
In the name of God

Sharif University of Technology
Department of Computer Engineering

CE 815: Secure Software Systems
Mehdi Kharrazi Azar 27th, 1400

Homework 2
∗

1 BAT: Binary Analysis Tool
Part III: Disassembling elves with Capstone

1.1 Instructions
In the previous assignment, we made a disassembler for executables in Linux, now we are going to
make use of that to plot the callgraph of a program. To do this, we need to track ”call” and ”ret”
instructions. Is there anyway this would change? (Try playing with optimization levels to see if it
makes a difference).
The task expected of you in this assignment, is to add a module to BAT, which gets a binary as
input and outputs the callgraph in DOT format. Then, simply convert dot files to PNG images.
Your callgraph should consists of **function names** and their relationships.

Figure 1: Call Graph

∗Acknowledgement: This homework was developed by Iman Hosseini and Solmaz Salimi, edited by Razieh Eskan-
dari and Parisa EzzatPanah

https://en.wikipedia.org/wiki/DOT_(graph_description_language)

CE 815 — Azar 27th, 1400 Homework 2 2

1.2 Syscalls
Detect all the syscalls of a program, in each function. So that in your callgraph, each node, which
represents a function, also holds this piece of data: the list of syscalls called from that functions.

Hint: How are syscalls called? You can check out this blog post for a good guide on how syscalls
are called from assembly.

1.3 Static Detection of Vulnerabilities
Suppose you receive a complete call graph that is provided by static binary code analysis of the new
application program A and its third-party libraries. Also, you receive one or more stack traces that
are provided based on dynamic code analysis of known vulnerable program B during execution of
the application program , which contains the one or more vulnerable functions included in the one
or more third - party libraries.

You should write a program which takes a set of stack traces and check a binary to see if these
traces could happen in a binary.

Actually, situations like these is an anti-virus program which has a big database of rules. Each
rule is derived from stack trace of vulnerable program and shows which sequence of calls will lead
to vulnerability. Hence, the antivirus checks a new binary against those rules and flags the binary
as a potential threat if it contains any of those malicious rules.

A simple use-case for these rule is related to double free bugs: if you detect that a resource is
freed twice, that means trouble.

This method, used for detecting suspicious programs, is called policy based detection.
Your task is to implement policy-checking in BAT: your program should take a set of rules and

check a binary to see if those rules are occurred. No mater how these rules are provided, you should
only check the presence/absence of these rules in the call-graph of given program.
The rules we want to handle are simple and are only of the following types:

1) Checking whether a sequence of functions can be called. (e.g. f1() -> f2() -> f3() can happen
in the program)

2) Checking whether a sequence of syscalls can happen. (e.g. syscall 101 -> syscall 202)

1.4 Delivery
You should submit a report, explaining your program. You should also submit your code and explain
how to run it.

 https://medium.com/@jain.sm/invoking-a-system-call-via-assembly-84c9f8832105

CE 815 — Azar 27th, 1400 Homework 2 3

2 Source Code Analysis Tool
2.1 Instructions
In these series of assignment, you will implement some simple static analyses tools for Java Program
enabling vulnerability detection.

Part II: More Advanced Integer Analysis: Test Input Generation

In the previous HW, you had implemented a simple constant integer analyzer to detect: divi-
sion by zero, negative array index and bad shift. In this assignment, you should first add another
analyzer to detect integer overflow. As you see in the handout examples, you should also handle the
cases in which a statement may execute zero or more times, using control-flow structures (i.e., if, for
and while) .

Actually, you should statically parse the code and find a Symbolic formula for each integer
variable. Then, you can decide how the value of this variable changes based on the given
input arguments. Based on extracted formula, you can report a domain in which the variable
is vulnerable to either Division by zero, Negative array index, Bad shift or Integer overflow.

A) suppose that the main function calls other function with some concrete values. In this case,
your task is very straigh-forward:just replace the concrete values in your symbolic formula (i.e.,
symbolic execution) of each statement to check whether the aforementioned errors/vulnerabilities
may occur in the program.

B) Now, suppose a more realistic case : the main function calls other functions with the user
provided input. Hence, you should solve the symbolic formula for these input and calculate the exact
value for each variable which certainly leads to the aforementioned vulnerabilities in the program.

Hint1: A key piece of machinery used by symbolic execution is an SMT solver. For part b,
you could use the Z3 solver from Microsoft Research. Z3 has bindings for various programming
languages, including .Net, C, C++, Java, Python etc. You will invoke Z3 using its API.

Hint2: You can use any available Java parser, or develop your own Java parser. One possible
solution could be deriving an AST first, and then, add your own code in order to modify some nodes
of AST so that it could handle the desired symbolic formula parsing. You can find sample Java files
in handouts repos.

2.2 Delivery
You should submit your code which takes a Java file as input and prints the symbolic execution
of statements. At the end of each function, It should print the final symbolic formulas for every
variable (sorted alphabetically based on variables names) and show their final exact values.

In addition, for part a, during symbolic execution of every statement, if you detect any
vulnerabilities, you should report and print the variable’s name and the statement related to it. For
part b, report test inputs which leads to error/vulnerability.

https://github.com/Z3Prover/z3

	 BAT: Binary Analysis Tool
	Instructions
	Syscalls
	Static Detection of Vulnerabilities
	Delivery

	Source Code Analysis Tool
	Instructions
	Delivery

