

Reading: Sections 4.2 and 4.3.4

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a reference will be noted on the bottom of that slide and full reference details on the last slide.

Goals of Today's Lecture

- Distance-vector routing
-Bellman-Ford algorithm
-Routing Information Protocol (RIP)
- Path-vector routing
-Faster convergence than distance vector
-More flexibility in selecting paths
- Interdomain routing
-Autonomous Systems (AS)
-Border Gateway Protocol (BGP)

Shortest-Path Routing

- Path-selection model
-Destination-based
-Load-insensitive (e.g., static link weights)
-Minimum hop count or sum of link weights

Shortest-Path Problem

- Compute: path costs to all nodes
-From a given source u to all other nodes
-Cost of the path through each outgoing link
-Next hop along the least-cost path to s

Bellman-Ford Algorithm

- Define distances at each node x
- $d_{x}(y)=$ cost of least-cost path from x to y
- Update distances based on neighbors
$-d_{x}(y)=\min \left\{c(x, v)+d_{v}(y)\right\}$ over all neighbors v

Distance Vector Algorithm

- $c(x, v)=$ cost for direct link from x to v
- Node x maintains costs of direct links $c(x, v)$
- $D_{x}(y)=$ estimate of least cost from x to y
- Node x maintains distance vector $D_{x}=\left[D_{x}(y): y \in N\right]$
- Node x maintains its neighbors' distance vectors
- For each neighbor v, x maintains $D_{v}=\left[D_{v}(y)\right.$: y $\left.\in N\right]$
- Each node v periodically sends D_{v} to its neighbors
- And neighbors update their own distance vectors
$-D_{x}(y) \leftarrow \min _{v}\left\{c(x, v)+D_{v}(y)\right\} \quad$ for each node $y \in N$
- Over time, the distance vector D_{x} converges

Distance Vector Algorithm

Iterative, asynchronous: each local iteration caused by:

- Local link cost change
- Distance vector update message from neighbor

Distributed:

- Each node notifies neighbors only when its DV changes
- Neighbors then notify their neighbors if necessary

Each node:

wait for (change in local link cost or message from neighbor)
recompute estimates
if distance to ăny destination has changed, notify neighbors

Distance Vector Example: Step 1

Optimum 1-hop paths

Distance Vector Example: Step 2

Optimum 2-hop paths

Distance Vector Example: Step 3

Optimum 3-hop paths

Distance Vector: Link Cost Changes

Link cost changes:

- Node detects local link cost change
- Updates the distance table

- If cost change in least cost path, notify neighbors

Distance Vector: Link Cost Changes

Link cost changes:

- Good news travels fast
- Bad news travels slow - "count to infinity" problem!

Distance Vector: Poison Reverse

If Z routes through Y to get to X :

- Z tells Y its (Z 's) distance to X is infinite (so Y won't route to X via Z)
- Still, can have problems when more than 2
 routers are involved

Routing Information Protocol (RIP)

- Distance vector protocol
- Nodes send distance vectors every 30 seconds
- ... or, when an update causes a change in routing
- Link costs in RIP
- All links have cost 1
- Valid distances of 1 through 15
- ... with 16 representing infinity
- Small "infinity" \rightarrow smaller "counting to infinity" problem
- RIP is limited to fairly small networks
-E.g., used in the Princeton campus network

Comparison of LS and DV Routing

Message complexity

- LS: with n nodes, E links, O(nE) messages sent
- DV: exchange between neighbors only

Speed of Convergence

- LS: relatively fast
- DV: convergence time varies
- May be routing loops
- Count-to-infinity problem

Robustness: what happens if router malfunctions?

LS:

- Node can advertise incorrect link cost
- Each node computes only its own table

DV:

- DV node can advertise incorrect path cost
- Each node's table used by others (error propagates)

Similarities of LS and DV Routing

- Shortest-path routing
- Metric-based, using link weights
-Routers share a common view of how good a path is
- As such, commonly used inside an organization
-RIP and OSPF are mostly used as intradomain protocols
-E.g., Princeton uses RIP, and AT\&T uses OSPF
- But the Internet is a "network of networks"
- How to stitch the many networks together?
- When networks may not have common goals
- ... and may not want to share information

Interdomain Routing and Autonomous Systems (ASes)

Interdomain Routing

- Internet is divided into Autonomous Systems
- Distinct regions of administrative control
- Routers/links managed by a single "institution"
- Service provider, company, university, ...
- Hierarchy of Autonomous Systems
- Large, tier-1 provider with a nationwide backbone
- Medium-sized regional provider with smaller backbone
- Small network run by a single company or university
- Interaction between Autonomous Systems
- Internal topology is not shared between ASes
- ... but, neighboring ASes interact to coordinate routing

Autonomous System Numbers

AS Numbers are 16 bit values.

Currently over 20,000 in use.

- Level 3: 1
- Sharif: 12660
- MIT: 3
- Harvard: 11
- Yale: 29
- Princeton: 88
- AT\&T: 7018, 6341, 5074, ...
- UUNET: 701, 702, 284, 12199, ...
- Sprint: 1239, 1240, 6211, 6242, ...

whois -h whois.arin.net as88

OrgName: Princeton University
OrgID: PRNU
Address: Office of Information Technology
Address: 87 Prospect Avenue
City: Princeton
StateProv: NJ
PostalCode: 08540
Country: US
ASNumber: 88
ASName: PRINCETON-AS
ASHandle: AS88
Comment:
RegDate:
Updated: 2008-03-07
RTechHandle: PAO3-ARIN
RTechName: Olenick, Peter
RTechPhone: +1-609-258-6024
RTechEmail: polenick@princeton.edu

whois -h whois.arin.net as12660

```
aut-num: AS12660
as-name: SHARIF-EDU-NET
descr: Sharif University of Technology, Tehran,Iran
person: Yahya Tabesh
address: Computer Center, Sharif University of Technology
address: Azadi Ave., Tehran, Iran.
phone: +98 216005319
fax-no: +98 216019568
```


AS Number Trivia

- AS number is a 16-bit quantity
- So, 65,536 unique AS numbers
- Some are reserved (e.g., for private AS numbers)
- So, only 64,510 are available for public use
- Managed by Internet Assigned Numbers Authority
- Gives blocks of 1024 to Regional Internet Registries
- IANA has allocated 39,934 AS numbers to RIRs (Jan'06)
- RIRs assign AS numbers to institutions
- RIRs have assigned 34,827 (Jan'06)
- Only 21,191 are visible in interdomain routing (Jan'06)
- Started assigning 32-bit AS \#s (2007)

Interdomain Routing

- AS-level topology
-Destinations are IP prefixes (e.g., 12.0.0.0/8)
-Nodes are Autonomous Systems (ASes)
-Edges are links and business relationships

Challenges for Interdomain Routing

- Scale
-Prefixes: 200,000, and growing
-ASes: 20,000+ visible ones, and 40K allocated
-Routers: at least in the millions...
- Privacy
-ASes don't want to divulge internal topologies
-... or their business relationships with neighbors
- Policy
-No Internet-wide notion of a link cost metric
-Need control over where you send traffic
-... and who can send traffic through you

Path-Vector Routing

Shortest-Path Routing is Restrictive

- All traffic must travel on shortest paths
- All nodes need common notion of link costs
- Incompatible with commercial relationships

Regional ISP3

Regional ISP2 Cust2

Link-State Routing is Problematic

- Topology information is flooded
-High bandwidth and storage overhead
-Forces nodes to divulge sensitive information
- Entire path computed locally per node -High processing overhead in a large network
- Minimizes some notion of total distance
-Works only if policy is shared and uniform
- Typically used only inside an AS
-E.g., OSPF and IS-IS

Distance Vector is on the Right Track

- Advantages
-Hides details of the network topology
-Nodes determine only "next hop" toward the dest
- Disadvantages
-Minimizes some notion of total distance, which is difficult in an interdomain setting
-Slow convergence due to the counting-to-infinity problem ("bad news travels slowly")
- Idea: extend the notion of a distance vector -To make it easier to detect loops

Path-Vector Routing

- Extension of distance-vector routing
-Support flexible routing policies
-Avoid count-to-infinity problem
- Key idea: advertise the entire path
-Distance vector: send distance metric per dest d
-Path vector: send the entire path for each dest d

Faster Loop Detection

- Node can easily detect a loop
-Look for its own node identifier in the path
$-E . g$., node 1 sees itself in the path " $3,2,1$ "
- Node can simply discard paths with loops
-E.g., node 1 simply discards the advertisement

"d: path (1)"

Flexible Policies

- Each node can apply local policies
-Path selection: Which path to use?
-Path export: Which paths to advertise?
- Examples
-Node 2 may prefer the path " $2,3,1$ " over " 2,1 "
-Node 1 may not let node 3 hear the path " 1,2 "

Border Gateway Protocol (BGP)

Border Gateway Protocol

- Interdomain routing protocol for the Internet -Prefix-based path-vector protocol -Policy-based routing based on AS Paths
-Evolved during the past 18 years
- 1989 : BGP-1 [RFC 1105], replacement for EGP
- 1990 : BGP-2 [RFC 1163]
- 1991: BGP-3 [RFC 1267]
- 1995 : BGP-4 [RFC 1771], support for CIDR
- 2006 : BGP-4 [RFC 4271], update

BGP Operations

Establish session on

TCP port 179

Exchange all

 active routesExchange incremental updates

While connection is ALIVE exchange route UPDATE messages

Incremental Protocol

- A node learns multiple paths to destination
-Stores all of the routes in a routing table
-Applies policy to select a single active route
-... and may advertise the route to its neighbors
- Incremental updates
-Announcement
- Upon selecting a new active route, add node id to path
- ... and (optionally) advertise to each neighbor
-Withdrawal
- If the active route is no longer available
- ... send a withdrawal message to the neighbors

BGP Route

- Destination prefix (e.g., 128.112.0.0/16)
- Route attributes, including
- AS path (e.g., "7018 88")
- Next-hop IP address (e.g., 12.127.0.121)

ASPATH Attribute

BGP Path Selection

- Simplest case
-Shortest AS path
-Arbitrary tie break
- Example
-Three-hop AS path preferred over a five-hop AS path
-AS 12654 prefers path through Global Crossing
- But, BGP is not limited to shortest-path routing
-Policy-based routing
128.112.0.0/16
AS Path $=3549701888$

AS Path Length != Router Hops

- AS path may be longer than shortest AS path
- Router path may be longer than shortest path

2 AS hops,

BGP Convergence

Causes of BGP Routing Changes

- Topology changes
- Equipment going up or down
- Deployment of new routers or sessions
- BGP session failures
-Due to equipment failures, maintenance, etc.
- Or, due to congestion on the physical path
- Changes in routing policy
- Changes in preferences in the routes
- Changes in whether the route is exported
- Persistent protocol oscillation
- Conflicts between policies in different ASes

BGP Session Failure

- BGP runs over TCP
- BGP only sends updates AS1 when changes occur
- TCP doesn't detect lost connectivity on its own
- Detecting a failure
-Keep-alive: 60 seconds
-Hold timer: 180 seconds
- Reacting to a failure
- Discard all routes learned from the neighbor
- Send new updates for any routes that change

AS2

Routing Change: Before and After

Routing Change: Path Exploration

- AS 1
- Delete the route $(1,0)$
- Switch to next route (1,2,0)
-Send route $(1,2,0)$ to AS 3
- AS 3
-Sees $(1,2,0)$ replace $(1,0)$
- Compares to route $(2,0)$
-Switches to using AS 2

Routing Change: Path Exploration

- Initial situation
- Destination 0 is alive
- All ASes use direct path
$(1,0)$
$(1,2,0)$
(1,3,0)
- When destination dies
- All ASes lose direct path
- All switch to longer paths
-Eventually withdrawn
- E.g., AS 2
$-(2,0) \rightarrow(2,1,0)$
$-(2,1,0) \rightarrow(2,3,0)$
$-(2,3,0) \rightarrow(2,1,3,0)$
$-(2,1,3,0) \rightarrow$ null

BGP Converges Slowly

- Path vector avoids count-to-infinity
- But, ASes still must explore many alternate paths
$-\ldots$ to find the highest-ranked path that is still available
- Fortunately, in practice
- Most popular destinations have very stable BGP routes
- And most instability lies in a few unpopular destinations
- Still, lower BGP convergence delay is a goal
- Can be tens of seconds to tens of minutes
- High for important interactive applications
- ... or even conventional application, like Web browsing

Conclusions

- Distance-vector routing
- Compute path costs based on neighbors' path costs
-Bellman-Ford algorithm \& Routing Information Protocol
- Path-vector routing
- Faster convergence than distance-vector protocols
-While hiding information and enabling flexible policy
- Interdomain routing
- Autonomous Systems (ASes)
-Policy-based path-vector routing
- Next time: interdomain routing policies

