
In the name of God

Sharif University of Technology
Department of Computer Engineering

CE 815: Secure Software Systems
Mehdi Kharrazi Azar 6th, 1400

Homework 1
∗

1 BAT: Binary Analysis Tool
Part II: Disassembling elves with Capstone

1.1 Instructions
In the previous assignment, we made a parser for executable in Linux, now we are going to make
use of that to disassemble the code in an executable. Covering an ISA like x86 (or almost any ISA)
is a daunting task which fortunately we do not have to handle thanks to Capstone. You can use the
tutorial on S4Lab blog to help you get started with this tool.
What Capstone does is fairly simple: you give Capstone the bytes and get back the instructions in a
human-friendly format. Notice that besides C/C++ there are other bindings for Capstone in most
programming languages.

The task expected of you in this assignment, is to use your parser to find code sections and output
the disassembled instructions in a file. Mistaking data for code is one of the challenges you might
face in this assignment. Along with your program, you must hand in a short document explaining
your work, and the output of your dis-assembler for the given example programs.

1.2 Delivery
You should submit a report, explaining your program. You should also submit your code and explain
how to run it.

∗This homework was developed by Iman Hosseini and Solmaz Salimi, edited by Razieh Eskandari and Parisa
Ezzatpanah

https://www.capstone-engine.org/
http://s4.ce.sharif.edu/blog/2019/01/17/capstone/

CE 815 — Azar 6th, 1400 Homework 1 2

2 PIN Tool
Pin is a dynamic binary instrumentation framework for the IA-32, x86-64 and MIC instruction-set
architectures that enables the creation of dynamic program analysis tools. The tools created using
Pin, called Pintools, can be used to perform program analysis on user space applications on Linux*,
Windows* and macOS*.

As a dynamic binary instrumentation tool, instrumentation is performed at run time on the
compiled binary files. Thus, it requires no recompiling of source code and can support instrumenting
programs that dynamically generate code.

2.1 Control Flow Integrity
Suppose you have an arbitrary vulnerable program that has unreliable input from stdin or file
and then copies the input to the desired buffer without checking the length, which leads to BoF
vulnerability, such as the following program.

a) For the given code, you should first compile it and then use PIN API to dynamically instru-
ment the compiled program to report the instruments. You can compile the code yourself, therefore
you can have a binary that perfectly suits the PIN version and any other tools you prefer. We
strongly recommend reading Shell storm reference.

b) Is it possible to write a PIN-based tool to detect/prevent the BoF attack at run-time? If yes,
then write a PIN-based tool and show its results for the below vulnerable program in presence/ab-
sence of exploitation. If not, then discuss why it is impossible to do otherwise.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
//#include <unistd >
//using namespace std;
int smashme (char * blah, char * smash) {

strcpy (smash , blah);
return 0;

}

void function (char * arg){
char buf1 [500] = "Hi, Welcome to the software security course :)\n";
char buf2 [300];
smashme(arg,buf2);
printf("%s",buf1);

}
int main (int argc , char** argv) {

if (argc == 2) {
function (argv [1]) ;
}

else{
printf("please provide two arguments");
exit(EXIT_FAILURE);

}
return 0;

}

2.2 Delivery
You should submit code, its documentation and output in txt format.

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin/

CE 815 — Azar 6th, 1400 Homework 1 3

3 SAT: Source Code Analysis Tool
In these series of assignment, you will implement some simple static analyses tools for Java Program
enabling vulnerability detection.

First, you should generate an AST (abstract syntax tree) for a Java program in order to perform
these analyses.

Part I: Integer Analysis

3.1 Instructions
The goal of this part is to implement a simple Constant Integer analyzer to detect:

a) division by zero,
b) negative array index and
c) bad shift -i.e., shift by a constant that is greater than 31 or less than 0 -
In this phase, you should only track variables of type int which are constant. Also, you could

assume that other variables are unknown. But pay attention that we are extending these analyses
in the next HW. Hence, your implementation should be as high-level and extendable as possible.
Some sample input and output are provided in handouts.

3.2 Desired Output:
Your analysis should report warnings when it detects an array access that may involve a negative
array index, a division that may result in a division by zero, a shift which might be logically incorrect.

3.3 Delivery
You should submit code, its documentation and output in txt format.

	 BAT: Binary Analysis Tool
	Instructions
	Delivery

	PIN Tool
	Control Flow Integrity
	Delivery

	SAT: Source Code Analysis Tool
	Instructions
	Desired Output:
	 Delivery

