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Peer-to-Peer Applications
Reading: 9.4

Acknowledgments: Lecture slides are from Computer networks course 
thought by Jennifer Rexford at Princeton University. When slides are 
obtained from other sources, a reference will be noted on the bottom 
of that slide and full reference details on the last slide.
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Goals of Todayʼs Lecture
• Scalability in distributing a large file
–Single server and N clients
–Peer-to-peer system with N peers

• Searching for the right peer
–Central directory (Napster)
–Query flooding (Gnutella)
–Hierarchical overlay (Kazaa)

• BitTorrent
–Transferring large files
–Preventing free-riding
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Clients and Servers
• Client program
–Running on end host
–Requests service
–E.g., Web browser

• Server program
–Running on end host
–Provides service
–E.g., Web server

GET /index.html

“Site under construction”



4

Client-Server Communication
• Client “sometimes on”
– Initiates a request to the 

server when interested
–E.g., Web browser on 

your laptop or cell phone
–Doesn’t communicate 

directly with other clients
–Needs to know the 

server’s address

• Server is “always on”
–Services requests from 

many client hosts
–E.g., Web server for the 

www.cnn.com Web site
–Doesn’t initiate contact 

with the clients
–Needs a fixed, well-

known address

http://www.cnn.com/
http://www.cnn.com/
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Server Distributing a Large File
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Server Distributing a Large File
• Server sending a large file to N receivers
– Large file with F bits
–Single server with upload rate us

–Download rate di for receiver i

• Server transmission to N receivers
–Server needs to transmit NF bits
–Takes at least NF/us time

• Receiving the data
–Slowest receiver receives at rate dmin= mini{di}
–Takes at least F/dmin time

• Download time: max{NF/us, F/dmin}



7

Speeding Up the File Distribution
• Increase the upload rate from the server
–Higher link bandwidth at the one server
–Multiple servers, each with their own link
–Requires deploying more infrastructure

• Alternative: have the receivers help
–Receivers get a copy of the data
–And then redistribute the data to other receivers
–To reduce the burden on the server
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Peers Help Distributing a Large File
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Peers Help Distributing a Large File
• Start with a single copy of a large file
–Large file with F bits and server upload rate us

–Peer i with download rate di and upload rate ui

• Two components of distribution latency
–Server must send each bit: min time F/us

–Slowest peer receives each bit: min time F/dmin

• Total upload time using all upload resources
–Total number of bits: NF
–Total upload bandwidth us + sumi(ui)

• Total: max{F/us, F/dmin, NF/(us+sumi(ui))}
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Comparing the Two Models
• Download time
–Client-server: max{NF/us, F/dmin}
–Peer-to-peer: max{F/us, F/dmin, NF/(us+sumi(ui))}

• Peer-to-peer is self-scaling
–Much lower demands on server bandwidth
–Distribution time grows only slowly with N

• But…
–Peers may come and go
–Peers need to find each other
–Peers need to be willing to help each other
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Challenges of Peer-to-Peer
• Peers come and go
–Peers are intermittently connected
–May come and go at any time
–Or come back with a different IP address

• How to locate the relevant peers?
–Peers that are online right now
–Peers that have the content you want

• How to motivate peers to stay in system?
–Why not leave as soon as download ends?
–Why bother uploading content to anyone else?
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Locating the Relevant Peers
• Three main approaches
–Central directory (Napster)
–Query flooding (Gnutella)
–Hierarchical overlay (Kazaa, modern Gnutella)

• Design goals
–Scalability
–Simplicity
–Robustness
–Plausible deniability
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Peer-to-Peer Networks: Napster
• Napster history: the rise
– January 1999: Napster version 1.0
–May 1999: company founded
–December 1999: first lawsuits
– 2000: 80 million users

• Napster history: the fall
–Mid 2001: out of business due to lawsuits
–Mid 2001: dozens of P2P alternatives that were harder to 

touch, though these have gradually been constrained
– 2003: growth of pay services like iTunes

• Napster history: the resurrection
– 2003: Napster name/logo reconstituted as a pay service

Shawn Fanning,
Northeastern freshman
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Napster Technology: Directory Service
• User installing the software
–Download the client program
–Register name, password, local directory, etc.

• Client contacts Napster (via TCP)
–Provides a list of music files it will share
–… and Napster’s central server updates the directory

• Client searches on a title or performer
–Napster identifies online clients with the file
–… and provides IP addresses

• Client requests the file from the chosen supplier
–Supplier transmits the file to the client
–Both client and supplier report status to Napster



15

Napster Technology: Properties
• Server’s directory continually updated
–Always know what music is currently available
–Point of vulnerability for legal action

• Peer-to-peer file transfer
–No load on the server
–Plausible deniability for legal action (but not enough)

• Proprietary protocol
– Login, search, upload, download, and status operations
–No security: cleartext passwords and other vulnerability

• Bandwidth issues
–Suppliers ranked by apparent bandwidth & response time
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Napster: Limitations of Central Directory
• Single point of failure

• Performance bottleneck

• Copyright infringement

• So, later P2P systems were more distributed
–Gnutella went to the other extreme…

   File transfer is 
decentralized, but 
locating content is 
highly centralized
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Peer-to-Peer Networks: Gnutella
• Gnutella history
–2000: J. Frankel & 

T. Pepper released 
Gnutella
–Soon after: many 

other clients (e.g., 
Morpheus, Limewire, 
Bearshare)
–2001: protocol 

enhancements, e.g., 
“ultrapeers”

• Query flooding
–Join: contact a few 

nodes to become 
neighbors
–Publish: no need!
–Search: ask neighbors, 

who ask their neighbors
–Fetch: get file directly 

from another node
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Gnutella: Query Flooding
• Fully distributed
–No central server

• Public domain protocol

• Many Gnutella clients 
implementing protocol

Overlay network: graph
• Edge between peer X 

and Y if there’s a TCP 
connection

• All active peers and 
edges is overlay net

• Given peer will typically 
be connected with < 10 
overlay neighbors
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Gnutella: Protocol
• Query message sent 

over existing TCP
connections

• Peers forward
Query message

• QueryHit 
sent over 
reverse
path

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP

Scalability:
limited scope
flooding
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Gnutella: Peer Joining
• Joining peer X must find some other peers
–Start with a list of candidate peers
–X sequentially attempts TCP connections with 

peers on list until connection setup with Y

• X sends Ping message to Y
–Y forwards Ping message. 
–All peers receiving Ping message respond with 

Pong message

• X receives many Pong messages
–X can then set up additional TCP connections
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Gnutella: Pros and Cons
• Advantages
–Fully decentralized
–Search cost distributed
–Processing per node permits powerful search 

semantics

• Disadvantages
–Search scope may be quite large
–Search time may be quite long
–High overhead, and nodes come and go often
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Peer-to-Peer Networks: KaZaA
• KaZaA history
– 2001: created by Dutch 

company (Kazaa BV)
–Single network called 

FastTrack used by other 
clients as well

–Eventually the protocol 
changed so other clients 
could no longer talk to it

• Smart query flooding
– Join: on start, the client 

contacts a super-node (and 
may later become one)

–Publish: client sends list of 
files to its super-node

–Search: send query to 
super-node, and the super-
nodes flood queries among 
themselves

–Fetch: get file directly from 
peer(s); can fetch from 
multiple peers at once
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KaZaA: Exploiting Heterogeneity
• Each peer is either a group 

leader or assigned to a 
group leader
–TCP connection between 

peer and its group leader
–TCP connections between 

some pairs of group leaders

• Group leader tracks the 
content in all its children
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KaZaA: Motivation for Super-Nodes
• Query consolidation
–Many connected nodes may have only a few files
–Propagating query to a sub-node may take more time 

than for the super-node to answer itself

• Stability
–Super-node selection favors nodes with high up-time
–How long you’ve been on is a good predictor of how long 

you’ll be around in the future
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Peer-to-Peer Networks: BitTorrent
• BitTorrent history and motivation
–2002: B. Cohen debuted BitTorrent
–Key motivation: popular content

 Popularity exhibits temporal locality (Flash Crowds)
 E.g., Slashdot/Digg effect, CNN Web site on 9/11, 

release of a new movie or game
–Focused on efficient fetching, not searching

 Distribute same file to many peers
 Single publisher, many downloaders

–Preventing free-loading
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BitTorrent: Simultaneous Downloading

• Divide large file into many pieces
–Replicate different pieces on different peers
–A peer with a complete piece can trade with 

other peers
–Peer can (hopefully) assemble the entire file

• Allows simultaneous downloading
–Retrieving different parts of the file from different 

peers at the same time
–And uploading parts of the file to peers
–Important for very large files
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BitTorrent: Tracker
• Infrastructure node
–Keeps track of peers participating in the torrent

• Peers register with the tracker
–Peer registers when it arrives
–Peer periodically informs tracker it is still there

• Tracker selects peers for downloading
–Returns a random set of peers
–Including their IP addresses
–So the new peer knows who to contact for data

• Can have “trackerless” system using DHT
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BitTorrent: Chunks
• Large file divided into smaller pieces
–Fixed-sized chunks
–Typical chunk size of 256 Kbytes

• Allows simultaneous transfers
–Downloading chunks from different neighbors
–Uploading chunks to other neighbors

• Learning what chunks your neighbors have
–Periodically asking them for a list

• File done when all chunks are downloaded
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BitTorrent: Overall Architecture
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BitTorrent: Overall Architecture
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BitTorrent: Overall Architecture
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BitTorrent: Overall Architecture
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BitTorrent: Overall Architecture
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BitTorrent: Overall Architecture
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BitTorrent: Overall Architecture
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BitTorrent: Chunk Request Order
• Which chunks to request?
–Could download in order
–Like an HTTP client does

• Problem: many peers have the early chunks
–Peers have little to share with each other
–Limiting the scalability of the system

• Problem: eventually nobody has rare chunks
–E.g., the chunks need the end of the file
–Limiting the ability to complete a download

• Solutions: random selection and rarest first
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BitTorrent: Rarest Chunk First
• Which chunks to request first?
–The chunk with the fewest available copies
–I.e., the rarest chunk first

• Benefits to the peer
–Avoid starvation when some peers depart

• Benefits to the system
–Avoid starvation across all peers wanting a file
–Balance load by equalizing # of copies of chunks
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Free-Riding Problem in P2P Networks

• Vast majority of users are free-riders
–Most share no files and answer no queries
–Others limit # of connections or upload speed

• A few “peers” essentially act as servers
–A few individuals contributing to the public good
–Making them hubs that basically act as a server

• BitTorrent prevent free riding
–Allow the fastest peers to download from you
–Occasionally let some free loaders download
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Bit-Torrent: Preventing Free-Riding
• Peer has limited upload bandwidth
–And must share it among multiple peers

• Prioritizing the upload bandwidth: tit for tat
–Favor neighbors that are uploading at highest rate

• Rewarding the top four neighbors
–Measure download bit rates from each neighbor
–Reciprocates by sending to the top four peers
–Recompute and reallocate every 10 seconds

• Optimistic unchoking
–Randomly try a new neighbor every 30 seconds
–So new neighbor has a chance to be a better partner
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BitTyrant: Gaming BitTorrent
• BitTorrent can be gamed, too
–Peer uploads to top N peers at rate 1/N
–E.g., if N=4 and peers upload at 15, 12, 10, 9, 8, 3
–… then peer uploading at rate 9 gets treated quite well

• Best to be the Nth peer in the list, rather than 1st

–Offer just a bit more bandwidth than the low-rate peers
–But not as much as the higher-rate peers
–And you’ll still be treated well by others

• BitTyrant software
– http://bittyrant.cs.washington.edu/

http://bittyrant.cs.washington.edu
http://bittyrant.cs.washington.edu
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BitTorrent Today
• Significant fraction of Internet traffic
–Estimated at 30%
–Though this is hard to measure

• Problem of incomplete downloads
–Peers leave the system when done
–Many file downloads never complete
–Especially a problem for less popular content

• Still lots of legal questions remains
• Further need for incentives
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Conclusions
• Peer-to-peer networks
–Nodes are end hosts 
–Primarily for file sharing, and recently telephony

• Finding the appropriate peers
–Centralized directory (Napster)
–Query flooding (Gnutella)
–Super-nodes (KaZaA)

• BitTorrent
–Distributed download of large files
–Anti-free-riding techniques

• Great example of how change can happen so 
quickly in application-level protocols


