CE693: Adv. Computer Networking

L-3 BGP

Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Routing Hierarchies

- Flat routing doesn't scale
 - Each node cannot be expected to have routes to every destination (or destination network)
- Key observation
 - Need less information with increasing distance to destination
- Two radically different approaches for routing
 - The area hierarchy
 - The landmark hierarchy

Areas

Divide network into areas

- Areas can have nested subareas
- Constraint: no path between two sub-areas of an area can exit that area
- Hierarchically address nodes in a network
 - Sequentially number toplevel areas
 - Sub-areas of area are labeled relative to that area
 - Nodes are numbered relative to the smallest containing area

Routing

- Within area
 - Each node has routes to every other node
- Outside area
 - Each node has routes for other top-level areas only
 - Inter-area packets are routed to nearest appropriate border router
- Can result in sub-optimal paths

Path Sub-optimality

A Logical View of the Internet

- National (Tier 1 ISP)
 - "Default-free" with global reachability info

Eg: AT & T, UUNET, Sprint

- Regional (Tier 2 ISP)
 - Regional or countrywide

Eg: Pacific Bell

Local (Tier 3 ISP)

Eg: Telerama DSL

Landmark Routing: Basic Idea

- Source wants to reach LM₀[a], whose address is c.b.a:
 - •Source can see LM₂[c], so sends packet towards c
 - •Entering LM₁[b] area, first router diverts packet to b
 - •Entering LM₀[a] area, packet delivered to a
- Not shortest path
- Packet may not reach landmarks

Outline

- Need for hierarchical routing
- BGP
 - ASes, Policies
 - BGP Attributes
 - BGP Path Selection
 - iBGP
 - Inferring AS relationships

Autonomous Systems (ASes)

- Autonomous Routing Domain
 - Glued together by a common administration, policies etc
- Autonomous system
 - Has an unique 16 bit ASN assigned to it and typically participates in inter-domain routing
- Examples:
 - MIT: 3, CMU: 9
 - AT&T: 7018, 6341, 5074, ...
 - UUNET: 701, 702, 284, 12199, ...
 - Sprint: 1239, 1240, 6211, 6242, ...
- How do ASes interconnect to provide global connectivity
- How does routing information get exchanged

Nontransit vs. Transit ASes

Nontransit AS
might be a corporate
or campus network.
Could be a "content
provider"

IP traffic

ISP

Customers and Providers

Customer pays provider for access to the Internet

The Peering Relationship

Peers provide transit between their respective customers

allowed

4maffia NA

traffic NOT allowed

Peers do not provide transit between peers

Peers (often) do not exchange \$\$\$

Peering Wars

Peer

- Reduces upstream transit costs
- Can increase end-to-end performance
- May be the only way to connect your customers to some part of the Internet ("Tier 1")

Don't Peer

- You would rather have customers
- Peers are usually your competition
- Peering relationships may require periodic renegotiation

Peering struggles are by far the most contentious issues in the ISP world!

Peering agreements are often confidential.

Routing in the Internet

- Link state or distance vector?
 - No universal metric policy decisions
- Problems with distance-vector:
 - Bellman-Ford algorithm may not converge
- Problems with link state:
 - Metric used by routers not the same
 - LS database too large entire Internet
 - May expose policies to other AS's

Solution: Distance Vector with Path

- Each routing update carries the entire path
- Loops are detected as follows:
 - When AS gets route check if AS already in path
 - If yes, reject route
 - If no, add self and (possibly) advertise route further
- Advantage:
 - Metrics are local AS chooses path, protocol ensures no loops

BGP-4

- BGP = Border Gateway Protocol
- Is a Policy-Based routing protocol
- Is the EGP of today's global Internet
- Relatively simple protocol, but configuration is complex and the entire world can see, and be impacted by, your mistakes.

1989: BGP-1 [RFC 1105]

- Replacement for EGP (1984, RFC 904)

1990: BGP-2 [RFC 1163]

1991: BGP-3 [RFC 1267]

1995: BGP-4 [RFC 1771]

Support for Classless Interdomain Routing

BGP Operations (Simplified)

Exchange all active routes

Exchange incremental updates

While connection is ALIVE exchange route UPDATE messages

Interconnecting BGP Peers

- BGP uses TCP to connect peers
- Advantages:
 - Simplifies BGP
 - No need for periodic refresh routes are valid until withdrawn, or the connection is lost
 - Incremental updates
- Disadvantages
 - Congestion control on a routing protocol?
 - Inherits TCP vulnerabilities!
 - Poor interaction during high load

Four Types of BGP Messages

- Open: Establish a peering session.
- Keep Alive: Handshake at regular intervals.
- Notification: Shuts down a peering session.
- Update: Announcing new routes or withdrawing previously announced routes.

announcement = prefix + <u>attributes values</u>

Policy with BGP

- BGP provides capability for enforcing various policies
- Policies are <u>not</u> part of BGP: they are provided to BGP as configuration information
- BGP enforces policies by choosing paths from multiple alternatives and controlling advertisement to other AS's
- Import policy
 - What to do with routes learned from neighbors?
 - Selecting best path
- Export policy
 - What routes to announce to neighbors?
 - Depends on relationship with neighbor

Examples of BGP Policies

- A multi-homed AS refuses to act as transit
 - Limit path advertisement
- A multi-homed AS can become transit for some AS's
 - Only advertise paths to some AS's
 - Eg: A Tier-2 provider multi-homed to Tier-1 providers
- An AS can favor or disfavor certain AS's for traffic transit from itself

Export Policy

- An AS exports only best paths to its neighbors
 - Guarantees that once the route is announced the AS is willing to transit traffic on that route
- To Customers
 - Announce all routes learned from peers, providers and customers, and self-origin routes
- To Providers
 - Announce routes learned from customers and self-origin routes
- To Peers
 - Announce routes learned from customers and self-origin routes

Import Routes

Export Routes

BGP UPDATE Message

- List of withdrawn routes
- Network layer reachability information
 - List of reachable prefixes
- Path attributes
 - Origin
 - Path
 - Metrics
- All prefixes advertised in message have same path attributes

Path Selection Criteria

- Information based on path attributes
- Attributes + external (policy) information
- Examples:
 - Hop count
 - Policy considerations
 - Preference for AS
 - Presence or absence of certain AS
 - Path origin
 - Link dynamics

Important BGP Attributes

- Local Preference
- AS-Path
- MED
- Next hop

LOCAL PREF

 Local (within an AS) mechanism to provide relative priority among BGP routers

LOCAL PREF – Common Uses

- Handle routes advertised to multi-homed transit customers
 - Should use direct connection (multihoming typically has a primary/backup arrangement)
- Peering vs. transit
 - Prefer to use peering connection, why?
- In general, customer > peer > provider
 - Use LOCAL PREF to ensure this

AS_PATH

- List of traversed AS's
- Useful for loop checking and for path-based route selection (length, regexp)

Multi-Exit Discriminator (MED)

- Hint to external neighbors about the preferred path into an AS
 - Different AS choose different scales
- Used when two AS's connect to each other in more than one place

MED

- Typically used when two ASes peer at multiple locations
- Hint to R1 to use R3 over R4 link
- Cannot compare AS40's values to AS30's

MED

- MED is typically used in provider/subscriber scenarios
- It can lead to unfairness if used between ISP because it may force one ISP to carry more traffic:

Route Selection Process

Highest Local Preference

Shortest ASPATH

Lowest MED

i-BGP < e-BGP

Lowest IGP cost to BGP egress

Lowest router ID

Enforce relationships

Traffic engineering

Throw up hands and break ties

Internal vs. External BGP

- •BGP can be used by R3 and R4 to learn routes
- •How do R1 and R2 learn routes?
- Option 1: Inject routes in IGP
 - Only works for small routing tables
- Option 2: Use I-BGP

Internal BGP (I-BGP)

- Same messages as E-BGP
- Different rules about re-advertising prefixes:
 - Prefix learned from E-BGP can be advertised to I-BGP neighbor and vice-versa, but
 - Prefix learned from one I-BGP neighbor cannot be advertised to another I-BGP neighbor
 - Reason: no AS PATH within the same AS and thus danger of looping.

Internal BGP (I-BGP)

- •R3 can tell R1 and R2 prefixes from R4
- •R3 can tell R4 prefixes from R1 and R2
- R3 cannot tell R2 prefixes from R1
- •R2 can only find these prefixes through a direct connection to R1
- Result: I-BGP routers must be fully connected (via TCP)!
 - contrast with E-BGP sessions that map to physical links

Route Reflector

Mesh does not scale

Each RR passes only best routes, no longer N² scaling problem

BGP Limitations: Oscillations

