
1

Peer-to-Peer Applications
Reading: 9.4

Acknowledgments: Lecture slides are from Computer networks course
thought by Jennifer Rexford at Princeton University. When slides are
obtained from other sources, a reference will be noted on the bottom
of that slide and full reference details on the last slide.

2

Goals of Todayʼs Lecture
• Scalability in distributing a large file
–Single server and N clients
–Peer-to-peer system with N peers

• Searching for the right peer
–Central directory (Napster)
–Query flooding (Gnutella)
–Hierarchical overlay (Kazaa)

• BitTorrent
–Transferring large files
–Preventing free-riding

3

Clients and Servers
• Client program
–Running on end host
–Requests service
–E.g., Web browser

• Server program
–Running on end host
–Provides service
–E.g., Web server

GET /index.html

“Site under construction”

4

Client-Server Communication
• Client “sometimes on”
– Initiates a request to the

server when interested
–E.g., Web browser on

your laptop or cell phone
–Doesn’t communicate

directly with other clients
–Needs to know the

server’s address

• Server is “always on”
–Services requests from

many client hosts
–E.g., Web server for the

www.cnn.com Web site
–Doesn’t initiate contact

with the clients
–Needs a fixed, well-

known address

http://www.cnn.com/
http://www.cnn.com/

5

Server Distributing a Large File

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

6

Server Distributing a Large File
• Server sending a large file to N receivers
– Large file with F bits
–Single server with upload rate us

–Download rate di for receiver i

• Server transmission to N receivers
–Server needs to transmit NF bits
–Takes at least NF/us time

• Receiving the data
–Slowest receiver receives at rate dmin= mini{di}
–Takes at least F/dmin time

• Download time: max{NF/us, F/dmin}

7

Speeding Up the File Distribution
• Increase the upload rate from the server
–Higher link bandwidth at the one server
–Multiple servers, each with their own link
–Requires deploying more infrastructure

• Alternative: have the receivers help
–Receivers get a copy of the data
–And then redistribute the data to other receivers
–To reduce the burden on the server

8

Peers Help Distributing a Large File

d1

F bits

d2

d3

d4

upload rate us

Download rates di

Internet

u1 u2 u3

u4

Upload rates ui

9

Peers Help Distributing a Large File
• Start with a single copy of a large file
–Large file with F bits and server upload rate us

–Peer i with download rate di and upload rate ui

• Two components of distribution latency
–Server must send each bit: min time F/us

–Slowest peer receives each bit: min time F/dmin

• Total upload time using all upload resources
–Total number of bits: NF
–Total upload bandwidth us + sumi(ui)

• Total: max{F/us, F/dmin, NF/(us+sumi(ui))}

10

Comparing the Two Models
• Download time
–Client-server: max{NF/us, F/dmin}
–Peer-to-peer: max{F/us, F/dmin, NF/(us+sumi(ui))}

• Peer-to-peer is self-scaling
–Much lower demands on server bandwidth
–Distribution time grows only slowly with N

• But…
–Peers may come and go
–Peers need to find each other
–Peers need to be willing to help each other

11

Challenges of Peer-to-Peer
• Peers come and go
–Peers are intermittently connected
–May come and go at any time
–Or come back with a different IP address

• How to locate the relevant peers?
–Peers that are online right now
–Peers that have the content you want

• How to motivate peers to stay in system?
–Why not leave as soon as download ends?
–Why bother uploading content to anyone else?

12

Locating the Relevant Peers
• Three main approaches
–Central directory (Napster)
–Query flooding (Gnutella)
–Hierarchical overlay (Kazaa, modern Gnutella)

• Design goals
–Scalability
–Simplicity
–Robustness
–Plausible deniability

13

Peer-to-Peer Networks: Napster
• Napster history: the rise
– January 1999: Napster version 1.0
–May 1999: company founded
–December 1999: first lawsuits
– 2000: 80 million users

• Napster history: the fall
–Mid 2001: out of business due to lawsuits
–Mid 2001: dozens of P2P alternatives that were harder to

touch, though these have gradually been constrained
– 2003: growth of pay services like iTunes

• Napster history: the resurrection
– 2003: Napster name/logo reconstituted as a pay service

Shawn Fanning,
Northeastern freshman

14

Napster Technology: Directory Service
• User installing the software
–Download the client program
–Register name, password, local directory, etc.

• Client contacts Napster (via TCP)
–Provides a list of music files it will share
–… and Napster’s central server updates the directory

• Client searches on a title or performer
–Napster identifies online clients with the file
–… and provides IP addresses

• Client requests the file from the chosen supplier
–Supplier transmits the file to the client
–Both client and supplier report status to Napster

15

Napster Technology: Properties
• Server’s directory continually updated
–Always know what music is currently available
–Point of vulnerability for legal action

• Peer-to-peer file transfer
–No load on the server
–Plausible deniability for legal action (but not enough)

• Proprietary protocol
– Login, search, upload, download, and status operations
–No security: cleartext passwords and other vulnerability

• Bandwidth issues
–Suppliers ranked by apparent bandwidth & response time

16

Napster: Limitations of Central Directory
• Single point of failure

• Performance bottleneck

• Copyright infringement

• So, later P2P systems were more distributed
–Gnutella went to the other extreme…

 File transfer is
decentralized, but
locating content is
highly centralized

17

Peer-to-Peer Networks: Gnutella
• Gnutella history
–2000: J. Frankel &

T. Pepper released
Gnutella
–Soon after: many

other clients (e.g.,
Morpheus, Limewire,
Bearshare)
–2001: protocol

enhancements, e.g.,
“ultrapeers”

• Query flooding
–Join: contact a few

nodes to become
neighbors
–Publish: no need!
–Search: ask neighbors,

who ask their neighbors
–Fetch: get file directly

from another node

18

Gnutella: Query Flooding
• Fully distributed
–No central server

• Public domain protocol

• Many Gnutella clients
implementing protocol

Overlay network: graph
• Edge between peer X

and Y if there’s a TCP
connection

• All active peers and
edges is overlay net

• Given peer will typically
be connected with < 10
overlay neighbors

19

Gnutella: Protocol
• Query message sent

over existing TCP
connections

• Peers forward
Query message

• QueryHit
sent over
reverse
path

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP

Scalability:
limited scope
flooding

20

Gnutella: Peer Joining
• Joining peer X must find some other peers
–Start with a list of candidate peers
–X sequentially attempts TCP connections with

peers on list until connection setup with Y

• X sends Ping message to Y
–Y forwards Ping message.
–All peers receiving Ping message respond with

Pong message

• X receives many Pong messages
–X can then set up additional TCP connections

21

Gnutella: Pros and Cons
• Advantages
–Fully decentralized
–Search cost distributed
–Processing per node permits powerful search

semantics

• Disadvantages
–Search scope may be quite large
–Search time may be quite long
–High overhead, and nodes come and go often

22

Peer-to-Peer Networks: KaZaA
• KaZaA history
– 2001: created by Dutch

company (Kazaa BV)
–Single network called

FastTrack used by other
clients as well

–Eventually the protocol
changed so other clients
could no longer talk to it

• Smart query flooding
– Join: on start, the client

contacts a super-node (and
may later become one)

–Publish: client sends list of
files to its super-node

–Search: send query to
super-node, and the super-
nodes flood queries among
themselves

–Fetch: get file directly from
peer(s); can fetch from
multiple peers at once

23

KaZaA: Exploiting Heterogeneity
• Each peer is either a group

leader or assigned to a
group leader
–TCP connection between

peer and its group leader
–TCP connections between

some pairs of group leaders

• Group leader tracks the
content in all its children

24

KaZaA: Motivation for Super-Nodes
• Query consolidation
–Many connected nodes may have only a few files
–Propagating query to a sub-node may take more time

than for the super-node to answer itself

• Stability
–Super-node selection favors nodes with high up-time
–How long you’ve been on is a good predictor of how long

you’ll be around in the future

25

Peer-to-Peer Networks: BitTorrent
• BitTorrent history and motivation
–2002: B. Cohen debuted BitTorrent
–Key motivation: popular content

 Popularity exhibits temporal locality (Flash Crowds)
 E.g., Slashdot/Digg effect, CNN Web site on 9/11,

release of a new movie or game
–Focused on efficient fetching, not searching

 Distribute same file to many peers
 Single publisher, many downloaders

–Preventing free-loading

26

BitTorrent: Simultaneous Downloading

• Divide large file into many pieces
–Replicate different pieces on different peers
–A peer with a complete piece can trade with

other peers
–Peer can (hopefully) assemble the entire file

• Allows simultaneous downloading
–Retrieving different parts of the file from different

peers at the same time
–And uploading parts of the file to peers
–Important for very large files

27

BitTorrent: Tracker
• Infrastructure node
–Keeps track of peers participating in the torrent

• Peers register with the tracker
–Peer registers when it arrives
–Peer periodically informs tracker it is still there

• Tracker selects peers for downloading
–Returns a random set of peers
–Including their IP addresses
–So the new peer knows who to contact for data

• Can have “trackerless” system using DHT

28

BitTorrent: Chunks
• Large file divided into smaller pieces
–Fixed-sized chunks
–Typical chunk size of 256 Kbytes

• Allows simultaneous transfers
–Downloading chunks from different neighbors
–Uploading chunks to other neighbors

• Learning what chunks your neighbors have
–Periodically asking them for a list

• File done when all chunks are downloaded

29

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

TrackerWeb Server

.to
rre

nt

30

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Get-announce

Web Server

31

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Response-peer lis
t

Web Server

32

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Shake-hand

Web Server

Shake-hand

33

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces

pieces

Web Server

34

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

pieces
pieces

pieces

Web Server

35

BitTorrent: Overall Architecture

Web page
with link

to .torrent

A

B

C

Peer

[Leech]

Downloader

“US”

Peer

[Seed]

Peer

[Leech]

Tracker

Get-announce

Response-peer lis
t

pieces
pieces

pieces

Web Server

36

BitTorrent: Chunk Request Order
• Which chunks to request?
–Could download in order
–Like an HTTP client does

• Problem: many peers have the early chunks
–Peers have little to share with each other
–Limiting the scalability of the system

• Problem: eventually nobody has rare chunks
–E.g., the chunks need the end of the file
–Limiting the ability to complete a download

• Solutions: random selection and rarest first

37

BitTorrent: Rarest Chunk First
• Which chunks to request first?
–The chunk with the fewest available copies
–I.e., the rarest chunk first

• Benefits to the peer
–Avoid starvation when some peers depart

• Benefits to the system
–Avoid starvation across all peers wanting a file
–Balance load by equalizing # of copies of chunks

38

Free-Riding Problem in P2P Networks

• Vast majority of users are free-riders
–Most share no files and answer no queries
–Others limit # of connections or upload speed

• A few “peers” essentially act as servers
–A few individuals contributing to the public good
–Making them hubs that basically act as a server

• BitTorrent prevent free riding
–Allow the fastest peers to download from you
–Occasionally let some free loaders download

39

Bit-Torrent: Preventing Free-Riding
• Peer has limited upload bandwidth
–And must share it among multiple peers

• Prioritizing the upload bandwidth: tit for tat
–Favor neighbors that are uploading at highest rate

• Rewarding the top four neighbors
–Measure download bit rates from each neighbor
–Reciprocates by sending to the top four peers
–Recompute and reallocate every 10 seconds

• Optimistic unchoking
–Randomly try a new neighbor every 30 seconds
–So new neighbor has a chance to be a better partner

40

BitTyrant: Gaming BitTorrent
• BitTorrent can be gamed, too
–Peer uploads to top N peers at rate 1/N
–E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
–… then peer uploading at rate 9 gets treated quite well

• Best to be the Nth peer in the list, rather than 1st

–Offer just a bit more bandwidth than the low-rate peers
–But not as much as the higher-rate peers
–And you’ll still be treated well by others

• BitTyrant software
– http://bittyrant.cs.washington.edu/

http://bittyrant.cs.washington.edu
http://bittyrant.cs.washington.edu

41

BitTorrent Today
• Significant fraction of Internet traffic
–Estimated at 30%
–Though this is hard to measure

• Problem of incomplete downloads
–Peers leave the system when done
–Many file downloads never complete
–Especially a problem for less popular content

• Still lots of legal questions remains
• Further need for incentives

42

Conclusions
• Peer-to-peer networks
–Nodes are end hosts
–Primarily for file sharing, and recently telephony

• Finding the appropriate peers
–Centralized directory (Napster)
–Query flooding (Gnutella)
–Super-nodes (KaZaA)

• BitTorrent
–Distributed download of large files
–Anti-free-riding techniques

• Great example of how change can happen so
quickly in application-level protocols

