Transport Protocols
Reading: Sections 2.5, 5.1, and 5.2

CE443 - Fall 1390

Acknowledgments: Lecture slides are from Computer networks course
thought by Jennifer Rexford at Princeton University. When slides are
obtained from other sources, a a reference will be noted on the

bottom of that slide. A full list of references is provided on the last
slide.

Goals for Today’s Lecture

* Principles underlying transport-layer services
— (De)multiplexing
— Detecting corruption
— Reliable delivery
— Flow control

* Transport-layer protocols in the Internet
— User Datagram Protocol (UDP)

e Simple (unreliable) message delivery
* Realized by a SOCK_DGRAM socket
— Transmission Control Protocol (TCP)

* Reliable bidirectional stream of bytes
* Realized by a SOCK_STREAM socket

Role of Transport Layer

* Application layer
— Between applications (e.g., browsers and servers)

—E.qg., HyperText Transfer Protocol (HTTP), File Transfer
Protocol (FTP), Network News Transfer Protocol (NNTP)

* Transport layer
— Between processes (e.g., sockets)

—Relies on network layer and serves the application layer
—E.g., TCP and UDP

* Network layer
— Between nodes (e.g., routers and hosts)

— Hides details of the link technology
-E.g.,IP

-
Transport Protocols

* Provide logical communication
between application processes
running on different hosts

* Run on end hosts

— Sender: breaks application
messages into segments,
and passes to network layer

— Recelver: reassembles
segments into messages,
passes to application layer

* Multiple transport protocols
available to applications

—Internet; TCP and UDP

physical

-y

Two Basic Transport Features

* Demultiplexing: port numbers

Server host 128.2.194.242

. Service request for
et host 128.2.194.242:80

i (i.e., the Web server)

 Error detection: checksums

IP payload

\/
detect corruption

User Datagram Protocol (UDP)

« Datagram messaging service
— Demultiplexing of messages: port numbers
— Detecting corrupted messages: checksum

* Lightweight communication between processes
—3Send messages to and receive them from a socket
— Avoid overhead and delays of ordered, reliable delivery

SRC port DST port

checksum length

DATA

Why Would Anyone Use UDP?

* Fine control over what data is sent and when
—As soon as an application process writes into the socket
— ... UDP will package the data and send the packet

* No delay for connection establishment
— UDP just blasts away without any formal preliminaries
— ... which avoids introducing any unnecessary delays

* No connection state
— No allocation of buffers, parameters, sequence #s, etc.
— ... making it easier to handle many active clients at once

« Small packet header overhead
— UDP header is only eight-bytes long

Popular Applications That Use UDP

3 ¥l
EE(W

* Multimedia streaming
— Retransmitting lost/corrupted packets is not worthwhile

— By the time the packet is retransmitted, it's too late
—E.qg., telephone calls, video conferencing, gaming {é

« Simple query protocols like Domain Name System
— Overhead of connection establishment is overkill
— Easier to have the application retransmit if needed

“Address for www.cnn.com?”

Transmission Control Protocol (TCP)

« Stream-of-bytes service
—3Sends and receives a stream of bytes, not messages

* Reliable, in-order delivery
— Checksums to detect corrupted data
— Sequence numbers to detect losses and reorder data
— Acknowledgments & retransmissions for reliable delivery

« Connection oriented
— Explicit set-up and tear-down of TCP session

- Flow control
- Prevent overflow of the receiver’s buffer space

» Congestion control (next class!)
— Adapt to network congestion for the greater good

Breaking a Stream of Bytes
into TCP Segments

10

S‘.?
m‘&mmmi

TCP “Stream of Bytes” Service

Host A

.......

0 2Ag
[9Ag
z 1&3

0 1&8

vy
'~<

(—F

p—

z 1&8

O

.................

11

...Emulated Using TCP “Segments”

Host A
A LI TTTTTTTTITI T T]
Ll Segment sent when
TCP Data 1. Segment full (Max Segment Size),
2. Not full, but times out, or
3. "Pushed" by application.
TCP Data

HOST B

0 9Ag |«
[949

791Ag [«
€ 9Ag |«

08 NG |«

.................

12

TCP Segment

TP Data
TCP Data (segment) TCP Hdr || IP Hdr ":

* |P packet
— No bigger than Maximum Transmission Unit (MTU)
—E.g., up to 1500 bytes on an Ethernet

* TCP packet
—|IP packet with a TCP header and data inside

— TCP header is typically 20 bytes long

* TCP segment
—No more than Maximum Segment Size (MSS) bytes
—E.qg., up to 1460 consecutive bytes from the stream

13

Sequence Number

Host A

ISN (initial sequence number)

« TELS

Sequence

TCP Data

number = 157
byte

Host B

TCP Data

.............

...........

14

Initial Sequence Number (ISN)

« Sequence number for the very first byte
—E.g., Why not a de facto ISN of 07

* Practical issue

—|P addresses and port #s uniquely identify a connection
— Eventually, though, these port #s do get used again
—... and there is a chance an old packet is still in flight

— ... and might be associated with the new connection

« S0, TCP requires changing the ISN over time
— Set from a 32-bit clock that ticks every 4 microseconds
— ... which only wraps around once every 4.55 hours!

 But, this means the hosts need to exchange ISNs

15

Reliable Delivery on a Lossy
Channel With Bit Errors

16

An Analogy: Talking on a Cell Phone

’?
(Gerp ~ e
(6]

 Alice and Bob on their cell phones
— Both Alice and Bob are talking

* What if Alice couldn’t understand Bob?
— Bob asks Alice to repeat what she said

* What if Bob hasn’t heard Alice for a while?
—Is Alice just being quiet?
— Or, have Bob and Alice lost reception?
—How long should Bob just keep on talking?
— Maybe Alice should periodically say “uh huh”
— ... or Bob should ask “Can you hear me now?”

17

Some Take-Aways from the Example

* Acknowledgments from receiver
— Positive: “okay” or “uh huh” or “ACK”
— Negative: “please repeat that” or “NACK”

* Timeout by the sender (“stop and wait”)
— Don’t wait indefinitely without receiving some response
— ... Whether a positive or a negative acknowledgment

* Retransmission by the sender
— After receiving a “NACK” from the receiver
— After receiving no feedback from the receiver

18

%‘f
m‘tmmmi

Challenges of Reliable Data Transfer

» Over a perfectly reliable channel
— All of the data arrives in order, just as it was sent
— Simple: sender sends data, and receiver receives data

* Over a channel with bit errors
— All of the data arrives in order, but some bits corrupted
— Receiver detects errors and says “please repeat that”
— Sender retransmits the data that were corrupted

* Over a lossy channel with bit errors
—Some data are missing, and some bits are corrupted
— Recelver detects errors but cannot always detect loss
— Sender must wait for acknowledgment (“ACK” or “OK”)

— ... and retransmit data after some time if no ACK arrives
19

TCP Support for Reliable Delivery

(swormef)

- Detect bit errors: checksum
- Used to detect corrupted data at the receiver
- ...leading the receiver to drop the packet

- Detect missing data: sequence number
- Used to detect a gap in the stream of bytes
— ... and for putting the data back in order

- Recover from lost data: retransmission
— Sender retransmits lost or corrupted data
- Two main ways to detect lost packets

20

TCP Acknowledgments

Host A

ISN (initial sequence number)

|

.............

Sequence

TCP Data

TCI;J
HD

humber = 157
byte

Host B

TCP Data Lg;

ACK sequence
humber = next
expected byte

...........

21

Automatic Repeat reQuest (ARQ)

» Automatic Repeat reQuest

— Receiver sends
acknowledgment (ACK) when
It receives packet

— Sender waits for ACK and
timeouts if it does not arrive
within some time period

» Simplest ARQ protocol
— Stop and wait

—Send a packet, stop and wait
until ACK arrives

)(
(e \

Time

Sender Receiver

| At —

. Tir_n_g_out

22

Reasons for Retransmission

:"%

Timeout

_Timeout

| A

Pack
\et‘

K

Packet lost

Timeout

.. Timeout

e Pack
: \et,

:'%
A

N

K

ACK lost
DUPLICATE
PACKET

_..imeout

Timeout

Early timeout
DUPLICATE
PACKETS23

How Long Should Sender Wait?

(swormef)

 Sender sets a timeout to wait for an ACK
— Too short: wasted retransmissions
— Too long: excessive delays when packet lost

* TCP sets timeout as a function of the RTT
— Expect ACK to arrive after a “round-trip time”
— ... plus a fudge factor to account for queuing

» But, how does the sender know the RTT?
— Can estimate the RTT by watching the ACKs

—Smooth estimate: keep a running average of the RTT
e EstimatedRTT = a * EstimatedRTT + (1 —a) * SampleRTT

— Compute timeout: TimeOut = 2 * EstimatedRTT

24

Example RTT Estimation

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

350 +

300

250

RTT (milliseconds)

200 -

150

1 00 T T T T T T T T T T T T T T
1 8 15 22 29 36 43 50 57 64 71 78 85 92 99 106
time (seconnds)

—o— SampleRTT Estimated RTT

25

3‘
(ot~ et

SV RUTIHE)

A Flaw In This Approach

 An ACK doesn’t really acknowledge a transmission
— Rather, it acknowledges receipt of the data

» Consider a retransmission of a lost packet

— If you assume the ACK goes with the 1st transmission
— ... the SampleRTT comes out way too large

» Consider a duplicate packet
— If you assume the ACK goes with the 2nd transmission
—... the Sample RTT comes out way too small

« Simple solution in the Karn/Partridge algorithm
— Only collect samples for segments sent one single time

26

Flow Control:
TCP Sliding Window

27

Motivation for Sliding Window

(swormef)

» Stop-and-wait is inefficient
—Only one TCP segment is “in flight” at a time
— Especially bad when delay-bandwidth product is high

 Numerical example
—1.5 Mbps link with a 45 msec round-trip time (RTT)
e Delay-bandwidth product is 67.5 Kbits (or 8 KBytes)

— But, sender can send at most one packet per RTT

e Assuming a segment size of 1 KB (8 Kbits)
» ... leads to 8 Kbits/segment / 45 msec/segment = 182 Kbps
* That’s just one-eighth of the 1.5 Mbps link capacity

d

—

L&

I T

28

Sliding Window

* Allow a larger amount of data “in flight”
— Allow sender to get ahead of the receiver

— ... though not too far ahead
Sending process

TCP Last byte writte TCP /ast byte read
1] T

Last byte ACKed Next byte expected

Last byte sent Last byte received

Receiver Buffering

* Window size
—Amount that can be sent without acknowledgment
— Receiver needs to be able to store this amount of data

* Recelver advertises the window to the sender
—Tells the receiver the amount of free space left
—... and the sender agrees not to exceed this amount

Window Si

............

' Data ACK'd | Outstanding | Data OK | Data not OK
Un-ack'd data to send to send yet 30

Back to Timeouts

31

Still, Timeouts are Inefficient

 Timeout-based retransmission

— Sender transmits a packet and waits until timer expires
— ... and then retransmits from the lost packet onward

sender receiver
rcv pkio
send ki senclcj) ACKO
> sendpki2 —_ (loss) Sorhd Ak
send pki3
(wait) rev pkt3, discard
/ send ACKI
rcv ACKO
send pkt4d
rcv pki4, discard
rcv pkitb, discard
—pki2 timeout g sond ACK]
send pkt2 \
send pkt3 rev pkt2, deliver
send pkt4d

send ACK?2
send pkths rcv pkt3, deliver
\ send ACKS3 32

Fast Retransmission

 Better solution possible under sliding window
— Although packet n might have been lost
— ... packets n+1, n+2, and so on might get through

* |dea: have the receiver send ACK packets

— ACK says that receiver is still awaiting nth packet
* And repeated ACKs suggest later packets have arrived

— Sender can view the “duplicate ACKs” as an early hint

e ... that the nth packet must have been lost
e ... and perform the retransmission early

* Fast retransmission
— Sender retransmits data after the triple duplicate ACK

33

Effectiveness of Fast Retransmit

 When does Fast Retransmit work best?

— Long data transfers
* High likelihood of many packets in flight

—High window size
* High likelihood of many packets in flight

—Low burstiness in packet losses
* Higher likelihood that later packets arrive successfully

 Implications for Web traffic

—Most Web transfers are short (e.g., 10 packets)
e Short HTML files or small images

— S0, often there aren’t many packets in flight
— ... making fast retransmit less likely to “kick in”
— Forcing users to click “reload” more often... ©

34

Coerp " e

SV RUTIHE)

Starting and Ending a Connection:
TCP Handshakes

35

Establishing a TCP Connection

SV RUTIHE)

A B
SYN

/

CK Each host tells

its ISN to the

ACk other host.

Da tc'i

&
&

* Three-way handshake to establish connection
—Host A sends a SYN (open) to the host B

—Host B returns a SYN acknowledgment (SYN ACK)
—Host A sends an ACK to acknowledge the SYN ACK

36

TCP Header

Source port Destination port
Sequence number
Flags: EI\I(\IN Acknowledgment
RST HdrLen| 0 | Flags | Advertised window
EEIEI; Checksum Urgent pointer
ACK

Options (variable)

37

Step 1: A’s Initial SYN Packet

A's port B’s port
A’s Initial Sequence Number
Flags: EI\I(\IN Acknowledgment
RST 20 | 0| Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK

Options (variable)

A tells B it wants to open a connection...

38

Step 2: B’s SYN-ACK Packet

B's port A's port
B’s Initial Sequence Number
Flags: SYN :

EIN A's ISN plus 1
RST 20 | 0| Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK

Options (variable)

B tells A it accepts, and is ready to hear the next byte...

... upon receiving this packet, A can start sending data 39

Step 3: A’s ACK of the SYN-ACK

A's port B’s port
Sequence number
Flags: SYN ,
EIN B’s ISN plus 1
RST 20 | 0| Flags | Advertised window
PSH
URG Checksum Urgent pointer
ACK

Options (variable)

A tells B it is okay to start sending

.. upon receiving this packet, B can start sending data 40

What if the SYN Packet Gets Lost?

(swormef)

» Suppose the SYN packet gets lost
— Packet is lost inside the network, or
— Server rejects the packet (e.g., listen queue is full)

» Eventually, no SYN-ACK arrives
— Sender sets a timer and wait for the SYN-ACK
— ... and retransmits the SYN if needed

* How should the TCP sender set the timer?
— Sender has no idea how far away the receiver is
—Hard to guess a reasonable length of time to wait
—3Some TCPs use a default of 3 or 6 seconds

41

SYN Loss and Web Downloads

(swormef)

» User clicks on a hypertext link
— Browser creates a socket and does a “connect’
—The “connect” triggers the OS to transmit a SYN

* |If the SYN is lost...
—The 3-6 seconds of delay may be very long
— The user may get impatient
— ... and click the hyperlink again, or click “reload”

« User triggers an “abort” of the “connect”
— Browser creates a new socket and does a “connect’

— Essentially, forces a faster send of a new SYN packet!
—Sometimes very effective, and the page comes fast

42

Tearing Down the Connection

B
v
Q R~
é 3 7 Z a0
5 v%ﬁ/\% EZ % \Z <
O
ﬁ o0 0
A

time

* Closing (each end of) the connection

—Finish (FIN) to close and receive remaining bytes
— And other host sends a FIN ACK to acknowledge
— Reset (RST) to close and not receive remaining bytes

43

Sending/Receiving the FIN Packet &,
« Sending a FIN: close() * Receiving a FIN: EOF

—Process is done sending — Process is reading data
data via the socket from the socket

— Process invokes — Eventually, the attempt
“close()” to close the to read returns an EOF
socket

—Once TCP has sent all of
the outstanding bytes...

— ... then TCP sends a FIN

44

Conclusions

 Transport protocols
—Multiplexing and demultiplexing
—Checksum-based error detection
—Sequence numbers
—Retransmission
—Window-based flow control

* Reading for this week
—Sections 2.5, 5.1-5.2, and 6.1-6.4

* Next lecture
—Congestion control

45

