memory checks are executed

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

INnline Reference Monitors

* IRMs inline a security policy into binary to ensure security enforcement

- Any IRM can be supported by CFl + Software Memory Access Control
CFl. IRM code cannot be circumvented
+
- SMAC: IRM state cannot be tampered

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Accuracy vs. Security

« The accuracy of the CFG will reflect the level of enforcement of the security

mechanism.

bool 1t(int x, int y) {
return x < y;

}
bool gt(int x, int y) {
return x > y;

}

sort2(int al[], int b[], int len)
{

sort(a, len, 1t);

sort(b, len, gt);

Spring 1398

sort2():

§

call sort™

label 55 W

§

call sort’

label 55 %

§

ret ..

_

o
-
o
.
.
.
o
-
.
.
-
o

ot -'
..... p §

sort(): 1t() :

/,y label 17

——Tret 23

call 17,RC

S label 23 &T
N N
; -\\\~ § N gt () :
~ N\ label 17
_. ret 55 AN
/’/ \\
// \
\ret 23

C L .)
Indistinguishable sites, e.g., due to

lack of context sensitivity will be
merged

J

Ce 874 - Control Flow Integrity

[Brumley’15]

Context Sensitivity Problems

- Suppose A and B both call C.
« CFl uses same return label in A and B.

- How to prevent C from returning to B when
it was called from A?

- Shadow Call Stack
- a protected memory region for call stack
- each call/ret instrumented to update shadow
- CFl ensures instrumented checks will be run

Spring 1398 Ce 874 - Control Flow Integrity

[Brumley’15]

CFl Summary

- Control Flow Integrity ensures that control flow follows a path in CFG
« Accuracy of CFG determines level of enforcement
 Can build other security policies on top of CFl

Spring 1398 Ce 874 - Control Flow Integrity [Brumley’15]

Code Pointer Integrity
Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer,
George Candea, R. Sekar, Dawn Song, OSDI 2014

Spring 1398 Ce 874 - Control Flow Integrity

Control-Flow Hijack Attack

Memory

o
v

buf

@ 1int *q = buf + input; @
@ *xq = 1nput2;

—

@ Attacker corrupts a data pointer
@ Attacker uses it to overwrite a code pointer
@ Control-flow is transferred to shell code

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Memory safety prevents control-flow hijacks

@, python g) Java C:I:t

* ... but memory safe programs still rely on C/C++ ...
- Sample Python program (Dropbox SDK example):

Python program 3 KLOC of Python

libc 2500 KLOC of C

Spring 1398 Ce 874 - Control Flow Integrity

Y Swift .

MEMORY

SAFETY
FIRST

[Kuznetsov’14]

Memory safety can be retrofitted to C/C++

C/C++ Overhead
SoftBound+CETS 116%
CCured 56% MEMORY

(language modifications)

SAFETY

Watchd‘c.)g | 299, "nsr
(hardware modifications)
AddressSanitizer 739,
(approximate)

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

State of the art: Control-Flow Integrity

Static property:
limit the set of functions that can be called at each call site

Coarse-grained CFI Finest-grained CFI
can be bypassed [1-4] has 10-21% overhead [5-6]

Goktas et al., IEEE S&P 2014 [5] Akritidis et al., IEEE S&P 2008
Goktas et al., USENIX Security 2014 [6] Abadi et al., CCS 2005

] Davi et al., USENIX Security 2014

Carlini et al., USENIX Security 2014

BN =

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Programmers have to choose

Safety Flexibility
Security Performance

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Code-Pointer Integrity, provides both

__ Control-flow Unmodified C/C++
hijack protection
Practical protection 0.5 - 1.9% overhead
Guaranteed protection 8.4 - 10.5% overhead

Key insight: memory safety for code pointers only.

Tested on:
? r | A pgthOﬂ WSQUIC Iﬁm
 FreeBSD. s
hardened PostgreSQL &

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Threat Model

- Attacker can read/write data, read code
 Attacker cannot

- Modify program code

* Influence program loading

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’14]

Memory Safety: program instrumentation

char xbuf
buf_ Llower

char xq
g_lower =
if (g < q_

abort();
*q = 1input

?*func_ptr

malloc(10); 1. Assign metadata
P, bUf_Upper = p+1@;

buf + input; 2. Propagate metadata

buf_lower; q_upper = buf_upper;
lower || g >= g_upper-size)

X 3. Check metadata
’

)();

q—>

Memory

buf

func_ptr

116% average performance overhead (Nagarakatte et al., PLDI’09 and

Spring 1398

ISMM’10)
All-or-nothing protection

Ce 874 - Control Flow Integrity

[Kuznetsov’14]

Memory Safety

116% average performance overhead

Can memory safety be enforced
for code pointers only 7

Control-flow hijack protection
1.9% or 8.4% average performance overhead

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Practical Protection (CPS): Heap

Instructions that access code pointers are
int xg = buf + input; identified using type-based static analysis

*q = 1nput2;
Separation is enforced using hardware-

(xfunc_ptr) (); 7 enforced instruction-level isolation
Code Safe Regular All

pointlers Memory Memory non-code-
on .
y Program buf pointer data
< memory >
is separated Memory
func_ptr I layout
unchanged
2.5% 97.5%
Memory accesses memory accesses
(on SPEC2006 CPU) (on SPEC2006 CPU)

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Practical Protection (CPS): Stack

int foo() A
char buf[16];
int r;
r = scanf(“%s”, buf);
return r;
}
Only locals
All locals that |gafe Regular accessed
are only Stack Stack through
accessed pointers
safely < Stacks are >
r soparated 2L Not needed in
All accesses ret address most small
are safe functions

Safe stack adds <0.1% performance overhead!

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Practical Protection (CPS): Memory Layout

Regular memory
(non-code-pointer data)

Safe memory

(code pointers)

Safe Heap Regular Heap

Safe Safe Regular | |Regular
Stack Stack Stack Stack
(thread1) (thread?2) (thread1) (thread?)

Only instructions that operate on code Code (Read-Only)

pointers can access the safe memory

Hardware-based _j
Instruction-level isolation

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

The C

PS5

Promise

Spring 1398

Under CPS, an attacker
cannot forge a code pointer

Ce 874 - Control Flow Integrity

[Kuznetsov’14]

Under CPS, an attacker cannot forge a code
pointer

Contrived example of an attack

on a CPS-protected program Memory
@ int *xq = p + input; func_ptr
@ xq = input2; D g~
With CPS: @
® func_ptr = struct_ptr—>f; aF?” tot,a”Other
. unction or
@ (xfunc_ptr)(); AL ®(
valid
function

@ Attacker corrupts a data pointer

@ Attacker uses it to corrupt a struct pointer

@ Program loads a function pointer from wrong
location in the safe memory

@ Control-flow is transferred to different function whose
address was previously stored in the safe memory

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Under CPS, an attacker cannot forge a code
pointer

Contrived example of an attack

on a CPS-protected program Memory
int *q = p + input; With CPI:. func_ptr
*q = input2; structptr 1S
G ! sensitive and struct_ptr
cannot be
func_ptr = struct_ptr—>f; corrupted
(xfunc_ptr)();
valid
function

Precise solution: protect all sensitive' pointers

1Sensitive pointers = code pointers and
pointers used to access sensitive pointers

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Code-Pointer Separation

- Identify Code-Pointer accesses using static type-based analysis

« Separate using instruction-level isolation (e.g., segmentation)

- CPS security guarantees
« An attacker cannot forge new code pointers
- Code-Pointer is either immediate or assigned from code pointer

« An attacker can only replace existing functions through indirection: e.g.,
foo->bar->func() vs. foo->bar->func2()

Spring 1398 Ce 874 - Control Flow Integrity [Payer’14]

Code-Pointer Integrity (CPI)

+ Sensitive Pointers = code pointers and
pointers used to access sensitive pointers

- CPI identifies all sensitive pointers using an over-approximate type-based
static analysis:

IS_sensitive(v) = is_sensitive_type(type of v)

« Over-approximation only affects performance
« On SPEC2006 <= 6.5% accesses are sensitive

Spring 1398 Ce 874 - Control Flow Integrity [Payer’14]

Guaranteed Protection (CPI): Memory Layout
Accesses
are checked for Accesses
are fast

memory safety

Regular memory
(non-sensitive data)

Safe memory
(sensitive pointers and metadata)

Only instructions that operate on sensitive :
pointers can access the safe memory :

Hardware-based _/‘
Instruction-level isolation

Spring 1398

Safe Heap Regular Heap

Safe Safe Regular | |Regular
Stack Stack Stack Stack
(thread1) (thread?2) (thread1) (thread?2)

Code (Read-Only)

Ce 874 - Control Flow Integrity

[Kuznetsov’14]

Guaranteed Protection (CP)

- Guaranteed memory safety for all sensitive pointers

- Sensitive Pointers = code pointers and pointers used to access sensitive
pointers

- ==> (Guaranteed protection against control-flow hijack attacks enabled by
memory bugs

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’'14]

Code-Pointer Integrity vs. Separation

- Separate sensitive pointers from regular data
- Type-based static analysis
« Sensitive pointers = code pointers + pointers to sensitive pointers

« Accessing sensitive pointers is safe
« Separation + runtime (bounds) checks

* Accessing regular data is fast

* Instruction-level safe region isolation

Spring 1398 Ce 874 - Control Flow Integrity [Payer’14]

Security Guarantees

- Code-Pointer Integrity: formally guaranteed protection

* 8.4% to 10.5% overhead (~6.5% of memory accesses)
- Code-Pointer Separation: strong protection in practice

* 0.5% to 1.9% overhead (~2.5% of memory accesses)
- Safe Stack: full ROP protection

* Negligible overhead

Spring 1398 Ce 874 - Control Flow Integrity

[Payer’14]

Protects Average
Against

Technique Security Guarantees Overhead

CPS Strong 0.5-1.9%

(Practical protection)
Finest-grained Medium (attacks may exist) 10-21%
CFI Gokias el., IEEE S&P 2014 ?

, Weak (known attacks)
Coarse-grained Goktas el., IEEE S&P 2014 and USENIX Security 2014, . 4 5_169%

CFl Davi et al, USENIX Security 2014 ’
Carlini et al., USENIX Security 2014

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’14]

Implementation

» LLVM-based prototype
* Front end (clang): collect type information
- Back-end (llvm): CPI/CPS/SafeStack instrumentation pass
* Runtime support: safe heap and stack management
- Supported ISA's: x64 and x86 (partial)
« Supported systems: Mac OSX, FreeBSD, Linux

Spring 1398 Ce 874 - Control Flow Integrity [Payer’14]

Current status

« Great support for CPl on Mac OSX and FreeBSD on x64
» Upstreaming in progress
- Safe Stack coming to LLVM soon
 Fork it on GitHub now: https://github.com/cpi-llvm
« Code-review of CPS/CPI in process
- Play with the prototype: http://levee.epfl.ch/levee-early-preview-0.2.tgz

« Will release more packages soon
- Some changes to super complex build systems needed
- Adapt Makefiles for FreeBSD

Spring 1398 Ce 874 - Control Flow Integrity [Payer’14]

http://levee.epfl.ch/levee-early-preview-0.2.tgz

Conclusion

- CPI/CPS offers strong control-flow hijack protection
+ Key insight: memory safety for code pointers only
« Working prototype
- Supports unmodified C/C++, low overhead in practice
- Upstreaming patches in progress, SafeStack available soon!
- Homepage: http://levee.epfl.ch
- GitHub: https://github.com/cpi-llvm

Spring 1398 Ce 874 - Control Flow Integrity

[Payer’14]

http://levee.epfl.ch

Acknowledgments/References

 [Brumley’15] Introduction to Computer Security (18487/15487), David
Brumley and Vyas Sekar, CMU, Fall 2015.

 [Kuznetsov’14] Code-Pointer Integrity, Volodymyr Kuznetsov, Laszlo
Szekeres, Mathias Payer, George Candea, R. Sekar, Dawn Song, Slides from
OSDI 2014.

- [Payer’'14] Code-Pointer Integrity, Mathias Payer, Slides in (Chaos
Communication Congress) CCC 2014.

Spring 1398 Ce 874 - Control Flow Integrity 65

