
Target Fragmentation in Android Apps
Patrick Mutchler

Stanford University
pcm2d@stanford.edu

Yeganeh Safaei
Arizona State University

ysafaeis@asu.edu

Adam Doupé
Arizona State University

doupe@asu.edu

John Mitchell
Stanford University

mitchell@cs.stanford.edu

Abstract—Android apps declare a target version of the Android
run-time platform. When run on devices with more recent
Android versions, apps are executed in a compatibility mode
that attempts to mimic the behavior of the older target version.
This design has serious security consequences. Apps that target
outdated Android versions disable important security changes
to the Android platform. We call the problem of apps targeting
outdated Android versions the target fragmentation problem.

We analyze a dataset of 1,232,696 free Android apps collected
between May, 2012 and December, 2015 and show that the target
fragmentation problem is a serious concern across the entire app
ecosystem and has not changed considerably in several years. In
total, 93% of current apps target out-of-date platform versions
and have a mean outdatedness of 686 days; 79% of apps are
already out-of-date on the day they are uploaded to the app
store. Finally, we examine seven security related changes to the
Android platform that are disabled in apps that target outdated
platform versions and show that target fragmentation hamstrings
attempts to improve the security of Android apps.

I. INTRODUCTION

Android has become the most popular smartphone platform
worldwide, with more than one billion active devices [1].
Android faces two major security challenges in delivering
secure code to users, fragmentation within devices and frag-
mentation within apps. Device fragmentation is a well known
concern [2]. Google does not control the distribution of
Android devices or Android software updates. Google instead
relies on a network of other businesses to deliver up-to-date
Android software to users, in the form of new devices or
software updates. Because of the distributed nature of this
process, a large number of Android devices are running out-
of-date versions of the Android platform. Critical security
patches do not reach millions of Android users, extending the
lifetime of security vulnerabilities. In comparison to device
fragmentation, fragmentation within apps has received little
attention despite carrying similar security consequences.

Android exposes numerous essential library features to apps
through the Android API. New versions of the Android plat-
form can introduce changes to the behavior of existing library
features. For example, Android 4.4 changed the behavior of
AlarmManager.set to batch alarms set for similar times.
This change helps improve battery life at the expense of
inexact alarms. Behavioral changes such as this present a
problem for apps, which might suddenly break when a device
updates to a new Android version.

Google assigns each Android platform version an integer
called an API level. To maintain a degree of forwards com-
patibility and prevent apps from dramatically changing their

behavior without warning, every app has a target API level.
Apps that are run on devices with a higher API level than
their target API level are executed in a compatibility mode that
attempts to match the behavior of devices with the target API
level as closely as possible. For example, apps that set their
target API level to 18 (Android 4.3) will use the unbatched
alarm behavior even when run on up-to-date Android devices.

Android platform changes can include important new se-
curity features that either resolve known problems with the
Android APIs or provide extra protection against attack. Any
of these features disabled by the compatibility mode will be
unavailable to apps that target outdated Android levels. This
design means that, even when running an up-to-date device, an
app that targets an outdated API level will not have access to
the most current security features. Google does not publish an
app’s target API level on the Google Play store so there is no
simple way for users to know if an app targets an outdated API
level. Instead, users are entirely at the mercy of app developers.
We call this problem of apps targeting outdated API levels the
target fragmentation problem.

The most well-known consequence of the target fragmenta-
tion problem relates to a remote code execution vulnerability
in Android WebView [3]. API level 17 added new behavior to
resolve this vulnerability, however this change is only applied
to apps that target API level 17 or higher. Years after the
vulnerability was disclosed and fixed in the Android platform,
apps can still be vulnerable, even when run on the new
platform, by targeting outdated API levels. Several studies
examining this vulnerability have reported the percentage of
apps that target levels 16 or below [4, 5]. But this vulnerability
is just one example of how the target fragmentation problem
makes Android apps less secure and no research has stud-
ied target fragmentation in its own right. A more complete
analysis of the target fragmentation problem is essential to
understanding the security of the Android ecosystem.

To the best of our knowledge, this paper reports the first
study to identify and measure the target fragmentation problem
and its security implications at a broad scale. In this paper we
study target fragmentation in five datasets of free Android apps
collected from the Google Play store over almost four years.
In total, these datasets include 1,232,696 apps. We measure
trends in the target fragmentation problem using metadata
obtained from the Google Play store. Finally, we study the
security implications of the target fragmentation problem with
respect to several concrete vulnerabilities. The major research
questions and results of our study are as follows:



What is the state of the target fragmentation problem in
the Android app ecosystem? We examine a dataset of 60,086
free apps collected from the Google Play store in December,
2015 and find that 93% of apps target out-of-date API levels.
We define a measure of “outdatedness” and find that apps, on
average, target API levels that are 686 days out-of-date.

Do developers choose to target outdated Android ver-
sions or is fragmentation caused by developers abandoning
their apps? To account for unmaintained apps, we define a
measure of “negligent outdatedness” that measures outdated-
ness from the date an app was uploaded to the app store and
show that target fragmentation is not just caused by stagnant
apps. We find that apps collected in December, 2015 have a
mean negligent outdatedness of 536 days.

Is target fragmentation a problem in the most popular
apps? We examine the target fragmentation problem with
respect to app popularity and conclude that target fragmenta-
tion is a serious problem even among the most popular apps.
We find that 88% of apps collected in December, 2015 and
installed more than one million times target out-of-date API
levels. These apps have a mean outdatedness of 607 days and
a mean negligent outdatedness of 493 days, only slightly lower
than the general population.

Is the target fragmentation problem becoming less
severe over time? We compare the target fragmentation results
from the December, 2015 dataset with four other datasets
collected from the Google Play store between May, 2012
and July, 2014. These datasets combined contain 1,232,696
apps. We find that, other than a growing tail of extremely out-
of-date apps, outdatedness distributions among the four most
recently collected datasets are very similar, suggesting that the
severity of the target fragmentation problem has not changed
considerably in several years.

What are the specific security implications of the target
fragmentation problem today? We expand the discussion of
the target fragmentation problem by examining seven security
relevant changes in the Android platform and provide the
first quantitative analysis of the broad implications of target
fragmentation on the security of the Android ecosystem.

II. BACKGROUND

Packaged with each Android app is a manifest file. The
manifest file is an XML document that contains information
about an app such as the list of application components,
requested permissions, and system events to which the app
responds [6]. The manifest contains two attributes relevant to
this study: a minimum API level (minSdkVersion) and
a target API level (targetSdkVersion)1. The meaning
of the minimum API level is very straightforward. An app
cannot be installed on a device with an Android level below
the minimum API level. This design ensures that apps are not
installed on devices that lack essential functionality.

1Manifests can also include a maximum API level, but since Android 2.0.1
the maximum API level is no longer used for anything other than filtering
searches on the Google Play store.

API Level Version Code Codename Release Date
14 4.0–4.0.2 Ice Cream Sandwich Oct, 2011
15 4.0.3–4.0.4 Dec, 2011
16 4.1–4.1.2 Jelly Bean Jul, 2012
17 4.2–4.2.2 Nov, 2012
18 4.3–4.3.1 Jul, 2013
19 4.4–4.4.4 KitKat Nov, 2013
20 4.4W–4.4W.2 Jun, 2014
21 5.0–5.0.2 Lollipop Nov, 2014
22 5.1–5.1.1 Mar, 2015
23 6.0–6.0.1 Marshmallow Oct, 2015

TABLE I: An abbreviated Android version history.

An app’s target API level is used to maintain forwards
compatibility with new Android platforms. If the API level
of a device is higher than an app’s target API level, the device
will enable compatibility features to match the behavior of the
target API level as closely as possible. The set of compatibility
features enabled in each API level can be found in the Android
documentation [7]. Note that apps can be safely installed on
devices running lower API levels than the target API level.
Developers can target the most current API level without
making their app incompatible with older Android devices.

If an app does not declare a target API level or if the target
API level is lower than the minimum API level, the target API
level is set to the minimum API level. For the remainder of this
paper we distinguish between the raw target API level, which
is the target level listed in the manifest file, and the target API
level, which is the target level computed using this rule and
actually used by the Android operating system. Approximately
8% of apps today do not declare a valid raw target API level.

The targetSdkVersion and minSdkVersion at-
tributes take integer values called “API levels” that correspond
to the different Android version codes. For the remainder of
this paper we use the API level values (e.g., 17, 18, 19) rather
than the version codes (e.g., 4.2, 4.3, 4.4) when discussing
different API versions. The correspondence between recent
API levels and Android version codes is presented in Table I.

A. Security Concerns

It is not immediately obvious from the Android docu-
mentation that targeting outdated API levels can have se-
curity implications. On the documentation page for the
targetSdkVersion attribute [8], Google suggests that de-
velopers should “increase the value of [the targetSdkVersion]
attribute to match the latest API level,” but there is no mention
of the security consequences of targeting outdated API levels.
On the “Security Tips” page [9] there is no mention of target
API level. One might assume that the security consequences
of targeting outdated API levels are minimal or nonexistent.

However, there are important security changes in recent
Android versions that are not applied to apps that target
outdated API levels. For example, API levels 17 and 19 both
contain changes that prevent code injection vulnerabilities in
widely used features. Several other API levels change popular
features to have safer default behaviors, providing an extra
layer of protection. Table II lists the major security changes
to the Android platform that can be disabled by targeting



API Platform Change
16 Access to file URLs from JavaScript is disabled by default
17 Content Providers are no longer exposed to foreign apps by default
17 Unannotated app methods are not callable from JavaScript code
19 isValidFragment is added to prevent Fragment Hijacking
19 JavaScript URLs are executed in a separate WebView context
21 Context.bindService no longer accepts Implicit Intents
21 WebView blocks mixed content by default

TABLE II: Selected security-relevant changes to the Android plat-
form. Apps that target API levels below the listed levels do not have
the benefit of any security protection provided by these changes.

outdated Android levels. The details of these changes and
the vulnerabilities they close are discussed in Section V. If a
large number of apps target out-of-date API levels then these
changes, no matter how well intentioned, are made ineffective
and apps are put at unnecessary risk.

III. METHODOLOGY

Our study analyzes a dataset of 1,232,696 free apps col-
lected from the Google Play app store between May, 2012
and January, 2016. To collect these apps we developed a
system to crawl the Google Play store to identify new apps,
scrape metadata from the Google Play store, and download
actual app files. This system was operational during five
brief time windows, naturally separating our dataset into five
smaller datasets (Datasets A, B, C, D, and E, in reverse
chronological order) that correspond to these time windows.
Table III describes the details of these datasets and lists the
most current API level at the time each dataset was collected.

A. Collecting Apps

Our system first crawls the Google Play store for apps to
download. We consider an app unique if it has a unique app
id2. To crawl the Google Play store, we use the following four
techniques: (1) crawl the Google Play designated categories
for popular appsand collections, (2) crawl random known
developer pages to look for new apps, (3) search on the Google
Play store using words from known app descriptions, and (4)
extract all app ids from URLs on crawled pages.

Google publishes some metadata about apps on the store.
We scrape and collect metadata about each crawled app
including the date the most recent version of that app was
uploaded to the app store and the number of devices on which
the app has been installed3.

To download apps we use a method similar to the one
described by Viennot, Garcia, and Nieh [10]. In an attempt to
efficiently collect as diverse a set of applications as possible,
we only download apps with never before seen app ids. For
each dataset except Dataset A, we attempted to download
every app with a never before seen app id identified during

2The value of the id query parameter of the app’s Google Play URL, for
example com.instagram.android in the URL play.google.com/store/
apps/details?id=com.instagram.android. Note that this is not necessarily the
same as the app’s package name

3Precise install counts are not available. Google Play reports a range of
possible install counts with two buckets per order of magnitude. For example,
an app might have a reported install count between 10,000 and 50,000.

Dataset App Count Crawl Date Most Current API
A 60,086 December, 2015 23
B 219,115 June, 2014 19
C 165,489 January, 2014 19
D 645,862 July, 2013 17
E 142,144 May, 2012 15

TABLE III: An overview of the five datasets used in this study and
the most current API level at the time each dataset was collected.

crawling. Due to time constraints (and technical challenges),
Dataset A is only a subset of the available apps. We discuss
the effect of this collection method in Section VI-B.

B. Analysis

The Google Play store publishes each app’s minimum
API level but does not publish target API levels. We use
apktool [11], a static analysis tool that converts packaged
apps into human readable files, to extract manifests and record
their target API levels. Because our database of apps is
extremely large, it is impractical to perform complex static
analysis. All of the static analysis used in this study is
purely syntactic, which we perform by processing the smali
representation of app bytecode extracted by apktool.

IV. EVALUATION

In this section we quantify the extent of the target fragmen-
tation problem. We begin by demonstrating that the majority
of sampled apps target outdated API levels. We define an
outdatedness metric that measures the severity of the target
fragmentation problem for individual apps as well as across
a population of apps. We show that the target fragmentation
problem is primarily caused by developer negligence rather
than apps that lie fallow on the app store. We compare our
outdatedness metric between popular and unpopular apps and
prove that target fragmentation is a problem even among the
most popular apps. Finally, we show that outdatedness curves
are similar in the four most recently collected datasets. This
result suggests that, unless the target fragmentation problem is
reexamined, it may continue with the same scale in the future.
Due to the large sizes of our datasets, we believe that these
results apply broadly to the entire Google Play ecosystem.

A. Target Fragmentation Today

Figure 1 shows the distribution of target API levels for apps
in Dataset A, the dataset containing the most current apps. It
is immediately clear that the huge majority of apps do not
target API level 23, the most current API level at the time
Dataset A was collected. More precisely, we find that 93% of
apps in Dataset A target API levels 22 or lower.

Apps that target more outdated API levels are more likely
to miss crucial security changes. We are not just interested
in if an app is outdated but also in how outdated an app
is. We define a quantitative measure called “outdatedness” as
the difference (in days) between the release date of an app’s
target API level and the release date of the most current API
level at the time of the app was collected. We find a median
outdatedness of 704 days and a mean outdatedness of 686 days



0 5 10 15 20
Target API Version

0

5

10

15

20

25
%

 A
p
p
s

Fig. 1: The distribution of target API levels in dataset A, collected two
months after the release of API level 23. API level 20 is specifically
intended for wearable devices, explaining why few apps target it.

Fig. 2: The cumulative distribution of outdatedness in Dataset A. A
point at (X,Y) means that Y% of apps have an outdatedness of X
days or less. The low resolution of outdatedness values causes the
jagged nature of this curve.

for apps in Dataset A. We can use the cumulative distribution
of outdatedness (Figure 2) as a measure of the severity of
the target fragmentation problem over a population of apps.
By examining the low end of the curve we see that the large
majority of apps target outdated API levels. The long tail at
the top of the curve shows us that a considerable number of
apps target API levels that are many years out of date.

We might expect the distribution of target API levels to
resemble a skewed normal distribution, with the percentage
of apps targeting each API level decreasing as API levels get
more and more out-of-date. But instead, as seen in Figure 1,
we find that the percentage of apps targeting API levels 7
through 16 is relatively flat. Nearly as many apps targeting API
level 7 as API level 16. API level 9 sticks out in particular,
being targeted by nearly 3% of all apps in Dataset A even
though it does not offer any critical compatibility features.
Why are apps targeting such an out-of-date API level?

0 100 200 300 400 500 600 700
Days Since App Upload

0

100

200

300

400

500

A
p
p
 C

o
u
n
t

Fig. 3: The distribution of the number of days between when an
app was uploaded to the Google Play store and when that app was
collected.

If we analyze the raw target API levels in Dataset A we
find that 8.2% of apps either do not include a raw target API
level, set a value that is lower than their minimum API level, or
have an otherwise invalid raw target API level. These apps use
their minimum API level as their target API level. These apps
account for the majority of the long tail in the distribution
of target API levels. For example, 63% of apps that target
API levels 15 or lower do so because they use their minimum
API level as their target API level. This represents a major
opportunity for eliminating the long tail in the distribution
of target API levels by convincing developers to use the
targetSdkVersion attribute correctly.

B. Stale Apps

Not all apps on the Google Play store are regularly main-
tained by their developers. Figure 3 shows the distribution of
the number of days between an app’s collection and when
it was uploaded to the Google Play store by its developers.
Note that this date could either be the first time the app was
published or the date the most recent app update was pushed.
Only 38% of apps in Dataset A were uploaded after the release
of API level 23 in October, 2015. Clearly, apps that have
stagnated on the Google Play store will not target the new
API levels as they are released. The presence of unmaintained
apps can skew the target API distribution and falsely imply that
developers who actively maintain their apps fail to update their
apps to target new API levels. Here, we attempt to distinguish
outdatedness caused by unmaintained apps and outdatedness
that persists through app maintenance.

We define an app’s “negligent outdatedness” as the dif-
ference (in days) between the release date of its target API
level and the release date of the most current API level at
the time it was uploaded to the Google Play store. Negligent
outdatedness measures missed opportunities for developers to
target their apps to current API levels. Figure 4 describes a
concrete example to clarify the difference between outdated-
ness and negligent outdatedness. We find a median negligent



Negligent Outdatedness

Outdatedness

API 21
Released

API 22
Released

App
Uploaded

API 23
Released

App
Collected

Fig. 4: A example app demonstrating outdatedness and negligent
outdatedness. This app targets API level 21, was uploaded after the
release of API level 22, and was collected after the release of API
level 23. Outdatedness is measured from the highest API level before
app collection. Negligent outdatedness is measured from the highest
API level before the app was uploaded.

outdatedness of 377 days and a mean negligent outdatedness
of 536 days among apps in Dataset A.

We can be even more generous with our definition of
negligent outdatedness and include some lag time to allow
developers to retarget their apps after a new API level is
released. Instead of choosing the most current API level at the
time an app was uploaded to the app store, we choose the most
current API level that has been available for at least N days at
the time an app was uploaded to the app store. We call this lag
time an “adoption window.” Adding an adoption window of 30
days only marginally affects negligent outdatedness, reducing
the median negligent outdatedness to 327 days and the mean
negligent outdatedness to 496 days.

Figure 5 shows the cumulative distribution of negligent
outdatedness using an adoption window of 30 days. Even
with a generous adoption window, apps still fail to target the
appropriate API levels. Nearly 80% of apps are negligently
targeted to outdated API levels. We note that developers have
access to new Android platforms before they are released,
so it is possible for apps to be up-to-date on day zero of a
new API level. It is clear from these results that the target
fragmentation problem cannot be explained by stale apps but
is the result of developer negligence, either due to ignorance
of the consequences of targeting out-of-date API levels or due
to a deliberate choice to target an out-of-date API level.

C. Popular Apps

The large majority of apps on the Google Play store are
not downloaded by many users. Just 2% of apps in Dataset A
have been installed at least 1,000,000 times yet these apps
account for 74% of total installs among apps in Dataset A.
It is important to understand the relationship between app
popularity and the target fragmentation problem.

Figure 6 compares the cumulative outdatedness distribution
between apps of different popularities. We see that the out-
datedness curves are very similar, with the most popular apps
(installed at least one million times) targeting only marginally
less out-of-date API levels. Comparing the negligent outdat-
edness distributions between apps of different popularities
gives similar results (and we do not include it here for space
reasons). Apps that have been installed at least one million
times have a mean outdatedness of 607 days and a mean
negligent outdatedness of 493 days.

0 500 1000 1500 2000 2500
Negligent Outdatedness (Days)

0

20

40

60

80

100

%
 A

p
p
s

Fig. 5: The cumulative distribution of negligent outdatedness in
Dataset A using an Adoption Window of 30 days.

0 500 1000 1500 2000 2500
Outdatedness (Days)

0

20

40

60

80

100

%
 A

p
p
s

Install Count

> 1m
100k - 1m
< 100k

Fig. 6: A comparison of the cumulative outdatedness distributions
of different app popularities showing that outdatedness statistics are
robust against changes in app popularity. Apps with with 1,000,000 or
more installs have an outdatedness curve that is only marginally better
than the rest of the population. Data points are linearly interpolated
to improve readability.

D. Target Fragmentation Over Time

It is clear from the analysis of Dataset A that target frag-
mentation is a serious problem today. Even the most popular
apps are targeting outdated, and often extremely outdated, API
levels. By analyzing datasets collected at different dates we can
see how the problem has changed over time. We repeat the
previous analyses on the four remaining datasets and compare
these results against the results from Dataset A.

Figure 7 compares the outdatedness distributions of our five
datasets. There is only one clear trend over time: a growing
tail of apps that target extremely outdated API levels, with the
90th percentile of outdatedness more than doubling between
Datasets E and A. This is a natural property of the target
fragmentation problem because the maximum outdatedness
grows over time. As long as there are apps that target the
lowest API levels we expect to see this tail continue to grow.



0 500 1000 1500 2000 2500
Outdatedness (Days)

0

20

40

60

80

100
%

 A
p
p
s

Dataset

A
B
C

D
E

Fig. 7: The cumulative distribution of outdatedness for all five
datasets. The four most recently collected datasets (A through D)
follow similar curves but with growing tails. Data points are lineraly
interpolated to improve readability.

Comparing the low end of the outdatedness curves does
not show an obvious pattern. We see that in each dataset
the vast majority of apps target out of date API levels and
that, excluding than Dataset E, there does not appear to be
a dramatic difference in the lower end of the outdatedness
curves. We note that Datasets A and C were each collected
two months after a platform release and Datasets B and D
were collected seven and nine months after a platform release,
respectively. This difference appears to have a greater impact
on the low end of the outdatedness curves than any pattern
over time, with more than 20% of apps in Datasets B and
D targeting current API levels and less than 10% of apps in
Datasets A and C targeting current API levels.

There is one very promising trend between our datasets. We
find a clear downward trend in the percentage of apps that do
not specify a raw target API level (Figure 8) and therefore set
their target API level to their minimum API level. Because
developers often want to support as many devices as possible,
apps generally have very low minimum API levels, making it
extremely dangerous to fail to specify a target API level. This
trend suggests that developers have become more aware of the
target API feature and that the number of developers targeting
their minimum API level will vanish over time.

V. SECURITY IMPLICATIONS

The target fragmentation problem means that any security
change to the Android platform will be less effective, so
long as the change is disabled in compatibility mode. In
this section we explore the practical consequences of the
target fragmentation problem on seven security changes to the
Android platform. Apps targeting outdated API levels may
not necessarily be vulnerable but instead are at a heightened
risk for security vulnerabilities. In all but one case we only
show that apps are unnecessarily at a heightened risk. Because
Google has deemed the outdated behavior unsafe enough to
deserve a change to the Android platform, widespread use
of outdated behavior is troubling on its own. We also cite

05/12 07/13 01/14 06/14 12/15
Dataset Collection Date

0

10

20

30

40

50

60

70

80

%
 A

p
p
s 

W
it

h
o
u
t 

V
a
lid

 t
a
rg

e
tS

d
kV

e
rs

io
n

Fig. 8: The percentage of apps in each dataset that do not include a
valid targetSdkVersion attribute in their manifest and therefore
set their target API version to be equal to their minimum API version.

research showing that the conditions necessary for these apps
to be exploitable are frequent. The statistics in this section are
computed on Dataset A, the most recently collected dataset.

A. WebView Defaults

WebView [12] is a UI element that acts as an embedded
web browser within Android apps. In Dataset A, 91% of apps
include at least one WebView instance4. There are three major
security changes to the default behavior of WebView that
are disabled by targeting outdated API levels. The following
sections describe these changes and show that apps that target
current API levels are less likely to use the unsafe behaviors.

1) File Scheme Same Origin Policy: According to the Same
Origin Policy, JavaScript code only has access to content
loaded from the same origin. Treating all file: URLs as
belonging to the same origin is a security risk in systems with
mutually distrusting files. If a WebView loads any untrusted
content using a file: URL, then that content has full
access to every other file accessible by the app. In API level
16, the default behavior of WebView was changed to treat
all file: URLs as belonging to separate origins, however
this change only applies to apps targeting API levels 16 or
higher. Apps that wish to override this behavior and treat
all file: URLs as belonging to the same origin can use
the methods setAllowFileAccessFromFileURLs and
setAllowUniversalAccessFromFileURLs.

We find that 82% of apps that target API levels 15 or lower
and 18% of apps that target API levels 16 or higher use the
unsafe policy for file: URLs. Because apps that target API
levels 16 or higher and want to use the unsafe policy must do
so explicitly, we can use the percentage of these apps that
include calls to setAllowFileAccessFromFileURLs
or setAllowUniversalAccessFromFileURLs as an
upper bound on apps that want to use the unsafe policy. If we

4Because we are unable to ensure that ad libraries do not contain vulner-
abilities, this figure includes WebViews from ad libraries as well as primary
app functionality.



assume this percentage is uniform across both app populations
then we conclude that 64% of apps that target API level 15 or
lower unnecessarily use the unsafe policy and would become
more secure if they were retargeted to API level 16. These
apps represent 9.6% of all apps in Dataset A. We discuss the
validity of this assumption in Section VI-A.

Apps that allow unsafe file access are only at a heightened
risk. To be exploited, an app must load untrusted content
using a file: URL. Two ways an app might be exploited
are by loading file: URLs received from other apps or
by navigating to untrusted web pages, which could drop a
file on disk and redirect the WebView to that file. See Chin
and Wagner [13] for a detailed description of this exploit.
Research has shown that 23% of web browser apps unsafely
load file: URLs from foreign apps [14] and that WebView
apps frequently load untrusted web pages [13, 15, 4].

2) JavaScript URLs: Apps can load web content in a
WebView by calling loadUrl. In apps that target API levels
18 or lower, calling loadUrl on a JavaScript Pseudo-URL5

executes the script in the currently rendered web page. This
behavior is exploitable in apps that load unfiltered URLs
retrieved from foreign apps. A malicious app can send a
request to load a URL at foo.com and then send a script to be
executed in the context of foo.com to read private content.
This attack is known as Cross-Application Scripting [16].

Apps that target API levels 19 or higher load JavaScript
Psuedo-URLs in an empty context and must instead use the
method evaluateJavascript to execute JavaScript code
in the current WebView context. We find that 60% of apps
that target API levels 19 or higher contain at least one call to
this method. Again, we can use this as an upper bound on the
number of apps that intentionally execute JavaScript code in
this manner. Because 90% of apps that target API levels 18 or
lower include a WebView and enable JavaScript, we conclude
that 30% of apps that target API levels 18 or lower have no
need for evaluating JavaScript code in this manner and would
become more secure if they were retargeted to API level 19.
These apps represent 9.4% of all apps in Dataset A.

3) Mixed Content: A web page that includes web elements
retrieved over HTTP when it is loaded over HTTPS is said
to include mixed content. Loading mixed content is a security
risk, and several major browsers block mixed content [17, 18].
WebView blocks mixed content by default in apps that tar-
get API levels 21 or higher. Apps that wish to override
this behavior and allow mixed content can use the method
setMixedContentMode to specify a custom policy.

We find that 76% of apps that target API levels 20 or
lower and 42% of apps that target API levels 21 or higher
allow mixed content. If we assume that the percentage of apps
that want to allow mixed content is uniform across both app
populations then we conclude that 34% of apps that target
API levels 20 or lower unnecessarily allow mixed content and

5A URL that starts with the protocol javascript and contains the
JavaScript code to execute.

would become more secure if they were retargeted to API level
21. These apps represent 18% of all apps in Dataset A.

B. JavaScript Interface Remote Code Execution

Android allows apps to expose app-level objects to
JavaScript code running in a WebView by using a feature
called the JavaScript Interface [19]. In 2012, a remote code ex-
ecution attack on the JavaScript Interface was published [20].
Because JavaScript code has access to all of the public
methods of objects added to the JavaScript Interface, malicious
scripts could access the Java Reflection APIs by calling
getClass (a method inherited from java.lang.Object)
on the exposed object. From there, the malicious script could
build any arbitrary Java object and execute arbitrary code.

Android addressed this vulnerability in API level 17 by
forcing apps to annotate methods that should be callable
from JavaScript code. Calling an unannotated method from
JavaScript code does nothing. Because developers were un-
likely to need to expose getClass to JavaScript code, this
limited the damage that a malicious script could do. But this
change is not applied for apps that target API levels 16 or
lower. Apps that use the JavaScript Interface, target API levels
16 or lower, and load untrusted web content can be exploited.

We identify apps that use the JavaScript Interface by looking
for calls to addJavascriptInterface in smali code.
50% of apps in Dataset A use the JavaScript Interface. Of these
apps, 15% target API levels 16 or lower. Any of these apps
that load untrusted JavaScript code in their WebView can be
exploited. Identifying apps that can load untrusted JavaScript
code is beyond the scope of this study so we cannot say what
portion of these apps are exploitable, but we note that existing
work has shown that it is not uncommon for apps to load
untrusted web content in their WebViews [13, 15, 4].

C. Exported Content Providers

App components that manage access to structured data are
called Content Providers [21]. Content Providers are declared
in an app’s manifest file, and they can be either made local to
the app or exposed to other apps with the exported attribute.
Unintentionally exported Content Providers that hold sensitive
data are a security flaw as they are accessible to every app on
the device. Yet if the exported attribute is not specified it
falls back to a default value. API level 17 changed the default
value to false but apps that target API levels 16 or below
use a default value of true. Research has shown that 65%
of apps that export a Content Provider leak private data [22].

9.7% of apps that target API levels 16 or lower and 8.0%
of apps that target API levels 17 or higher include at least one
exported Content Provider. 4.9% of apps that target API levels
16 or lower include a Content Provider that is exported due
to default behavior. Assuming that the percentage of apps that
want to export a Content Provider is uniform across both app
populations we conclude that 1.7% of apps that target API
levels 16 or lower unnecessarily export a Content Provider.
These apps represent 0.3% of apps in Dataset A.



D. Fragment Injection

In 2013, security researchers identified a vulnerability in
the PreferenceActivity class [23]. Malicious apps can
send crafted messages to exported classes that inherit from
PreferenceActivity. The messages are interpreted as
Fragment instances and loaded dynamically using the Re-
flection APIs, executing arbitrary code from the malicious app.

API level 19 added the method isValidFragment to
PreferenceActivity to close this vulnerability. Devel-
opers are expected to use this method to check the package
name of injected fragments and reject unauthorized fragments.
Apps that target API levels 19 or higher inherit an implemen-
tation of isValidFragment that always raises an exception
and are therefore safe by default, but apps that target API levels
18 or lower inherit an implementation that always returns
true, which offers no protection against this attack.

We find that 1.7% of apps that target API levels 18 or
lower contain at least one exported class that inherits from
PreferenceActivity and does not override the unsafe
implementation of isValidFragment6. Unlike previous
examples, this is sufficient information to prove that these
apps are exploitable rather than just at heightened risk. The
exploitable apps account for 0.5% of all apps in Dataset A.

E. Service Hijacking

A Service is an app component that performs operations
without user interaction. UI components can interact with
a Service using the method bindService. Apps specify
which Service to interact with by using an Intent [24]. Intents
can be explicit or implicit. Explicit Intents list a unique Service
using its class name. Implicit Intents only specify a general ac-
tion to perform and the system chooses an appropriate Service
to handle the request. Communicating with a Service using
an Implicit Intent is not safe. Because Services are not user
facing components, users have no control over which Service
responds to an Implicit Intent. If multiple Services match the
Implicit Intent used in bindService then a random one of
those Services is chosen. Malicious apps can create a Service
that matches the Implicit Intent and impersonate trusted code.
In apps that target API levels 21 or higher, passing an Implicit
Intent to bindService throws a security exception.

83% of apps that target API levels 20 or lower contain at
least one call to bindService. These apps make up 43%
of all apps in Dataset A. Statically identifying which of these
apps use Implicit Intents to bind Services is nontrivial and
beyond the scope of this study. However, prior research [25]
has found that 19% of apps are potentially vulnerable to
Service Hijacking because they use Implicit Intents.

F. Detecting Outdated Apps

Google Play does not publish an app’s target API level.
Security conscious users are not empowered to make decisions
based on target API levels and must instead trust developers

6We assume that all implementations of isValidFragment correctly
validate the package name of injected fragments. Future work could expand on
our results by looking for incorrect implementations of isValidFragment.

to retarget their apps. It is essential to give users access to this
information. To this end, we created an open-source tool [26]
that reports the target API level of each app on a user’s phone
and notifies users of any security implications.

VI. DISCUSSION

The data presented in this study makes two conclusions
clear: that target fragmentation exists across the entire An-
droid ecosystem and that target fragmentation has practical
implications on Android security. Making new Android ver-
sions compatible with un-updated apps ensures that apps do
not suddenly break, but distributing security changes in this
manner has clear limitations. This approach makes security
changes optional and mixes security changes with non-security
changes. Developers cannot pick-and-choose just the security
changes but must integrate all of the platform changes from a
new API level. Developers could try to sidestep this problem
by setting a maximum API level but this feature is not
enforced and would exacerbate device fragmentation problem
by discouraging platform updates.

With this in mind, we consider the alternative to the current
system: enforcing all security changes to the Android platform
regardless of target API level. Nearly four months since the
release of API level 23, less than 1% of active devices have
updated to version 23 [27]. This slow update process means
that developers have ample time to update their apps to work
with new behavior. There have also been security changes in
the past that were both mandatory and breaking that did not
appear to cause great pain. In Android level 21, a uniqueness
requirement was added for custom permissions to ensure
that malicious apps could not access protected content. This
change was mandatory and could prevent apps from being
reinstalled after a device update but searching on developer
forums reveals few complaints. We suspect that if developers
were simply forced to adjust to all security changes that it
would not be a problem for the majority of apps. If this is
not feasible then, at the very least, users should be informed
if their apps target out-of-date API levels so that they can be
empowered to make security conscious decisions.

The JavaScript Interface vulnerability described in Sec-
tion V-B is a good case study to support our argument. After
failing to fix the problem in API level 17 with an optional
change, API level 19 banned all access to getClass from
the JavaScript Interface. This change is not made optional for
apps targeting lower API levels and would be unneeded if not
for the existence of apps that target API levels 16 or lower.
The vulnerability was only truly addressed with a change that
is applied to all apps, regardless of their target API version.

A. Alternative Explanations

Ignorance is not the only reason why a developer might
not target the most current API level. One alternative is that
developers do not retarget their apps to the most current API
level because few devices run the most current API level. If
this were the case we would expect most apps to be no more
than one API level out of date. Although 16% of devices were



running API levels 22 or 23 when Dataset A was collected,
only 23% of apps in Dataset A targeted these levels.

Another possibility is that developers choose not to retarget
apps to higher API levels unless there is a security concern.
Because API levels 22 and 23 do not include security changes,
developers may have chosen not to retarget their apps. How-
ever, we show in Section V that numerous apps target outdated
API levels even though they miss relevant security changes.
54% of apps target API levels below 21. If we look at the
Fragment Injection vulnerability we find that apps that use a
PreferenceActivity are not more likely to target API
levels 19 or higher (66%) than the rest of the app population
(69%). This suggests that developers, as a whole, do not
consider security when deciding what API level to target.

A final option is that developers choose not to target
the most current API level to avoid breaking critical app
functionality. This is a real possibility but, if true, shows that
Google’s “all or nothing” design is flawed because it forces
developers to make an impossible choice and sacrifice security.

B. Threats to Validity

We only downloaded a subset of available apps for Dataset
A so there is some possibility of selection bias in our results.
However, a dataset size of 60,086 apps is within the normal
range for studies like ours. Because these apps were selected
randomly from the available apps we believe that the dataset
is large enough to smooth out any selection bias.

Our dataset is not a uniform snapshot of the apps available
on the Google Play store because we do not download updated
versions of previously downloaded apps. We do not have
longitudinal statistics on individual apps and we tend to have
young versions of apps. If apps that have been present on
the app store for a very long time are considerably more
likely to target current API levels then the statistics presented
in this paper may overestimate the problem from the user’s
perspective. However, there is an 18 month gap between the
collection of Dataset A and Dataset B. If long-lived apps target
outdated API levels less frequently then we would expect to
see some indication in the results for Dataset A.

Because we only study free apps, it is possible that our
results do not apply to non-free apps. We have no reason to
suspect that development practices are significantly different
for non-free apps. However, even if there is a considerable
difference between free and non-free apps, free apps comprise
89% of apps on the Google Play store [28] so any problem
present in free apps is critical and should be addressed.

Much of the analysis done in Section V assumes that apps
use certain dangerous features at uniform rates no matter
which API level they target. If this assumption is not true
then our conclusion that many apps unnecessarily use these
dangerous features because they target outdated API levels
might not be valid. In particular, it is possible that behavioral
changes discourage developers from retargeting their apps,
and we cannot assume that usage of dangerous features is
uniform across the app population. However, the differences
we observe in the usage of dangerous features are so great

that it would be extremely surprising for these differences to
be caused by different intended behavior in apps.

VII. RELATED WORK

The most similar work to this study is by McDonnell, Ray,
and Kim [29], who study the use of deprecated API methods
and the adoption of updated API methods in ten open source
Android apps. Unlike our study, which focuses on target API
levels, they focus on the usage of methods changed in new
API levels. Targeting an API level is not dependent on using
methods added in that platform version and apps should target
the most current API level even if they do not use any newly
added methods. Their results say nothing about the security
consequences of outdated apps but do show that developers
are slow to adapt to the changing Android platform.

The target fragmentation problem has been discussed in
relation to specific vulnerabilities in several studies. Thomas
et al. [5] study the changes in Android 17 that closed the
JavaScript Interface vulnerability in depth. Their study focuses
on the slow adoption of new devices and its effect on the
lifetime of the vulnerability but they also find that 22% of
studied apps use the JavaScript Interface and targeted API
levels below 17. Mutchler et al. [4] identify apps that load
untrusted content in WebView and note that the JavaScript
Interface vulnerability puts these apps at risk.

The vulnerabilities mentioned in this paper have been stud-
ied without mention of target fragmentation. Lu et al. [30]
build a static analyzer to identify vulnerabilities including
Service Hijacking. Georgiev, Jana, and Shmatikov [15] provide
a tool to prevent attacks through the JavaScript Interface. Chin
and Wagner [13] statically analyze apps and find unsafe use
of file: URLs. Jin et al. [31] build a tool to detect a variety
of XSS-like vulnerabilities in WebView apps.

Because both apps and devices must be updated in order to
take advantage of new security features, target fragmentation
and device fragmentation are linked. Thomas, Beresford, and
Rice [2] study device fragmentation using volunteers who
install their device monitor app. They find that 88% of devices
are vulnerable to at least one of selected vulnerabilities and
that devices are updated infrequently (1.26 times per year on
average). Zhou et al. [32] find that more than 1,000 of 2,423
factory images can be exploited through misconfigurations of
device drivers. Xing et al. [33] identify how apps can exploit
the OS update process to obtain sensitive system permissions.
Mulliner et al. [34] provide a scalable method for applying
third party patches to vulnerable Android devices.

The app update process has also been studied. Möller et
al. [35] investigate the update patterns of Android users and
find that only half of users install an app update within
one week of the update being published. McIlroy, Ali, and
Hassan [36] mine update data from 10,713 apps and find that
only 1% of apps receive at least one update per week.

Several other studies analyze large datasets of Android apps.
Viennot, Garcia, and Nieh [10] crawl, download, and analyze
1,100,000 apps to obtain statistics about permission and library
distributions as well as identify apps that unsafely embed



credentials. Other studies [37, 38] also study permission and
library usage. Kavaler et al. [39] compare usage of Android
classes and questions asked on StackOverflow. Finally, several
businesses like AppBrain [28] maintain statistics on the app
metadata published on the Google Play Store.

VIII. CONCLUSION

Android apps specify a target API level and run in a
compatibility mode on devices with higher API levels. The
compatibility mode can disable important security changes in
the Android platform. We call the problem of apps targeting
outdated API levels the target fragmentation problem. In this
study we analyze a dataset of more than one million Android
apps collected over four years and show that the large majority
of collected apps target outdated API levels. We examine
the practical implications of target fragmentation on seven
security changes to the Android platform and show that target
fragmentation hamstrings new security features.

We believe that applying security changes in this optional
manner is a flawed approach that sacrifices security at the
altar of compatibility. Developers become a new obstacle
to securing apps and users have no means of ensuring that
their apps target the most current API levels. The target
fragmentation problem is further compounded by the coupling
of security changes and non-security changes. We hope that by
shedding light on this problem, developers can become more
aware of the consequences of targeting outdated API levels
and this flawed design can be reexamined and changed so that
there is less opportunity for Android apps to operate without
access to important security features.

REFERENCES

[1] I. Lunden. Android breaks 1b mark for 2014,
81% of all 1.3b smartphones shipped. [Online]. Avail-
able: http://techcrunch.com/2015/01/29/android-breaks-1b-mark-for-
2014-81-of-the-1-3b-smartphones-shipped-in-total

[2] D. R. Thomas, A. R. Beresford, and A. Rice, “Security metrics for
the android ecosystem,” in Proceedings of the 5th ACM Workshop on
Security and Privacy in Smartphones and Mobile Devices, 2015.

[3] Webview addjavascriptinterface remote code execution. [Online].
Available: http://labs.mwrinfosecurity.com/blog/2013/09/24/webview-
addjavascriptinterface-remote-code-execution

[4] P. Mutchler, A. Doupé, J. Mitchell, C. Kruegel, and G. Vigna, “A large-
scale study of mobile web app security,” in Mobile Security Techologies,
2015.

[5] D. R. Thomas, A. R. Beresford, T. Coudray, T. Sutcliffe, and A. Taylor,
“The lifetime of android api vulnerabilities: Case study on the javascript-
to-java interface,” Security Protocols XXII, 2015.

[6] App manifest. [Online]. Available: http://developer.android.com/guide/
topics/manifest/manifest-intro.html

[7] Build.version codes. [Online]. Available: http://developer.android.com/
reference/android/os/Build.VERSION CODES.html

[8] <uses-sdk>. [Online]. Available: http://developer.android.com/guide/
topics/manifest/uses-sdk-element.html

[9] Security tips. [Online]. Available: http://developer.android.com/training/
articles/security-tips.html

[10] N. Viennot, E. Garcia, and J. Nieh, “A measurement study of google
play,” in Proceedings of the 2014 ACM Conference on Measurement and
Modeling of Computer Systems, 2014.

[11] Apktool. [Online]. Available: http://code.google.com/p/android-apktool
[12] Webview. [Online]. Available: http://developer.android.com/reference/

android/webkit/WebView.html
[13] E. Chin and D. Wagner, “Bifocals: Analyzing webview vulnerabilities

in android applications,” in Information Security Applications, 2014.

[14] D. Wu and R. K. Chang, “Analyzing android browser apps for
file://vulnerabilities,” in Information Security, 2014.

[15] M. Georgiev, S. Jana, and V. Shmatikov, “Breaking and fixing origin-
based access control in hybrid web/mobile application frameworks,”
in Proceedings of the 2014 Network and Distributed System Security
Symposium, 2014.

[16] M. Backes, S. Gerling, and P. von Styp-Rekowsky, “A local cross-site
scripting attack against android phones,” 2011. [Online]. Available:
http://infsec.cs.uni-saarland.de/projects/android-vuln/android xss.pdf

[17] What is mixed content? [Online]. Avail-
able: http://developers.google.com/web/fundamentals/security/prevent-
mixed-content/what-is-mixed-content

[18] Mixed content blocking in firefox. [Online]. Available: http://support.
mozilla.org/en-US/kb/mixed-content-blocking-firefox

[19] Binding javascript code to android code. [Online]. Available: http://
developer.android.com/guide/webapps/webview.html#BindingJavaScript

[20] N. Bergman. Abusing webview javascript bridges. [Online]. Available:
http://50.56.33.56/blog/?p=314

[21] <provider>. [Online]. Available: http://developer.android.com/guide/
topics/manifest/provider-element.html

[22] Y. Z. X. Jiang, “Detecting passive content leaks and pollution in android
applications,” in Proceedings of the 20th Network and Distributed
System Security Symposium, 2013.

[23] R. Hay. A new vulnerability in the android framework: Fragment
injection. [Online]. Available: http://securityintelligence.com/new-
vulnerability-android-framework-fragment-injection

[24] Intents and intent filters. [Online]. Available: http://developer.android.
com/guide/components/intents-filters.html

[25] E. Chin, A. P. Felt, K. Greenwood, and D. Wagner, “Analyzing inter-
application communication in android,” in Proceedings of the 9th
international conference on Mobile systems, applications, and services,
2011.

[26] Api parser. [Online]. Available: http://github.com/yeganehs/API-Parser
[27] Dashboards. [Online]. Available: http://developer.android.com/about/

dashboards/index.html
[28] Google Play Stats. [Online]. Available: http://appbrain.com/stats
[29] T. McDonnell, B. Ray, and M. Kim, “An empirical study of api stability

and adoption in the android ecosystem,” in Proceedings of the 29th IEEE
Conference on Software Maintenance, 2013.

[30] L. Lu, Z. Li, Z. Wu, W. Lee, and G. Jiang, “Chex: statically vetting
android apps for component hijacking vulnerabilities,” in Proceedings
of the 2012 ACM conference on Computer and communications security,
2012.

[31] X. Jin, X. Hu, K. Ying, W. Du, H. Yin, and G. N. Peri, “Code injection
attacks on html5-based mobile apps: Characterization, detection and
mitigation,” in Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security, 2014.

[32] X. Zhou, Y. Lee, N. Zhang, M. Naveed, and X. Wang, “The peril of frag-
mentation: Security hazards in android device driver customizations,” in
Proceedings of the 2014 IEEE Symposium on Security and Privacy,
2014.

[33] L. Xing, X. Pan, R. Wang, K. Yuan, and X. Wang, “Upgrading your
android, elevating my malware: Privilege escalation through mobile os
updating,” in Proceedings of the 2014 IEEE Symposium on Security and
Privacy, 2014.

[34] C. Mulliner, J. Oberheide, W. Robertson, and E. Kirda, “Patchdroid:
Scalable third-party security patches for android devices,” in Proceed-
ings of the 29th Annual Computer Security Applications Conference,
2013.

[35] A. Möller, F. Michahelles, S. Diewald, L. Roalter, and M. Kranz,
“Update behavior in app markets and security implications: A case study
in google play,” in Proceedings of the 3rd Workshop on Research in the
Large., 2012.

[36] “Fresh apps: An empirical study of frequently-updated mobile apps in
the google play store.”

[37] M. L. Dering and P. McDaniel, “Android market reconstruction and
analysis,” in Proceedings of the 2014 IEEE Military Communications
Conference, 2014.

[38] R. Johnson, Z. Wang, C. Gagnon, and A. Stavrou, “Analysis of android
applications’ permissions,” in Proceedings of the 2012 IEEE Conference
on Software Security and Reliability Companion, 2012.

[39] D. Kavaler, D. Posnett, C. Gibler, H. Chen, P. Devanbu, and V. Filkov,
“Using and asking: Apis used in the android market and asked about in
stackoverflow,” in Social Informatics, 2013.

http://techcrunch.com/2015/01/29/android-breaks-1b-mark-for-2014-81-of-the-1-3b-smartphones-shipped-in-total
http://techcrunch.com/2015/01/29/android-breaks-1b-mark-for-2014-81-of-the-1-3b-smartphones-shipped-in-total
http://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution
http://labs.mwrinfosecurity.com/blog/2013/09/24/webview-addjavascriptinterface-remote-code-execution
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html
http://developer.android.com/reference/android/os/Build.VERSION_CODES.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/guide/topics/manifest/uses-sdk-element.html
http://developer.android.com/training/articles/security-tips.html
http://developer.android.com/training/articles/security-tips.html
http://code.google.com/p/android-apktool
http://developer.android.com/reference/android/webkit/WebView.html
http://developer.android.com/reference/android/webkit/WebView.html
http://infsec.cs.uni-saarland.de/projects/android-vuln/android_xss.pdf
http://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content
http://developers.google.com/web/fundamentals/security/prevent-mixed-content/what-is-mixed-content
http://support.mozilla.org/en-US/kb/mixed-content-blocking-firefox
http://support.mozilla.org/en-US/kb/mixed-content-blocking-firefox
http://developer.android.com/guide/webapps/webview.html#BindingJavaScript
http://developer.android.com/guide/webapps/webview.html#BindingJavaScript
http://50.56.33.56/blog/?p=314
http://developer.android.com/guide/topics/manifest/provider-element.html
http://developer.android.com/guide/topics/manifest/provider-element.html
http://securityintelligence.com/new-vulnerability-android-framework-fragment-injection
http://securityintelligence.com/new-vulnerability-android-framework-fragment-injection
http://developer.android.com/guide/components/intents-filters.html
http://developer.android.com/guide/components/intents-filters.html
http://github.com/yeganehs/API-Parser
http://developer.android.com/about/dashboards/index.html
http://developer.android.com/about/dashboards/index.html
http://appbrain.com/stats

	Introduction
	Background
	Security Concerns

	Methodology
	Collecting Apps
	Analysis

	Evaluation
	Target Fragmentation Today
	Stale Apps
	Popular Apps
	Target Fragmentation Over Time

	Security Implications
	WebView Defaults
	File Scheme Same Origin Policy
	JavaScript URLs
	Mixed Content

	JavaScript Interface Remote Code Execution
	Exported Content Providers
	Fragment Injection
	Service Hijacking
	Detecting Outdated Apps

	Discussion
	Alternative Explanations
	Threats to Validity

	Related Work
	Conclusion
	References

