
CE 874 - Secure Software Systems

Control Flow Integrity

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Spring 1398 Ce 874 - Control Flow Integrity

Run-Time protection/enforcement

• In many instances we only have
access to the binary

• How do we analyze the binary for
vulnerabilities?

• How do we protect the binary from
exploitation?

• This would be our topic for the next
few lectures

Spring 1398 Ce 874 - Control Flow Integrity

Files

Sockets

Computer Operations

People

Processes

Computer Operations

Op request

Op response

Subject Object

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Reference Monitor: Principles

• Complete Mediation: The reference monitor must always be invoked

• Tamper-proof: The reference monitor cannot be changed by unauthorized

subjects or objects

• Verifiable: The reference monitor is small enough to thoroughly understand,

test, and ultimately, verify.

Subject Object

Op request

Op response

Reference
Monitor

Op request

Op response

Policy

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Inlined Referenced Monitor

Today’s Example:  
Inlining a control flow policy into a program

 Subject Object

Op request

Op response

Reference
Monitor

Policy

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Control-Flow Integrity: Principles, Implementations,
and Applications
Martin Abadi, Mihai Budiu, U ́lfar Erlingsson, Jay Ligatti,
CCS 2005

Spring 1398 Ce 874 - Control Flow Integrity

• protects against powerful adversary

• with full control over entire data memory

• widely-applicable

• language-neutral; requires binary only

• provably-correct & trustworthy

• formal semantics; small verifier

• efficient

• hmm… 0-45% in experiments; average 16%

Control Flow Integrity

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

• protects against powerful adversary

• with full control over entire data memory

• widely-applicable

• language-neutral; requires binary only

• provably-correct & trustworthy

• formal semantics; small verifier

• efficient

• hmm… 0-45% in experiments; average 16%

Control Flow Integrity

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

CFI Adversary Model

• Overwrite any data memory at any
time

• stack, heap, data segs

• Overwrite registers in current
context

Can Can Not
• Execute Data

• NX takes care of that

• Modify Code

• text seg usually read-only

• Write to %ip

• true in x86

• Overwrite registers in other

contexts

• kernel will restore regs

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

CFI Overview

• Invariant: Execution must follow a path in a control flow graph (CFG) created
ahead of run time. 

• Method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time

• add IDs and ID checks; maintain ID uniqueness

• verify CFI instrumentation at load time

• direct jump targets, presence of IDs and ID checks, ID uniqueness

• perform ID checks at run time

• indirect jumps have matching IDs

“static”

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Control Flow Graphs

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Basic Block

• Defn Basic Block: A consecutive sequence of instructions / code such that

• the instruction in each position always executes before (dominates) all

those in later positions, and

• no outside instruction can execute between two instructions in the

sequence

1. x = y + z

2. z = t + i

3. x = y + z

4. z = t + i

5. jmp 1

6. jmp 3

3 static  
basic blocks

1. x = y + z

2. z = t + i 
3. x = y + z

4. z = t + i

5. jmp 1

1 dynamic 
basic block

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Basic Block

• Defn Basic Block: A consecutive sequence of instructions / code such that

• the instruction in each position always executes before (dominates) all

those in later positions, and

• no outside instruction can execute between two instructions in the

sequence

1. x = y + z

2. z = t + i

3. x = y + z

4. z = t + i

5. jmp 1

6. jmp 3

3 static  
basic blocks

1. x = y + z

2. z = t + i 
3. x = y + z

4. z = t + i

5. jmp 1

1 dynamic 
basic block

[Brumley’15]

control is “straight” 
(no jump targets except at the beginning, 

no jumps except at the end)

Spring 1398 Ce 874 - Control Flow Integrity

CFG Definition

• A static Control Flow Graph is a graph where

• each vertex vi is a basic block, and

• there is an edge (vi, vj) if there may be a transfer of control from block vi to

block vj.

• Historically, the scope of a “CFG” is limited to a function or procedure, i.e.,
intra-procedural.

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Call Graph

• Nodes are functions. There is an edge (vi, vj) if function vi calls function vj.

void orange()

{

1. red(1);

2. red(2);

3. green();  
}

void red(int x)

{

green();

...

}

void green()

{

 green();

 orange();

}

orange
red

green

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Super Graph

• Superimpose CFGs of all procedures over the call graph

1: red1
2
3 2: red

A context sensitive super-
graph for orange lines 1
and 2.

void orange()

{

1. red(1);

2. red(2);

3. green();  
}

void red(int x)

{

..

}

void green()

{

 green();

 orange();

}

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Precision: Sensitive or Insensitive

• The more precise the analysis, the more accurate it reflects the “real” program
behavior.

• More precise = more time to compute

• More precise = more space

• Limited by soundness/completeness tradeoff

• Common Terminology in any Static Analysis:

• Context sensitive vs. context insensitive

• Flow sensitive vs. flow insensitive

• Path sensitive vs. path insensitive

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Things I say

Soundness

If analysis says X is true,
then X is true.

True Things

Things I say True Things

Trivially Sound: Say nothing Trivially complete: Say everything

Completeness

If X is true, then analysis
says X is true.

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Things I say

Soundness

If analysis says X is true,
then X is true.

True Things

Things I say True Things

Trivially Sound: Say nothing Trivially complete: Say everything

Sound and Complete: Say exactly the set of true things!

Completeness

If X is true, then analysis
says X is true.

[Brumley’15]

Soundness, Completeness, Precision, Recall,
False Negative, False Positive, All that Jazz…
Imagine we are building a classifier.  
Ground truth:	 things on the left is “in”. 
Our classifier:	 things inside circle is “in”.

17

FN TN

TP FP

Sound means FP is empty

Complete means FN is empty

Precision = TP/(TP+FP)

Recall = TP/(FN+TP)

False Positive Rate = FP/(TP+FP)

False Negative Rate = FN/(FN+TN)

Accuracy = (TP+TN)/(Σ everything)

Spring 1398 Ce 874 - Control Flow Integrity

Context Sensitive

Whether different calling contexts are distinguished

void yellow()

{

1. red(1);

2. red(2);

3. green();  
}

void red(int x)

{

..

}

void green()

{

 green();

 yellow();

}

Context sensitive
distinguishes 2 different calls

to red(-)

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Context Sensitive Example

a = id(4);  

b = id(5);

void id(int z)  
{ return z; }

Context-Sensitive 
(color denotes  
matching call/ret)

a = id(4);  

b = id(5);

void id(int z)  
{ return z; }

Context-Insensitive 
(note merging)

Context sensitive can tell one call returns 4, the other 5

Context insensitive will say both calls return {4,5}
[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Flow Sensitive

• A flow sensitive analysis considers the order (flow) of statements

• Examples:

• Type checking is flow insensitive since a variable has a single type
regardless of the order of statements

• Detecting uninitialized variables requires flow sensitivity

x = 4;

....

x = 5;

Flow sensitive can
distinguish values of x,
flow insensitive cannot

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Flow Sensitive Example

1. x = 4;

....

n. x = 5;

Flow sensitive: 
x is the constant 4 at line 1, x

is the constant 5 at line n

Flow insensitive: 
x is not a constant

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Path Sensitive

• A path sensitive analysis maintains branch conditions along each execution
path

• Requires extreme care to make scalable

• Subsumes flow sensitivity

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Path Sensitive Example

1. if(x >= 0)  
2. y = x;  
3. else  
4. y = -x;

path sensitive: 
y >= 0 at line 2, 
y > 0 at line 4

path insensitive: 
y is not a constant

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Precision

Even path sensitive analysis approximates behavior due to:

• loops/recursion

• unrealizable paths

1. if(an + bn = cn && n>2 && a>0 && b>0 && c>0)  
2. x = 7;  
3. else  
4. x = 8;

Unrealizable path.  
x will always be 8

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Control Flow Integrity (Analysis)

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

CFI Overview

• Invariant: Execution must follow a path in a control flow graph (CFG) created
ahead of run time. 

• Method:

• build CFG statically, e.g., at compile time

• instrument (rewrite) binary, e.g., at install time

• add IDs and ID checks; maintain ID uniqueness

• verify CFI instrumentation at load time

• direct jump targets, presence of IDs and ID checks, ID uniqueness

• perform ID checks at run time

• indirect jumps have matching IDs

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Build CFG

Two possible 
return sites due to 

context insensitivity

direct calls

indirect calls

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Instrument Binary
predicated call 17, R: transfer control to R  

only when R has label 17

predicated ret 23: transfer
control to only label 23

• Insert a unique number at each destination

• Two destinations are equivalent if CFG contains edges 

to each from the same source

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Verify CFI Instrumentation

• Direct jump targets (e.g. call 0x12345678)

• are all targets valid according to CFG?

• IDs

• is there an ID right after every entry point?

• does any ID appear in the binary by accident?

• ID Checks

• is there a check before every control transfer?

• does each check respect the CFG?

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Verify CFI Instrumentation

• Direct jump targets (e.g. call 0x12345678)

• are all targets valid according to CFG?

• IDs

• is there an ID right after every entry point?

• does any ID appear in the binary by accident?

• ID Checks

• is there a check before every control transfer?

• does each check respect the CFG?

easy to implement correctly => trustworthy

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

What about indirect jumps and ret?

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

ID Checks

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

ID Checks Check dest label

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

ID Checks Check dest label

Check dest label

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Performance

• Size: increase 8% avg

• Time: increase 0-45%; 16% avg

16%

45%

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Security Guarantees

• Effective against attacks based on illegitimate control-flow transfer
• buffer overflow, ret2libc, pointer subterfuge, etc.

Any check becomes non-circumventable.

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Security Guarantees

• Effective against attacks based on illegitimate control-flow transfer
• buffer overflow, ret2libc, pointer subterfuge, etc.

• Allow data-only attacks since they respect CFG!
• incorrect usage (e.g. printf can still dump mem)
• substitution of data (e.g. replace file names)

Any check becomes non-circumventable.

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Software Fault Isolation

• SFI ensures that a module only accesses memory within its region by adding
checks

• e.g., a plugin can accesses only its own memory

 if(module_lower < x < module_upper)

 z = load[x];

• CFI ensures inserted memory checks are executed

SFI Check

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Inline Reference Monitors

• IRMs inline a security policy into binary to ensure security enforcement

• Any IRM can be supported by CFI + Software Memory Access Control

• CFI: 	 IRM code cannot be circumvented

	 	 +

• SMAC: IRM state cannot be tampered

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Accuracy vs. Security

• The accuracy of the CFG will reflect the level of enforcement of the security
mechanism.

Indistinguishable sites, e.g., due to
lack of context sensitivity will be

merged

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Context Sensitivity Problems

• Suppose A and B both call C.

• CFI uses same return label in A and B.

• How to prevent C from returning to B when 
it was called from A?

• Shadow Call Stack

• a protected memory region for call stack

• each call/ret instrumented to update shadow

• CFI ensures instrumented checks will be run

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

CFI Summary

• Control Flow Integrity ensures that control flow follows a path in CFG

• Accuracy of CFG determines level of enforcement

• Can build other security policies on top of CFI

[Brumley’15]

Spring 1398 Ce 874 - Control Flow Integrity

Code Pointer Integrity
Volodymyr Kuznetsov, László Szekeres, Mathias Payer,
George Candea, R. Sekar, Dawn Song, OSDI 2014

Spring 1398 Ce 874 - Control Flow Integrity

Control-Flow Hijack Attack

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Memory safety prevents control-flow hijacks

• ... but memory safe programs still rely on C/C++ ...

• Sample Python program (Dropbox SDK example):

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Memory safety can be retrofitted to C/C++

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

State of the art: Control-Flow Integrity

Static property: 
limit the set of functions that can be called at each call site

[Kuznetsov’14]

Finest-grained CFI has 10-21%
overhead [5-6]

[5] Akritidis et al., IEEE S&P 2008

[6] Abadi et al., CCS 2005

Coarse-grained CFI and can be
bypassed [1-4]

[1] Göktaş et al., IEEE S&P 2014 
[2] Göktaş et al., USENIX Security 2014

[3] Davi et al., USENIX Security 2014

[4] Carlini et al., USENIX Security 2014

Spring 1398 Ce 874 - Control Flow Integrity

Programmers have to choose

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Code-Pointer Integrity, provides both

Key insight: memory safety for code pointers only.

Tested on:

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Threat Model

• Attacker can read/write data, read code

• Attacker cannot

• Modify program code

• Influence program loading

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Memory Safety: program instrumentation

116% average performance overhead (Nagarakatte et al., PLDI’09 and
ISMM’10)

All-or-nothing protection

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Memory Safety

116% average performance overhead

Control-flow hijack protection 
1.9% or 8.4% average performance overhead

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Practical Protection (CPS): Heap

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Practical Protection (CPS): Stack

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Practical Protection (CPS): Memory Layout

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

The CPS Promise

Under CPS, an attacker

cannot forge a code pointer

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Under CPS, an attacker cannot forge a code
pointer

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Under CPS, an attacker cannot forge a code
pointer

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Code-Pointer Separation

• Identify Code-Pointer accesses using static type-based analysis

• Separate using instruction-level isolation (e.g., segmentation)

• CPS security guarantees

• An attacker cannot forge new code pointers

• Code-Pointer is either immediate or assigned from code pointer

• An attacker can only replace existing functions through indirection: e.g.,

foo->bar->func() vs. foo->bar->func2()

[Payer’14]

Spring 1398 Ce 874 - Control Flow Integrity

Code-Pointer Integrity (CPI)

• Sensitive Pointers = code pointers and

pointers used to access sensitive pointers

• CPI identifies all sensitive pointers using an over-approximate type-based
static analysis:

 is_sensitive(v) = is_sensitive_type(type of v)

• Over-approximation only affects performance

• On SPEC2006 <= 6.5% accesses are sensitive

[Payer’14]

Spring 1398 Ce 874 - Control Flow Integrity

Guaranteed Protection (CPI): Memory Layout

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Guaranteed Protection (CPI)

• Guaranteed memory safety for all sensitive pointers

• Sensitive Pointers = code pointers and pointers used to access sensitive

pointers

• ==> Guaranteed protection against control-flow hijack attacks enabled by
memory bugs

[Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Code-Pointer Integrity vs. Separation

• Separate sensitive pointers from regular data

• Type-based static analysis

• Sensitive pointers = code pointers + pointers to sensitive pointers

• Accessing sensitive pointers is safe

• Separation + runtime (bounds) checks

• Accessing regular data is fast

• Instruction-level safe region isolation

[Payer’14]

Spring 1398 Ce 874 - Control Flow Integrity

Security Guarantees

• Code-Pointer Integrity: formally guaranteed protection

• 8.4% to 10.5% overhead (~6.5% of memory accesses)

• Code-Pointer Separation: strong protection in practice

• 0.5% to 1.9% overhead (~2.5% of memory accesses)

• Safe Stack: full ROP protection

• Negligible overhead

[Payer’14]

Spring 1398 Ce 874 - Control Flow Integrity [Kuznetsov’14]

Spring 1398 Ce 874 - Control Flow Integrity

Implementation

• LLVM-based prototype

• Front end (clang): collect type information

• Back-end (llvm): CPI/CPS/SafeStack instrumentation pass

• Runtime support: safe heap and stack management

• Supported ISA's: x64 and x86 (partial)

• Supported systems: Mac OSX, FreeBSD, Linux

[Payer’14]

Spring 1398 Ce 874 - Control Flow Integrity

Current status

• Great support for CPI on Mac OSX and FreeBSD on x64

• Upstreaming in progress

• Safe Stack coming to LLVM soon

• Fork it on GitHub now: https://github.com/cpi-llvm

• Code-review of CPS/CPI in process

• Play with the prototype: http://levee.epfl.ch/levee-early-preview-0.2.tgz

• Will release more packages soon

• Some changes to super complex build systems needed

• Adapt Makefiles for FreeBSD

[Payer’14]

http://levee.epfl.ch/levee-early-preview-0.2.tgz

Spring 1398 Ce 874 - Control Flow Integrity

Conclusion

• CPI/CPS offers strong control-flow hijack protection

• Key insight: memory safety for code pointers only

• Working prototype

• Supports unmodified C/C++, low overhead in practice

• Upstreaming patches in progress, SafeStack available soon!

• Homepage: http://levee.epfl.ch

• GitHub: https://github.com/cpi-llvm

[Payer’14]

http://levee.epfl.ch

Spring 1398 Ce 874 - Control Flow Integrity

Acknowledgments/References

• [Brumley’15] Introduction to Computer Security (18487/15487), David
Brumley and Vyas Sekar, CMU, Fall 2015.

• [Kuznetsov’14] Code-Pointer Integrity, Volodymyr Kuznetsov, László
Szekeres, Mathias Payer, George Candea, R. Sekar, Dawn Song, Slides from
OSDI 2014.

• [Payer’14] Code-Pointer Integrity, Mathias Payer, Slides in (Chaos
Communication Congress) CCC 2014.

65

