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Building secure computer systems

•  Secure = achieves some property despite attacks by adversaries.

•   Systematic thought is required for successful defense.


• Details matter!

[CS6.858’19]

Devil is in the details!
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High-level plan for thinking about security

• Goal: what your system is trying to achieve.

• e.g. only Alice should read file F.

• Common goals: confidentiality, integrity, availability.


• Policy: some plan (rules) that will get your system to achieve the goal.

• e.g. set permissions on F so it's readable only by Alice's processes.

• e.g. require a password and two-factor authentication.


• Threat model: assumptions about what the attacker can do.

• e.g. can guess passwords, cannot physically steal our server.


• Mechanism: software/hardware that your system uses to enforce policy.

• e.g. user accounts, passwords, file permissions, encryption.

• policy might include human components (e.g., do not share passwords) 

that's outside of the scope of the security mechanisms

[CS6.858’19]



Spring 1398 Ce 874 -Lecture 0

Building secure systems is hard -- why?

• Example: grade files are stored on a university server.

• Policy: only TAs should be able to read and write the grades file.


• Easy to implement the *positive* aspect of the policy:

• There just has to be one code path that allows a TA to get at the file.


• But security is a *negative* goal:

• We want no tricky way for a non-TA to get at the file.


• There are a huge number of potential attacks to consider!

• Exploit a bug in the server's code.

• Guess a TA's password.

• Steal a TA's laptop, maybe it has a local copy of the grades file.

• Intercept grades when they are sent over the network to the registrar.

• Get a job in the registrar's office, or as a class TA.

[CS6.858’19]
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Building secure systems is hard -- why?

• One cannot get policies/threats/mechanisms right on the first try and must 
usually iterate:

• Design, watch attacks, update understanding of threats and policies.

• Post-mortems important to understand


• Public databases of vulnerabilities (e.g., https://cve.mitre.org/)

• Encourage people to report vulnerabilities (e.g., bounty programs)


• Defender is often at a disadvantage in this game.

• Defender usually has limited resources, other priorities.

• Defender must balance security against convenience.


• A determined attacker can usually win!

• Defense in depth

• Recovery plan (e.g., secure backups)


• That is why we review failures to make you start thinking in this way

[CS6.858’19]
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What's the point if we can't achieve perfect 
security?

• Perfect security is rarely required.

• Make cost of attack greater than the value of the information.


• So that perfect defenses aren't needed.

• Make our systems less attractive than other peoples'.


• Works well if attacker e.g. just wants to generate spam.

• Find techniques that have big security payoff (i.e. not merely patching holes).


• We'll look at techniques that cut off whole classes of attacks.

• Successful: popular attacks from 10 years ago are no longer very fruitful.

[CS6.858’19]
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What's the point if we can't achieve perfect 
security?

• Sometimes security *increases* value for defender:

• VPNs might give employees more flexibility to work at home.

• Sandboxing (JavaScript, Native Client) might give me more confidence to run 

software I don't fully understand.

• No perfect physical security either.


• But that's OK: cost, deterrence.

• One big difference in computer security: attacks are cheap.

[CS6.858’19]
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What goes wrong #1:

• Problems with the policy.

• i.e. system correctly enforces policy -- but policy is inadequate.


• Example: Business-class airfare.

• Airlines allow business-class tickets to be changed at any time, no fees.

• Is this a good policy?

• Turns out, in some systems ticket could have been changed even AFTER 

boarding.

• Adversary can keep boarding plane, changing ticket to next flight, ad 

infinitum.

• Revised policy: ticket cannot be changed once passenger has boarded the 

flight.

• Sometimes requires changes to the system architecture.

• Need computer at the aircraft gate to send updates to the reservation 

system.

[CS6.858’19]
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Examples of Policy Failure

[CS6.858’19]

• Example: Verifying domain ownership for TLS certificates.

• Browser verifies server's certificate to ensure talking to the right server.

• Certificate contains server's host name and cryptographic key, signed by 

some trusted certificate authority (CA).

• Browser has CA's public key built in to verify certificates.

• CA is in charge of ensuring that certificate is issued only to legitimate domain 

(hostname) owner.

• Typical approach: send email to the contact address for a domain.
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Examples of Policy Failure

[CS6.858’19]

• Example: Verifying domain ownership for TLS certificates (con’t)

• Some TLDs (like .eu) do not reveal the contact address in ASCII text.


• Most likely to prevent spam to domain owners.

• Instead, they reveal an ASCII image of the email address.

• One CA (Comodo) decided to automate this by OCR'ing the ASCII image.

• Turns out, some ASCII images are ambiguous!


• E.g., foo@a1telekom.at was mis-OCRed as foo@altelekom.at

• Adversary can register mis-parsed domain name, get certificate for 

someone else's domain.

• [ Ref: https://www.mail-archive.com/dev-security-policy@lists.mozilla.org/

msg04654.html ]
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Examples of Policy Failure

[CS6.858’19]

• Example: Fairfax County, VA school system.

• [ Ref: http://catless.ncl.ac.uk/Risks/26.02.html#subj7.1 ]

• Student can access only his/her own files in the school system.

• Superintendent has access to everyone's files.

• Teachers can add new students to their class.

• Teachers can change password of students in their class.

• What's the worst that could happen if student gets teacher's password?


• Student adds the superintendent to the compromised teacher's class.

• Changes the superintendent's password, since they're a student in class.

• Logs in as superintendent and gets access to all files.


• Policy amounts to: teachers can do anything.
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Examples of Policy Failure

[CS6.858’19]

• Example: Sarah Palin's email account.

• [ Ref: http://en.wikipedia.org/wiki/Sarah_Palin_email_hack ]

• Yahoo email accounts have a username, password, and security questions.

• User can log in by supplying username and password.

• If user forgets password, can reset by answering security Qs.

• Some adversary guessed Sarah Palin's high school, birthday, etc.

• Policy amounts to: can log in with either password *or* security Qs.


• No way to enforce "Only if user forgets password, then ..."

• Thus user should ensure that password *and* security Qs are both hard to 

guess.
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Examples of Policy Failure

[CS6.858’19]

• Example: Mat Honan's accounts at Amazon, Apple, Google, etc.

• [ Ref: http://www.wired.com/gadgetlab/2012/08/apple-amazon-mat-honan-

hacking/all/ ]

• Honan an editor at wired.com; someone wanted to break into his gmail account.

• Gmail password reset: send a verification link to a backup email address.


• Google helpfully prints part of the backup email address.

• Mat Honan's backup address was his Apple @me.com account.


• Apple password reset: need billing address, last 4 digits of credit card.

• Address is easy, but how to get the 4 digits?


• How to get hold of that e-mail?

• Call Amazon and ask to add a credit card to an account.


• No authentication required,

• presumably because this didn't seem like a sensitive operation.
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Examples of Policy Failure

[CS6.858’19]

• Example: Mat Honan's accounts at Amazon, Apple, Google, etc. (con’t)

• Call Amazon tech support again, and ask to change the email address on an 

account.

• Authentication required!

• Tech support accepts the full number of any credit card registered with the 

account.

• Can use the credit card just added to the account.


• Now go to Amazon's web site and request a password reset.

• Reset link sent to the new e-mail address.


• Now log in to Amazon account, view saved credit cards.

• Amazon doesn't show full number, but DOES show last 4 digits of all 

cards.

• Including the account owner's original cards!
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Examples of Policy Failure

[CS6.858’19]

• Example: Mat Honan's accounts at Amazon, Apple, Google, etc. (con’t)

• Now attacker can reset Apple password, read gmail reset e-mail, reset gmail 

password.

• Lesson: attacks often assemble apparently unrelated trivia.

• Lesson: individual policies OK, but combination is not.


• Apple views last 4 as a secret, but many other sites do not.

• Lesson: big sites cannot hope to identify which human they are talking to;


• at best "same person who originally created this account".

• security questions and e-mailed reset link are examples of this.
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Policy Failures

• Policies typically go wrong in "management" or "maintenance" cases.

• Who can change permissions or passwords?

• Who can access audit logs?

• Who can access the backups?

• Who can upgrade the software or change the configuration?

• Who can manage the servers?

• Who revokes privileges of former admins / users / ...?

[CS6.858’19]
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What goes wrong #2:

• Problems with threat model / assumptions.

• i.e. designer assumed an attack wasn't feasible (or didn't think of the attack).


• Example: assume the design/implementation is secret

• "Security through obsecurity"

• Clipper chip (https://en.wikipedia.org/wiki/Clipper_chip)

• Broken secret crypto functions


• Example: most users are not thinking about security.

• User gets e-mail saying "click here to renew your account",


• then plausible-looking page asks for their password.

• Or dialog box pops up with "Do you really want to install this program?"

• Or tech support gets call from convincing-sounding user to reset password.

[CS6.858’19]
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Examples of Incorrect Assumptions

• Example: computational assumptions change over time.

• MIT's Kerberos system used 56-bit DES keys, since mid-1980's.

• At the time, seemed fine to assume adversary can't check all 2^56 keys.

• No longer reasonable: now costs about $100.


• [ Ref: https://www.cloudcracker.com/dictionaries.html ]

• Several years ago, a class final project showed can get any key in a day.

[CS6.858’19]
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Examples of Incorrect Assumptions

• Example: assuming a particular kind of a solution to the problem.

• Many services use CAPTCHAs to check if a human is registering for an account.


• Requires decoding an image of some garbled text, for instance.

• Goal is to prevent mass registration of accounts to limit spam, prevent high rate of 

password guessing, etc.

• Assumed adversary would try to build OCR to solve the puzzles.


• Good plan because it's easy to change image to break the OCR algorithm.

• Costly for adversary to develop new OCR!


• Turns out adversaries found another way to solve the same problem.

• Human CAPTCHA solvers in third-world countries.

• Human solvers are far better at solving CAPTCHAs than OCRs or even regular 

users.

• Cost is very low (fraction of a cent per CAPTCHA solved).


• [ Ref: https://www.cs.uic.edu/pub/Kanich/Publications/re.captchas.pdf ]

[CS6.858’19]
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Examples of Incorrect Assumptions

• Example: XcodeGhost.

• Apple's development tools for iPhone applications (Xcode) are large.

• Downloading them from China required going to Apple's servers outside of 

China.

• Takes a long time.

• Unofficial mirrors of Xcode tools inside China.

• Some of these mirrors contained a modified version of Xcode that injected 

malware into the resulting iOS applications.

• Found in a number of high-profile, popular iOS apps!


• [ Ref: https://en.wikipedia.org/wiki/XcodeGhost ]

• Classic paper: Reflections on Trusting Trust.

[CS6.858’19]
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Examples of Incorrect Assumptions

• Example: decomissioned disks.

• Many laptops, desktops, servers are thrown out without deleting sensitive 

data.

• One study reports large amounts of confidential data on disks bought via 

ebay, etc.

• [ Ref: https://simson.net/page/Real_Data_Corpus ]

[CS6.858’19]
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What goes wrong #3: problems with the 
mechanism -- bugs

•  Bugs routinely undermine security.

• Rule of thumb: one bug per 1000 lines of code.

• Bugs in implementation of security policy.

• But also bugs in code that may seem unrelated to security, but they are not


• Good mindset: Any bug is a potential security exploit

• Example: Apple's iCloud password-guessing rate limits.


• [ Ref: https://github.com/hackappcom/ibrute ]

• People often pick weak passwords; can often guess w/ few attempts (1K-1M).

• Most services, including Apple's iCloud, rate-limit login attempts.

• Apple's iCloud service has many APIs.

• One API (the "Find my iPhone" service) forgot to implement rate-limiting.

• Attacker could use that API for millions of guesses/day.

• Lesson: if many checks are required, one will be missing.

[CS6.858’19]
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Example Bugs

• Example: Mis-handling of error codes.

• [ Ref: https://www.mail-archive.com/dev-security-policy@lists.mozilla.org/

msg05398.html ]

• Some certificate authorities rely on checking for a particular challenge file on 

a web server to prove domain ownership.

• GoDaddy mis-handled error cases (when web server responded with an error 

to the request AND printed the requested URL as part of the error reply).

• Treated such requests as passing.

[CS6.858’19]
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Example Bugs

• Example: Missing access control checks in Citigroup's credit card web site.

• [ Ref: http://www.nytimes.com/2011/06/14/technology/14security.html ]

• Citigroup allowed credit card users to access their accounts online.

• Login page asks for username and password.

• If username and password OK, redirected to account info page.

• The URL of the account info page included some numbers.


• e.g. x.citi.com/id=1234

• The numbers were (related to) the user's account number.

• Adversary tried different numbers, got different people's account info.

• The server didn't check that you were logged into that account!

• Lesson: programmers tend to think only of intended operation.

[CS6.858’19]
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Example Bugs

• Example: poor randomness for cryptography.

• Need high-quality randomness to generate the keys that can't be guessed.

• Android's Java SecureRandom weakness leads to Bitcoin theft.

• [ Ref: https://bitcoin.org/en/alert/2013-08-11-android ]

• [ Ref: https://www.nilsschneider.net/2013/01/28/recovering-bitcoin-private-

keys.html ]

• Bitcoins can be spent by anyone that knows the owner's private key.

• Many Bitcoin wallet apps on Android used Java's SecureRandom API.

• Turns out the system sometimes forgot to seed the PRNG!


• A Pseudo-Random Number Generator is deterministic after you set the 
seed.


• So the seed had better be random!

[CS6.858’19]
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Example Bugs

• Example: poor randomness for cryptography (con’t)

• As a result, some Bitcoin keys turned out to be easy to guess.

• Adversaries searched for guessable keys, spent any corresponding bitcoins.

• Really it was the nonce in the ECDSA signature that wasn't random and 

repeated nonce allows private key to be deduced.

• Lesson: be careful


• Embedded devices generate predictable keys.

• Problem: embedded devices, virtual machines may not have much 

randomness.

• As a result, many keys are similar or susceptible to guessing attacks.

• [ Ref: https://factorable.net/weakkeys12.extended.pdf ]

[CS6.858’19]



Spring 1398 Ce 874 -Lecture 0

Example Bugs

• Example: Moxie's SSL certificate name checking bug

• [ Ref: http://www.wired.com/2009/07/kaminsky/ ]

• Certificates use length-encoded strings, but C code often is null-terminated.

• CAs would grant certificate for amazon.com\0.nickolai.org

• Browsers saw the \0 and interpreted as a cert for amazon.com

• Lesson: parsing code is a huge source of security bugs.

[CS6.858’19]
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Example Bugs

• buffer overflows

• format string attacks

• return oriented programming

• etc.

[CS6.858’19]
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Administrivia

• Website:

• sharif.edu/~kharrazi/courses/40815-001/

• You are expected to check the website regularly


• Discord server


• Grading (tentatively)

• 15% Class Participation (i.e. Active in discussions both in-class and out-

of-class on Discord. “Being Proactive”)

• 55% HWs

• 30% Final Exam
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Administrivia

• Prerequisites

• Motivation to learn

• Motivation to learn

• Motivation to learn

• Motivation to learn

• Motivation to learn

• Understand that the devil is in the details

• Understand that the devil is in the details

• Data and network security + OS

• assuming you all know how to write code!! Or will learn on your own in the 

semester ;)
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References

• Lot’s of research papers
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Policies

• Late Homework

• One day late will cost you 25%, two days 50%, and three days 75%.

• No homework will be accepted after the third day.


• Cellphones

• Please turn them off before entering class.


• Cheating and Copying

• First time you are caught you will get a zero for the task at hand.

• Second time you are caught you will fail the course.

• Providing your assignment to someone else is considered cheating on 

your behalf.

• More detail on the course webpage.

33
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Ethics of security

• Taking a network security class is not an excuse for hacking

• “Hacking” is any form of unauthorized access, including exceeding 

authorized permissions

• The fact that a file or computer is not properly protected is no excuse for 

unauthorized access

• Absolutely no Trojan horses, back doors, or other malicious code in 

homework assignments

[Bellovin 06] 34
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