KLEE: Unassisted and Automatic Generation of High-Coverag
Tests for Complex Systems Programs

Cristian Cadar, Daniel Dunbar, Dawson Engler
Stanford University

Abstract program inputs with symbolic values and replace cor-
W i boli tion ok responding concrete program operations with ones that
e present a new symbolic execution tosl.EE, ca- manipulate symbolic values. When program execution

pable of automatically generating tests that achievebranches based on a symbolic value, the system (con-
high coverage on a diverse set of complex and ’

. tallv-intensi Wi i ceptually) follows both branches at once, maintaining on
environmentally-Inlensive programs. YVe applidiee each path a set of constraints called gah condition
to all 90 programs in the GNU @REUTILS utility suite,

.)) which must hold on execution of that path. When a path
which form the core user-level environment installed on

) terminates or hits a bug, a test case can be generated by
almost all Unix systems and, as such, represent somg

4 olving the current path condition to find concrete val-
of the _most_heavny used and tested op(_e_n_-sourc’e P%es. Assuming deterministic code, feeding this concrete
grams in existence. For 84% of these utilities.EE's input to an raw version of the checked code will cause it
automatically generated tests covered 80—-100% of eX&1) follow the same path and hit the same bug.
cutable statements and, in aggregate, significantly beat Results from these tools and others are promising

the coverage of the developers’ own hand-written tes .
9 P however, while researchers have shown such tools can

suites. KLEE also found nine serious bugs (including t high d find b I ber of

three that had been missed for over 15 years!) and pr et hig CO}t/er:ageban Ind bugs on at.sma num T‘lr ci

duced concrete inputs that triggered the errors when ruffo9rams, 1t has been an open question, especially 1o
outsiders, whether the approach has any hope of consis-

on the uninstrumented code. When applied todM'’s tentl hieving th | | licati T
versions of a small selection of the same application ,en y achieving these goals on real applications. - Two

KLEE achieved similar coverage (along with two bugs). common concerns are f[h_e exponentlal_number Of. paths
In addition, we also uselEE to automatically find nu- througrl code a}nd the difficulty OI handllng the environ-
merous incorrect differences between severalidd and ~ ME" (‘the environment problem). Neither concern has
CoREuUTILStoOls. Finally, we checked the kernel of the been much helped by the fact that most past work, includ-

HISTAR operating system, generating tests that achiev

g ours, has usually reported results on a limited set of
© d-picked benchmarks and typically has not included
76.4% (without paging enabled) and 67.1% coverag and-p ypically
(with paging) and found one important security bug.

any coverage numbers.

This paper makes two contributions: First, we present
) a new symbolic execution tookLEE, which we de-
1 Introduction signed from scratch to be robust and to deeply check a

) i broad range of applications. We leveraged several years

The importance of testing and the poor performance ot |essons from our previous tool, EXE [L04LEE uses
random and manual approaches has led to much recephye| constraint solving optimizations that improve per-
work.m usingsymbolic gxecutlom automatically gener- ¢5rmance by over an order of magnitude and let it han-
ate high-coverage testinputs [9, 19, 10, 28, 18, 20, 6, 15jje many programs that are completely intractable other-
14, 8, 16]. At a high-level, these tools use variations onise |ts space-efficient representation of a checked path
the following idea: Instead of running code on manually yeans it can have tens to hundreds of thousands of such
or randomly constructed '”“pUt’ they run it on symbolic hahs active simultaneously. Its search heuristics effec-
input initially allowed to be “anything.” They substitute tively select from these large sets of paths to get high

* Author names are in alphabetical order. Daniel Dunbar istaim ~~ COd€ Coverage. _|t5 simple, st_raightforward approach to
author of thexLEE system. handling the environment let it check a broad range of

system-intensive programs. 3 With one exceptionKLEE got these high-coverage
Second, we show tha&iEE’s automatically generated results by checking the applications “out of the box”
tests get high coverage on a diverse set of real, com- Wwithout requiring any special-case source modifica-
plicated, and environmentally-intensive programs. Our tions. (We did a one-line modification ®ort to
main evaluation appliesLEE to all 90 programs in the shrink a large buffer that caused problems for the
latest stable version of GNUGREUTILS (version 6.10). constraint solver.)
In total, COREUTILS consists of about 78,000 lines of li- 4 KLEE finds important errors in heavily tested code.
brary code and 65,000 lines in the actual utilities. The KLEE found nine fatal errors in the latest version
utilities themselves interact aggressively with their en- COREUTILS (including three that had escaped detec-
vironment to provide a variety of functions, including tion for 15 years!), which account for more crash-

managing the file system (e.ys, dd, chnod), display- ing bugs than found in 2006, 2007 and 2008 com-
ing and configuring system properties (elgognane, bined. In additionKLEE produces concrete inputs
pri nt env, host nane), controlling command invo- that can be run independently to demonstrate the er-
cation (e.g.nohup, ni ce, env), processing text files ror, greatly simplifying debugging. All outstanding

(e.g.,sort,od, pat ch), and so on. They form the core bugs were confirmed and fixed each within two days
user-level environment installed on almost all Unix sys- of our report and versions of the tegtisEE generated
tems. They are used daily by millions of people, bug were included in the standard regression suite.
fixes are handled promptly, and new releases are pushe® KLEE also handles operating system code well. We
regularly. The breadth of functions they perform means applied it to the core part of the IBTAR kernel,
that our system cannot be a “one trick pony” special- achieving an average statement coverage of 76.4%
cased to one application class. Moreover, the heavy use (with disk) and 67.1% (without disk) and finding a
of the environment stress tests our system where sym- serious security bug.
bolic execution has historically been weakest. 6 KLEE is not limited to finding low-level program-

Further, the robustness ob®EUTILS programs make ming errors such as memory overflows, but has also
them very tough tests in terms of bug-finding. They been applied to checking functional correctness by
arguably are the single most well-tested suite of open- finding inconsistencies between several purportedly
source applications (e.g., is there a program the reader identical MiNix and GREUTILStools.
has used more often thah 4"?). The “fuzz” study We give an overview of our approach in the next sec-
found that GNU utilities had 2.5 to 7 times less fail- tion. Section 3 describesLEE, focusing on the most
ures than the utilities on seven commercial Unix sys-important optimizations we do. We then discuss how we
tems [27]. This difference was in 1995, and there havemnodel the environmeng§(4) and then our experiments
been over 12 more years of testing since then. The ladf 5). Finally we describe related work 6) and then
COREUTILS vulnerability reported on the SecurityFo- conclude ¢ 7).
cus or the US National Vulnerability Database was three
years ago [2, 4]. 2 Qverview

Our experimentsg(5) show the following:

1 kLEE works well on a broad set of complex pro- This section explains howkLEE works by walking
grams. When applied to the entire 90-programthrough the testing of Miix’s t r tool. Although this
COREUTILS suite it automatically generated tests version oft r is very small — only 169 lines, 83 of which
covering 80—100% of the statements on 84% of theare executable — it illustrates several issues common to
utilities, in aggregate covering 81.9% of the total the programs we check:
code. Sixteen tools have 100% coverage and 381 Complexity. The code’s intent is to translate and
over 90%. These results held true when applied to delete characters from its input. It hides this in-

14 comparable versions of IMix utilities, where it tent well beneath non-obvious input parsing code,
achieved over 90% statement coverage (and found tricky boundary conditions, and hard-to-follow con-
two bugs). To the best of our knowledgepRE- trol flow. For example, Figure 1 shows one of the

UTILS contains an order of magnitude more pro- complicated string parsing procedures contained in
grams than prior symbolic test generation work has the utility.
attempted to test. 2 Environmental Dependenciesdviost of the code is

2 KLEE can get significantly more code coverage than controlled by environmental input. Command line
a concentrated, sustained manual effort. The 90- arguments determine what procedures execute, input

hour run used to generate itSOBEUTILS coverage values determine which way if-statements trigger,
beat the developer’s own test suite built incremen- and the program depends on the ability to read from
tally over fifteen years by over 14%! the file system. These inputs often come from un-

1 : void expandchar *arg unsigned char *buffer) { values for all register and memory locations are tracked
2 int i, ag with complete precision. This allows_EE to check at

i Wri‘]!'e(*grari)z{, 1) ¢ each dangerous operation (assertions, memory accesses)
5. argfi; if any value exists that could cause an error and to at-
6 : i =ac=0; tempt to drive the program down all feasible paths.

7 if (*Yarg>='0" && *arg<="'7") {

8 : do { .

9: ac = (ac << 3) + *argr+ — ' 0’ 2.1 Testing Process

10: i++;

11) while (i < 4 8&8& *arg >="'0" && *arg <='7'); Through careful designkKLEE makes it easy to start
12: *buffert+ = ag checking many real programs in seconds. It requires no
ﬁf ; ftl)i?fe";ﬁa;g ,E;g:.)) source modifications, specifications, or any manual work
15: } else if (Farg=="[") { on the part of the user other than giving command line
16: argh+; values indicating the number and size of files, command
1 | = ragh line strings, or other inputs to test the code on. The user
13; ' *Ebirffg;r:zz '_[');{ just needs to compile their code usingvm gcc com-

20: arg —= 2; piler which behaves exactly @& c, except that it emits

21: continue; LLVM bytecode object files. For example, the tool is

22: } compiled using:

23: ac = *argt+,

24: while (i <= ag *buffer++ = i++; Ilvmgeec --emt-llvmtr.c -o tr.bc

52; } 2{3:' sk T KLEE runs directly on the emitted result and dynamically
27: *buffer++ = *argr+; links in LLVM versions of libc and our environmental
28} model, described late§ (4). The following command
gg; } was used to tedtr :

31: int main(int argg char* arg{]) { klee --max-time 2 --symargs 10 10

32: int index = 1; --symfiles 1 2000 --max-fail 1 tr.bc

33: if (argc > 1 && argindeq[0] == "-") {

34: The - - max-t i me option indicates thakLee should

ggf } be run for two minutes, while the- sym ar gs option

37: expandargindext+], ...); specifies that the program should be run on up to two
38 ... command line arguments, each up to 10 characters long.
39: } The--symfil es option directs the environment to

make standard input and one additional file symbolic,
Figure 1: A representative example of the kind of non-each of which contain 2000 bytes of data. Finally, the
obvious code, taken from Mix’s t r which is difficult - - max-fai | option indicates that system calls should
to verify by inspection or random testing. be allowed to fail at most one time along each program
path (e.gr ead() returningel O).

During testing KLEE generates concrete test cases for
constrained external sources (ranging from the useg|| program errors and for any path through the program
to network packets) and the code must handle arbiwhich covers a new instruction or branch. After testing is
trarily invalid or malevolent values gracefully. complete, these test cases can be rerun independently of

The code illustrates two additional common featureskLgg through a separate replay driver. This driver uses
First, it has bugs, whickLEE finds and generates test the test case data to construct appropriate inputs to the
cases for. Secon&LEE quickly achieves good code program (arguments, files, pipes, etc.) and then runs the
coverage, generating 40 test cases which cover all exgrogram natively. Separating test case evaluation from
cutable lines and all branches in the program in undegeneration in this fashion ensures that test cases have the
two minutes. correct behavior when run using the native compiler, and

The goal ofkLEE is (1) to hit every line of executable allows the use of standard tools (e.gdb, gcov) for
code in the program by running it in all possible ways anddebugging and evaluating the test results.

(2) to check each line against all possible input values to
find if some input could trigger errors. 2

KLEE's basic strategy is to replace a programs inputs
with symbolic variables whose values are initially uncon-When KLEE runs the program, it tries to explore ev-
strained. Program values are represented by formulaery possible path. This is done by executing the pro-
instead of actual bits and as the program executes thgramsymbolically i.e. tracking all constraints on inputs

Symbolic Execution

markedsymbolicas each instruction is run. When a con-
ditional that depends on a symbolic input is encountered,
a constraint solver is used to determine which direction
the path will follow. In some cases execution is not con-
strained to follow a single path — the condition can be
true or false depending on the input — and the execution
conceptuallyforks When this happengLEE clones the
current process and follows both paths, adding the appro-
priate constraint to the path conditions of each process.
To clarify this process, we explain howLEE finds one

of the bugs irexpand() .

The actual error is on lines 16-18 in Figure 1. The
code assumes that an argument containihg will be
followed by at least two more characters. However, if
the argument ends with[’ , then the increments &r g
skip the terminating \0’ character of the string and the
dereference on line 18 is out of bounds.

Recall that we testr using between 0 and 2 argu-
ments each of up to 10 charactens.EE executeg r
with an initial path constraint that < argc< 3 (one 3 ThekLEE Architecture
extra argument is reserved for the program name) and
without constraints on the arguments. In Figure 1 wherTheKLEE architecture for symbolic execution is a com-
KLEE reaches line 33 in this procedure it needs to deterplete redesign of EXE, our previous system [1RLEE
mine which direction the process should take through thénas been implemented with a focus on precision and scal-
branch. To do so, the constraint solver is queried to seability. ConceptuallyKLEE keeps an explicit model of
if the path condition, i.el < argc< 3, impliesargc>1 every possible state that can result from executing the
or its negation. In this case, the branch condition can bénput program symbolicly, including accurate bit-level
true (argce {2, 3}) and false (arge= 1) and execution modeling of the majority of legal C operations

Figure 2: A path to the bug in MINIX'$ r . Circles rep-
resent active processes and the expressions in diamonds
indicate places where execution forked.

will fork. The path condition will be updated to arge 1 KLEE is implemented as a virtual machine for the Low
in the process following the false path adel argc< 3 Level Virtual Machine [25] (LLVM) assembly language.
in the process following the true path. LLVM uses a RISC-like instruction set with an infinite

Once there are multiple concurrent processes at eaalumber of registers. Although the instruction set is pri-
instruction stepkLEE must choose which process to ex- marily intended for use as part of the compiler infras-
ecute. Details of the scheduling algorithm are given intructure, we have found the representation adequate for
Section 3, for now we assume thatee follows the path interpreting directly. AdditionallyKLEE provides spe-
that will reach the bug. As execution continues along thiscial intrinisic functions which the program can call to
path,KLEE will update the variablesndex andar g as create symbolic variables and to communicate with the
appropriate and will fork four more times, again at line underlying operating system.

33 inmai n and at lines 3, 4, 15, and 18 expand. At a high level,KLEE functions as an interesting hy-
Figure 2 shows the branch tree at the point wkeBE brid between an operating system and an interpreter. Pro-
detects a buffer overflow. The expressions along interiocesses are explicitly modeled by their stack, heap, pro-
nodes indicate the places where execution forked and cigram counter, and path condition. The cor&oEE is a

cles represent active processes. interpreter loop which evaluates instructions until execu

WhenKLEE encounters a bug or a process exits, thetion is complete. However, unlike a typical interpreter, at
path condition records the entire set of constraints on th€ach instruction stepLEE selects a process to interpret
input that are necessary to drive the program down thatising a number of search strategies, described in greater
path. The constraint solver is used to determine a condetail below. Once a process has been seleeteti
crete set of input values which satisfy all of these con-executes a single instruction in the context of that pro-
straints which are written out as a test case. For the pathess:
that exposed the buffer overflow bug on line X8,EE 1 The implementation of most instructions is straight-
generates the inpatr gc=2 andargv[1] = ‘‘[*" forward. For example, for an add instruction the con-
(the contents of symbolic files are irrelevant here), which LThe current implementation has the following limitatiorsym-

Can be rerun on a raw version bf to verify the bug pgjic floating point and ongj np are unsupported and the size of dy-
independently okKLEE. namically allocated objects cannot be symbolic.

tents of the argument registers are loaded. If both Utlity [Max. Processeg

operands are concrete then the add is performed na- ec:‘ﬁ " gi%i
. . . . pat hc ,

tively, otherwise arAdd expression is create_zd frqm sort 29,335
the arguments. In either case the result is written I's 15,799

back to the result register.

2 The implementation of most instructions is straight- Table 1: Maximum number afLEEprocesses that fit in
forward. For example, adding two symbolic 1GB of memory for four of the GREUTILS utilities we
operands generates the constraint that the result ested.
equal to the sum of the two operands.

3 At a branch instruction, a constraint solver is usedthe application can only access memory that is inside an
to determine if the branch condition must be true orallocated object (i.e. a global variable, stack object, or
must be false given the current path constraints. Ilfobject obtained viaral | oc). With this representation,
so then execution follows the appropriate path. Oth-kLEE can implement copy-on-write at the level of indi-
erwise the process is cloned and both paths are folvidual objects which is very effective at minimizing the
lowed, with the each child’s path condition updated amount of memory we require per-process. Furthermore,
appropriately. by implementing this structure as a persistent map the

4 At process termination — a return fromai n or heap can be cloned in constant time and portions of the
anexi t system call KLEE queries the constraint map which are shared among multiple processes do not
solver to determine a set of concrete values that satrequire additional memory.
isfy the process path constraints. These values are Table 1 gives examples for the maximum number of
used to generate a test case which can be replayasbncurrent process which fit in 1GB for a number of the
and will follow the same execution path. To avoid CoreuTILS applications we tested.
generating a large number of uninteresting test cases,
by defaultkLEE only generates test cases for paths .
which covered new code, either an unexecuted in3.2 Process Scheduling

struction or an untaken branch. KLEE uses a number of search heuristics to select the pro-

5 At any instruction where an error can occur, for cess 1o run at each instruction step. Our basic approach is

example a memory error or divide by ZemLEE 4 jnierleave two different strategies, each emphasizing a
checks to see if the error is possible along the curyiterent goal:

rent path. If so thelLEE creates a test case which
will exhibit the error and continues interpreting the
current process with the additional constraint that the
error does not occur.

6 At a load or store instructiorsLEE determines the
set of objects which the target address could point
to. If the address could point to multiple objects the
process is cloned once for each possible target and
each new process adds the constraint that the address
is in-bounds of that object. Although this operation
is potentially expensive, in practice it does not occur
frequently and this implementation greatly simplifies
the representation of a memory read or write expres-

1 Random path selectiomaintains a binary tree
recording the program path followed for all active
processes, i.e. the leaves of the tree are the current
processes and the internal nodes are places where ex-
ecution forked. Processes are selected by traversing
this tree from the root and randomly selecting the
path to follow at branch points. Therefore when a
branch point is reached the set of processes in each
subtree will have equal probability of being selected,
regardless of their size.

This strategy has two important properties. First, it
favors processes which are high in the branch tree
and therefore are relatively unconstrained. It is valu-

sion. able to select these processes more frequently be-
cause they have greater freedom to reach uncovered
3.1 Scalability code. Second, and most importantly, this strategy

The number of possible execution states is exponential
in the size of the symbolic input and in practice grows 2

quite quickly. It is not uncommon fakLEE to be simu-

lating tens or even hundreds of thousands of concurrent

processes during the first few minutes of interpretation,
even for small programs.

To deal with these problems, instead of a flat page-
based memory mode&l EE uses a memory model where

avoids starvation when some part of the program is
rapidly creating new states, i.e. “fork bombing”.

A strategy which attempts to select states that are
likely to cover new code in the immediate future.
Heuristics are used to compute a weight for each pro-
cess and a random process is selected according to
these weights. Currently these heuristics use a com-
bination of the minimum distance to an uncovered
instruction, taking into account the call stack of the

300

process, and whether the process has recently cov- e
ered new code. yso | Independence
These strategies are composed by selecting from each (o ke
in a round robin fashion. Although this interleaving _ 20 |
may increase the time for a particularly effective strategyg
to achieve high coverage, it protects the system against * |
cases where one individual strategy would become stuckj;f
Furthermore, because the strategies are always selecting
processes from the same pool, using interleaving allows
the strategies to interact cooperatively. .
Finally, once selected each process is run for a “time ¢ L ===t
slice” defined by both a maximum number of instruc- 0 N '
ormalized Num. Tnstructions
tions and a maximum amount of time. The time to ex-

ecute an individual instruction can vary W|de|y between Figure 3: Performance Comparisonm_fEE’S solver op-
simple instructions, like addition, and instructions whic tjmizations on ® REUTILS. Each tool is run for the same

may use the constralnt solv_e_r or fork, like branches omymber of instructions and results are then normalized
memory accesses. Time-slicing processes helps ensuggq average across all applications.

that a process which is frequently executing expensive
instructions will not dominate execution time.

0 L

50

a constraint set. By storing the cache in this fashion,

T the counterexample cache gains three additional ways to
3.3 Query Optimization eliminate queries:

Checking withkLEE is almost always dominated by the 1 When a subset of a constraint set has no solution,
time it takes to solve the queries made to the underlying then neither does the original constraint set. Adding
constraint solver. Therefore, almost all of our efforts to ~ onstraints to an unsatisfiable constraint set cannot
improve system performance have focused on eliminat- Make it satisfiable. _ _
ing or simplifying queries. In particulakLEE uses two 2 When a superset of a constraint set has a solution,
important optimizations which have proven highly effec- then this |s.also a squ.t|on for the or|g|nal_ constraint
tive at reducing query timezonstraint independenead set. Dropping constraints from a constraint set does
counterexample caching not invalidate a solution to that set.

The first optimization, constraint independence, takes 3 When a subset of a constraint set has a solution, it
advantage of the natural decomposition of programs into 1S likely that this is also a solution for the original
modular components. This optimization was firstimple- ~ S€t. This is because the extra constraints often do not
mented for EXE, our previous symbolic execution sys- invalidate the solution to the subset. Since checking
tem [10]. Briefly, constraints can be divided into dis- & Potential solution is cheap EE tries substituting
joint independensubsets based on the symbolic vari- in all solutions for subsets of the constraint set and
ables which they reference. By explicitly tracking these ~ €tuUrns a satisfying solution, if found. L
subsetsKLEE can frequently eliminate irrelevant con- _ AS an example of the effectiveness of these optimiza-

straints in a query prior to passing it to the underlyingtions, we performed an experiment where all 90RE-
constraint solver. UTILS applications were first run for 5 minutes with both

Furthermore, due to the nature of symbolic execyOf these optimizations turned off. We then reran with

tion, queries have a considerable amount of redundancg©nStraint independence and the counterexample cache
Although a straightforward caching mechanism which€nabled separately and together for the same number of
memoizes queries is effective at eliminating a large numinstructions. The results in Figure 3 show an order of

ber of queries, it does not take advantage of the additiond['@gnitude improvement in execution time and indicate

logical structure of a query. We have developed an alterih@t the optimizations scale very well, with each becom-
g more effective as more instructions are executed.

nate mechanism, the counterexample cache, to take ful
advantage of previous query results.
The counterexample cache functions by cachingamag Environment Modeling

of sets of constraints to counterexamples (i.e. variable

assignments), with a special sentinel used when a set @ystems code interacts with the environment (e.g. the
constraints has no solution. This mapping is stored iroperating system, the user) in many ways: by read-
a custom data structure which allows efficiently searching command-line arguments or environment variables,
ing for cache entries for both subsets and supersets atading and writing files, checking file metadata such as

file permissions and size, sending and receiving packs . ssizet readint fd, void *buf, size.t couny {
ets over the network, and so on. To effectively test sucte : i (is_invalid(fd)) {

code, we want to explore all legal values that could come3 : ermo = EBADF;

from the environment, rather than just a single set of con-g :) retum —1;

crete values. For example, checking the permissions of . siuct Kleefd *f = &fdsfd];

a file should be able to return all possible legal permis-7 : i (is_concretefile(f)) {

sions the file could have. Roughly speakingKee 8 : !?t r= pfiadf—>reaLfd, buf, count f—>off);
we accomplish this by interposing at each place the use?o' ! f(r_;oﬁ_+)= "
can read environmental data and instead return symbolig; - return r: '

data, constrained to obey any required invariants. For ext2: } else {

ample, the bytes of a command-line argument (on Unix:13f _/* sym files till'e fixe_d size: don't read beyond the end. */
a C string) are entirely unconstrained, except for the lasi ;. i r(;t_uTnOffO;>_ f=>sizg

null terminating byte. The code that does this interposi-ie: count = min(count f—>size — f—>off);

tion is traditionally called a “model.” A key feature of 17 memcpybuf, f—>file_data+ f—>off, coun;

KLEE's models is that they are written in normal C code. 18 f—>off += count

As a result, the user can readily customize, extend, ok, return count

even replace them without having to understand the in21: }

ternals ofkLEE. The current models are around 2,500

lines of code. We now describe haweE makes the file Figure 4: Sketch okLEE's model forr ead() .

system symbolic. KLEE's internal processes execute within a single Unix
process (the one used to runee), then unless we du-
plicated file descriptors for each of them (which seemed
expensive), & ead by one would affect all the others.

Applications read a significant amount of information If the file descriptor is symbolia,ead() just copies
from the file system: file data itself, metadata informa-out the symbolic file data into the supplied buffer (lines
tion such as file sizes and permissions, directory names;3-19). Any subsequent constraints on this data will be
etc. When they attempt to read such information frompreserved in the case thatad() is called again on the
concrete files and directories, we want things to “justsame file descriptor and range with no intervening write.
work” as they would when the code is running natively. We provide similar symbolic models for the most
When they read this information from places that couldcommon system calls, includirgpen, cl ose, r ead,
contain arbitrary data (such as a file provided onthe comwr i t e, | seek andst at .
mand line), we want the returned values to be symbolic, Unsurprisingly, the choice of what interface to model
but constrained to respect any necessary invariants. lhas a big impact on model complexity. Rather than hav-
this way, we can explore all potential actions, and stilling our models at the system call level, we could have in-
have no false positives. stead built them at the C standard library leviebpen,
KLEE meets these requirements by providing a simplef r ead, etc.). Doing so has the potential performance
symbolic file system implementation, and checking onadvantage that, for concrete code, we could run these op-
each operation, whether the action is for a concrete filerations natively. The major downside, however, is that
or a symbolic one. In the former case, it calls the cor-the standard library contains a huge number of functions,
responding system call in the running operating systemyhich would make modeling tedious and error-prone. By
while in the latter case it returns symbolic data, beingonly modeling the much simpler, low-level system call
careful to return the same values for multiple observa-API, we can get the richer functionality by just compil-
tions of the same object. ing one of the many implementations of the C standard
Figure 4 gives a rough sketch of the implementationlibrary (we use uClibc [3]) and let it worry about cor-
we use for ead() calls, eliding details needed to make rectness. As a side-effect, we simultaneously check the
linking work, to handle calls on standard input, and tolibrary for errors as well.
deal with failures. The code maintains a set of file de- The actual symbolic file system itself is fairly crude,
scriptors, created at filepen(), and records for each containing only a single directory witly symbolic files
whether the associated file is symbolic or concrete. [fin it. KLEE users specify botlV and the maximum file
the file descriptof d is concrete, our implementation of size. This symbolic file system coexists with the real file
read() accesses the actual disk file by calling the un-system, so that applications can open both symbolic and
derlying operating system usimg ead() (lines 7-11). concrete files.
We usepr ead because, unlike ead, it does not af- The current rule for deciding whicbpen calls bind
fect the position of the file descriptor it is given: Since to a symbolic file is that if the program catipen with a

4.1 A symbolic file system

concrete name, we (attempt to) open the actual file, while’
if it calls it with a symbolic name, we treat the file as |
symbolic. Thus, the call: ‘

int fd = fopen("/etc/fstab", O RDNLY); w0 L

will set fd to point to the actual configuration file
/ et c/ f st ab, while doing the same call with a sym-
bolic command-line argumeat gv[1] : wl

int fd = fopen(argv[1], O RDNLY); 10

10

will setf d to pointto a symbolic file andr gv[1] con- I 6 \

strained to equal this symbolic file's name. /e | e
In the case of symbolic files, a call tpen with an]

unconstrained symbolic name will match each of e R &

symbolic files in turn, and will also fail once. Thus, we Executable Lines of Code

canregard a calltopen() as abranch point withv +1

possible outcomesy of which return a file descriptorto Figure 5: Histogram showing the number cbREUTILS

one of the symbolic files, and one which fails. For exam-tools that have a given number of executable lines of code

p|e’ givenN — 1’ the second call topen() shown in (ELOC), including |ibl’ary code. Most tools (53) have

the code above will generate two paths: one in wiiidh ~ between 3K and 4K ELOC.

points to the single symbolic file in the environment, and

one in whichf d is set to- 1 indicating error.

command-line arguments, and the set of all the files and
. their associated data and metadata that were accessed on
4.2 Failing system calls the path explored byLEE.

In addition to the kind of failures expected during the . Running ates_t case then S|mply means creatmg these
files on the running file system. Since our symbolic file

normal execution of an application (e.g., file not found,s stem consist oV symbolic files in the current direc-
end of file), there are certain failures which are rarely ex- Y h Y" ist of the d " ;
pected (e.gwr i t e() fails because the disk is full). We tpry, the test case will consist of the escr|pt-|on1\z§ .

extended thesLEE environment with dailing modein files (names, data, metadata) that we can easily create in

which the system simulates such failures. The motivatiorﬁg Clé:g?;gfgg;%:ﬁ ﬁgtgfl:ﬁgr:ge iﬂ%llgﬁ'ogho;
for including such failures is twofold: First, not handling 9) ’ y

such failing situations can lead to unexpected and harée r;?sn:ncg:li fg?s?nlir:juer}qg]? i :ﬁ:tsg?sst \éV::g: getr;%'g
to diagnose bugs. Second, even when applications do iy I u utsi

clude code for dealing with failures, this code is almostof KLEE, we cc_)nst.ructed a simple utility thatracesthe .
ven application in the manner of a debugger, and skips

never exercised by the regression suite. We made thi%:e system calls that were supposed to fail, returning in
mode optional since whether such failures are interestin Y pposed ' 9
tead an error to the ptraced application.

is application-specific — a simple application may not
care about disk crashes, while a mail server expends a lot

of code to handle such cases. As Section 5 shows, failing-> Evaluation
system calls does not give large aggregate coverage im-
provements, but is required to reach the last (tricky) bit.l_

) S . i his section gives our coverage results and bugs found
of code in many applications with already high coverage g g g

for COREUTILS (§ 5.1), MINIX (§ 5.1.5), and HiStar
_ (§5.3). We also give preliminary measurements of the
4.3 Rerunning test cases effectiveness okLEE at finding deep correctness errors

A core principle ofKLEE is that the test cases it gen- (§5.2).

erates can be run on the raw application, independently

of KLEE. This completely eliminates any potential prob- 5 1 GNU Coreutils

lems with the system, makes it easy to confirm and report

bugs, and to generate test suites. This section reports the results of usiRgee to check
Thus, when an application interacts with the sym-all 90 tools that are part of the GNUQREUTILS suite

bolic environment, a test case generatedin§e in- of utilities. Previous work, ours included, has evaluated

cludes a concrete instantiation of the symbolic environ-constraint-based execution on a small humber of hand-

ment for the path explored. That is, it contains concreteselected benchmarks. To the best of our knowledge,

COREUTILS contains an order of magnitude more pro-
grams than prior work has attempted to test.

Figure 5 breaks down the tools by executable lines of

code (ELOC), including library code the tool calls. For
COREUTILS, ELOC are usually a factor of 3 smaller than

actual lines of code. It’s clear that the tools are not toys
— the smallest have over 2K ELOC, over half (53) have

more than 3K, and ten have over 6K.

5.1.1 Methodology

With a single exception, we ran all of GNUJREUTILS
with no modifications. The exception wasr t , which

Coverage Number Avg. # ELOC
(w/o lib code) | of tools | (w/ called lib code)
100% 16 3307
90-100% 38 3958
80-90% 22 5013
70-80% 8 4199
60-70% 6 5217

Table 2: Number of OREUTILS tools which achieve
statement coverage in the given ranges. Note, as we
discuss § 5.1.2), to avoid double-counting our cover-
age, numbers here and in the other figures exclude li-
brary code (which gets shared by many applications). No

required a one-line change to shrink an overlay larggoo| gets less than 60% coverage. The rightmost column

buffer that made process size unmanageable.

shows the average ELOC for tools within each range, in-

Almost all tools were tested using the same commandg|yding called library code (again, see text).

./run <tool -nane> --symargs 10 2 2
--symfiles 2 8
[--max-fail 1]
--max-ti me=60

which tellskLEE to run the given tool with up to three
arguments, the first one (if present) being of length a

most 10, and the next two (if present) of length at most

2. The option - sym:f i | es specifies a symbolic envi-
ronment with two symbolic files, one of whichss di n,
each containing 8 bytes. The max- f ai | option spec-

t

We made sure to report results for the entirerRE-
UTILS suite, the worst along with the best. We made the
decision from the beginning to do so, preventing us from
(even unintentionally) cheating through the use of frag-
ile optimizations that would blow up on some (or even
many) applications.

5.1.2 Coverage Results

ifies that the system should fail at most one system call _
on each path; we show this option inside brackets beJable 2 gives aggregate statement coverage results:

cause we run both with and without this option. Finally, KLEE gets 100% statement coverage on 16 tools, over
the- - max-t i me option specifies that each tool should 90% on 54 tools, and over 80% statement coverage on

be run for at most 60 minutes. 76 tools (84.4% of all tools). The minimum coverage

For eight tools where the coverage results were unsa@chieved on any tool is 62.0%, and the average coverage
isfactory, we consulted thean page and increased the across all tools is 81.9%.
number and size of files and argument strings. We see such high coverage on a broad swath of appli-

After KLEE produced test cases, we conservativelycations “out of the box” as a convincing demonstration
measured how comprehensive they were by recordin§ the power of the approach, especially since it is across
statement coverage. We chose statement coverage bi&e entire tool suite rather than from just cherry-picking
cause it is widely-understood and uncontroversial. Note(say) the best 54 performers.
however, that it dramatically underestimatesE’s ca- Note that we do not count coverage of library code in
pability of exploring each statement on many differentour measurements since it makes them harder to inter-
paths (potentially all of them) with all possible values. pret:

We do a hard end-to-end check of coverage by run- 1 Including library code in the coverage percentages
ning the generated test cases on a stand-alone version of we report would double-count many lines, since of-
the tool that has been compiled using for instrumenta- ten the same library function is called by many appli-
tion with gcov. Doing this measurement independently ~ cations.

of our system completely eliminates the effect of bugs 2
in KLEE and verifies that the produced test case does, in
fact, run the code it claims.

Similarly, concrete test cases also allow bug confirma-
tion independently okLEE, by running the program on
the test case for a given error. As a result, a version of the
test cases for all previously unknown bugs we reported
have now beenincluded in the official GNWREUTILS
test suite.

Doing so would also unfairly under-count coverage.
For a given application, often much of a library func-
tion is dead code for the reason that library code
is general but the call sites are not. For exam-
ple, pri nt f is exceptionally complex, but the call
printf(‘‘hello ') canonlyhitasmallafrac-
tion (missing the code to print integers, floating point,
formatting, etc.).

However, in terms of the raw size of the application, the

100% 100%

E Basc + Fail) "l"'l“l#j»-»»-—l
[Base _ »_"__..—r I
,»»--I |

80% |
50%

60% M
0%

40%

Coverage (ELOC %)

-

—50%

KLEE vs. Manual (ELOC %)

20%

—100%

0% 90 1 13 25 50 75 90

1 25 50 75

Figure 6: Statement coverage for each application witH-igure 7: Relative coverage difference betweertE
and without failures. and the ®REUTILS manual test suite, computed by sub-

tracting the executable lines of code covered by manual
)))) tests Coan) from KLEE tests(Ly;..) and dividing by the
total executable lines of code (including called library o¢q possible: Liiee — Lman)/Ltota. Higher bars are

code) is interestingkLEE must be able to handle this petter forkLEE, which beats manual testing on all but 13
library code (and gets no credit for doing so in terms ofappncaﬂon& often significantly.

coverage) in order to exercise the code in the tool itself.
Figure 6 further shows the coverage achieved on each
of the 90 REUTILS tools, with and without trigger-

paste -d\\ abcdef ghijkl mopgr st uvwxyz

) .)) pr -e t2.txt
ing failing system calls§4.2). Exploring the failure path tac -r t3.txt t3.txt
of system calls is mostly useful for hitting the last few | nkdir -z a b

lines of high-coverage tools, rather than significantly im-
proving the results overall (which it only improves from
79.4% to 81.9%). The one exceptionpad which re-

nkfifo -Z ab
nknod -Z a b p
md5sum -c¢ t1.txt

ptx -F\\ abcdef ghijkl mopqgr st uvwxyz
seq -f 9 1

tlixt: "\t \t MD5("

t2.txt: " \b\b\b\b\b\b\b\t "

t3.txt: " \n"

quires system call failures to improve from 21.2% to
70.8%. The next largest coverage improvement for a sin-
gle tool is a more modest (but still notable) 12.5% extra
coverage.

5.1.3 Comparison against developer test suites Figure 8: Command lines and inputs which trigger the

Each utility in COREUTILS comes with an extensive PU9S found byKLEE in COREUTILS version 6.10. Al

manually-written test suite, extended each time a nevxpu_gs cause program crashes on our |r!te| Pentium D ma-
bug fix or extra feature is added. An obvious experimenf:hlne running Fedora Core 7 with SELinux.

is to see how welkLEE does in comparison. Overall, the
developers get 67.5%, whileLEe gets 81.9%. Thus, a .
90 hour run ok LEE (1 hour per application) exceeds the crash bugs, most caused by inadvertent memory over-

coverage of test suites built over a period of fifteen yearélows' Tr,'e bug irseq had been already fixed _in th? de-
by over 14%! velopers’ version, but all the other bugs received imme-

Figure 7 gives a relative view ofLEE versus devel- diate attention from the developers, and were each con-

oper tests by subtracting the lines hit by manual testing{'rme_d and f|xe.d within t\{vo da.lys of our report.

from those hit bycLEE and dividing this by the total pos- A list of test inputs which trigger bugs on our systems
sible. A bar above zero indicates thkaieE beat the man- 1S Shown in Figure 8. The first three were around since
ual test (and by how much). A bar below measures thet 992 so should theoretically crash anpREUTILS dis-

opposite KLEE beats manual testing (sometimes signifi- {fiution. The next three (which use th& option) re-
cantly) on the vast majority of the applications. quire SELinux. The others are more recent, and do not

crash older ©REUTILS distributions.

As an illustrative example, we discuss the bug that we
found inpr , a tool used for paginating files before print-
ing. Figure 8 shows a simple test case thiatE gener-
ates to segfaulpr , invoking it with flag- e, which tells
it to expand tabs to spaces, on a file containing a series

5.1.4 Bugs found

We found nine bugs in the latest version cbREUTILS
(version 6.10), imd5sum nkdi r, nkfi f o, nknod,
paste, pr, ptx, seq andtac. All of these were

10

602: #define TAB_WIDTH(c_, h.) ((c.) — ((h.) % (c.))) age.

1322: clump_buff = xmallodMAX (8,chars per_input_tab));

... Il (set s to clumpbuff) 5.2 Checking tool equivalence

2665: width = TAB_WIDTH(charsper._c, input_position);

2666: o WhenKLEE reaches ansser t or asimilar error check-
ggggf '{f (untabify-inpuf) ingi f statement, it tries to drive execution down both
2669 for (= width; i: ——i) branches. _Th_us, iKLEE can hit the error on a Ce_rtain
2670: *sh =0 path, then it will. Conversely, if the condition leading to
2671: , chars = width; the error is not satisfiable on a path, thermeE can prove
2672:

full correctness along that path.

Assume we have two procedurest p(int Xx)
Figure 9: Code snippet fronpr where a mem- andint p’ (int x) that purport to implement the
ory overflow of cl unp_buff via pointers is pos- same interface. For examplg,andp’ could be two
sible if char s_per i nput .t ab == chars_per ¢ different implementations of the same library function,
andi nput _posi tion < 0. or perhap9 is a simple reference implementation and
p’ a heavily optimized version. Then, running roughly
the following code withkLEE will check p andp’ for

of backspace characters followed by a tab. equivalence:

Figure 9 shows the portion of the code contain-
ing the bug. On the path where the bug occurs,)]
bothchar s_per _i nput _t ab andchar s_per _c are gw:l;gr_f{rr?gl)l i(:&x,)&x)),
equal to the tab width (let's call if’). Line 2665 P P ’

(via the macro on line 602) computesi dth as When a path reaches thsser t , if any possible value
(I'— input position modT). The root cause of the constraints on that path could violate #sser t

of the bug is the incorrect assumption tHat< z (and the constraint solver can reason about all con-
mod y < y, which only holds for positive integers. straints), therkLEE will generate a test case that does
Wheni nput _posi tion is positive,wi dt h will be so. If at least one implementation is correct on that path,

int x;

indeed less thaff” since (0 < i nput _position then such a mismatch is a correctness violation in the
mod T < T). However, in the presence of backspacesgther.

I nput _posi tion can become negative, so-T < Conversely, if the constraint solver shows such a value
input position modT < T). Consequently, does not exist, then we hapeovedthat the two imple-

W dth canbeaslargedg x 7' — 1). mentations are equivalent for all values on the checked

The bug arises when the code allocates a buffepath. These are both powerful results, completely be-
clunp_buff of sizeT (line 1322) and then writes yond the reach of traditional testing. One way to look at
wi dt h characters into this buffer (lines 2669-2670) viakLgE is that it automatically translates a path through a
the pointers (initially set tocl unp_buf f). Because C program into a form that a theorem prover can reason
W dt h canbe as large 48 xT'—1), amemory overflow apout. As a result, proving path equivalence just takes a
is possible. Note that the tab widif can be specified few lines of C code (the assertion above), rather than an
from the command line, and thus this is an unbounde@&normous manual exercise in theorem proving.
buffer overflow. There are many applications of this basic approach.

This bug is representative of the bugs founddffE For examplep’ could be a patched version pfthat
in COREUTILS: complex, non-obvious code which is purports to only remove bugs, and so should have strictly
hard to reason about manually. As a consequence, thigwer crashes. Or we may have a function and its inverse

bug has been presentpm for more than 15 years, since (such asconpr ess and unconpr ess) and so can
at least 1992 when@rEuTILSWas firstadded to a CVS check thatasser t (unconpress(conpress(x))

repository. == x).
We checked the equivalence of theN tools dis-
515 MnNIx Utilities cussed ing5.1.5 against the GREUTILS implementa-

tions. For example, given the same input, thenm
MINIX has its own utility suite with many of the same and GREUTILS versions ofwc should output the same
programs as in GNU GREUTILS. As a quick checkto number of lines, words and bytes, regardless of how the
ensure our results were not someho@wREUTILS spe- tool is implemented internally. In fact, all Unix utilities
cific, we rankLEE on 14 simple MNix utilities. We should conform to IEEE Standard 1003.1 [1], and both
found two buffer overflows and got 90.6% overall cover- MINIX and GREUTILS suites intend to do so.

11

Tool Input Minix COREUTILS 1 : static void tes{void *upage unsigned num.callg) {

wce 0:0 003 013 2 klee_make symboliqupage PGSIZE " upage");

wc 0\tO 013 023 3 for (int i=0; i<num.calls i++) {

wce 0\n0O 113 123 4 uint64.t arggs];

wc O\f \r 113 013 5! for (int j=0; j<8; j++)

basename "" / n ? :) kleemali;isygr:\ot])oliq&glr?s{j], Zisleo(argéj]]), "arg");

. o ern_syscal(arg40], arggl], argg2], argg3],

Eﬁiffname \\ PP wa \P P g , arg44], arggs], argg6], argg7]);

printf s % % 10: sysself_halt);

printf % " 0 11: %}

printf " -2 fffffffe fffffffffffifife

i 0 nn 0 0

S::zg (;f/z wn -/18{;5775205865 O/Z Figure 10: Ou_r test driver for the HiStar kernel. _The

fold-w2 | \t \t \n\t test makes a single page of user memory symbolic apd

fold-w2 | \t\t\t | \n\t\n\t\n\t | \t\n\t\n\t executes a user—s_pecmed nurr_1ber 01_‘ system caI_Is (which
may refer to the given page) with entirely symbolic argu-
ments.

Table 3: Mismatches automatically detectedknyge

| Test | Random | kLEE [ELOC |

We have not yet added automatic cross-checking to With Disk | 50.1% | 67.1%| 4617
KLEE. We currently crosscheck by manually including No Disk 48.0% | 76.4% | 2662
the MINIX tool into the @REUTILS program and re-
name any conflicting identifiers. Because of the requirediable 4: Coverage on the HiStar kernel for runs with
manual work, we only crosschecked four applicationsUP to three system calls, configured with and without

However, we hope that this will convey the general idea® RAM disk. For comparison, we implemented a test
behind thiskLEE capability. We plan to do a full study driver which calls a random system call and uses random

demonstrating this technique in future work. values for all other inputs. This driver was run one mil-

The input to a Unix tool consists of the command-line lion times, with and without a disk.
options and the input files. For the tools we checked,
the output is written ost dout . Thus, our system runs
both the MNIX and the @REUTILS implementation of
a tool on identical inputs, and compares the charac:termemory
written onst dout . When a mismatch is detected, the '

system generates a test case, which is subsequently rur};l_-hIS kernel uses a simplified bootstrap procgd_u_re
on a GCC-compiled version of each tool, to confirm theV ich creates the core kernel data structures and initial-
' izes a single thread with access to a single page of user

mismatch. Table 3 shows several mismatches automatl 0 loaded. this thread tes the test
cally detected bxLEE between the MNIx and GORE- memory. Dnce loaded, this thread executes the test pro-

UTILS versions ofac, basenarne, pri nt f andf ol d. cedure shoyvn in Figure 10, which make; Fhe user mem-
These mismatches reveal several bugs in theikiver- ory symbolic a_“d exe_cutes a use-_r-speufled number of
sions of the tools. For examplec incorrectly counts system calls qsmg e:ntwely symbolic arguments. -

the number of words and the number of lines in certain_ Although this environment may seem very resrictive,
cases® andf ol d incorrectly adds an additional new- in practlce we have found that this approach is able to
line when it encounters a tab at the end of a line. ThelUicKly generate test cases — sequences of system call

printf tool reveals a large number of mismatches be-V,eCtorS and memory contents _Which covera large por-
tween the two versions (we presented only a small Samf[_|on of the HiStar kernel and uncover m@erestmg behav-
ple in Table 3), while the twasenane versions dis- iors. Table 4 sho_ws the coverage o_btalned for the core
agree on only two inputs. kernel for runs with and without a disk. When config-
ured with a disk, a majority of the uncovered code can
only be triggered when there are a large number of ker-
5.3 The HiStar OS Kernel nel objects. This currently does not happen in our testing

N environment; we are investigating ways to exercise this
To demonstrate the applicability of our system to other

) X code adequately during testing.
forms of system code we appligd EE to testing a user- d y g g

mode version of the HiStar [29] operating system kernel We also tested HiStar using a version of our driver
P 9sy which select a random system call number and uses ran-

20n the upside, the MiIx version always gets the number of bytes dqm Vf_ilues for al! (_)ther_ inputs. The results fr(_)m running
correct! this driver one million times are also shown in Table 4.

To do so we use a user-mode version of the kernel which
uses an optional RAM disk and a small amount of core

12

1 : uintptr_t safeaddptfint *of, uint64.t a, uint64t b) { it could potentially do. In a sense&lEE combines the

2 uintptr_t r = a + b; best of both worlds: when calls already have concrete ar-

3 if (r<a guments, it can call the external environment (allowing it

g re:l?rfn :r_l; to handle a broad range of programs), but it also provides

6:} ' a facility to judiciously make symbolic those parts of the
environment that are interesting in terms of generating
behaviors.

Figure 11: HiStar function containing an important secu-
rity vulnerability. The function is supposed to sadf to
true if the addition overflows but can fail to do so in the
32-bit version for very large values bf

The path explosion problem has instead received more
attention [6, 18, 20, 26, 16]. Similarly to the search
heuristics presented in Section 3, search strategies pro-
posed in the past include Best First Search [10], Gener-
ational Search [20], and Hybrid Concolic Testing [26].

KLEE's tests achieve significantly more coverage thanOrthogonal to search heuristics, researchers have ad-
random testing both for runs with (+17.0%) and without dressed the path explosion problem by testing paths com-
(+28.4%) a disk device. positionally [18, 5], and by tracking the values read and

In addition to generating tests which cover a sub-Written by the program [6]. _ _
stantial portion of the kernel, our testing found a crit- Lik€ KLEE, other symbolic execution systems imple-

ical security bug in the 32-bit version of HiStar. The MeNt their own optimizations before sending the queries
saf e_addpt r function containing the bug is shown in to the l_mderlylng constraint solver, _such as the simple
Figure 11. The function is supposed to sef to true syntactic transformations presented in [28], anddine-

if the addition overflows. However, because the inputsStraint subsumptionptimization discussed in [20].

are 64 bits the test used is insufficient (it should be < Similar to symbolic execution systems, model check-
a) || (r < b))and the function can fail to indicate €S have been used to find bugs in both the design and
overflow for large values di. the implementation of software [21, 22, 7, 13, 17]. These

The saf e_addpt r function is used to implement approaches often require a lot of manual effort to build
HiStar's validation of user memory addresses prior totest harnesses. However, to some degree, the approaches
copying data to or from user space. A kernel routine®'€ complementary teLEE: the testsKLEE generates
takes a user address and a size and computes if the usefRuId be used to drive the model checked code, similar
allowed to access the memory in that range: this routind® the approach embraced by the Java PathFinder (JPF)
uses the overflow to prevent access when a computatioffoject [23].
could overflow. This bug in computing overflow there-
fore allpws a ma}licipus process to gain access to memy Conclusion
ory regions outside its control for system calls where the

user can pass in an arbitrarily large size. The long-term goal of our work is to be able to take an ar-
bitrary program and routinely get 90%+ code coverage,
crushing it under test cases that explore all interesting
paths with all interesting values. While there is still a

. . long way to go to reach this goal, the results in this paper
Researchers havg recently designed a variety of tOOI§howthat the approach can get high code coverage over a
based on symbolic execution [9, 19, 10, 28, 18, 20, 6broad range of real applications, coverage that exceeded

15, 1.4’ 8, 16]. We discuss h(_)W our work compares in th%hat of a high-quality, manual test suites constructed in-
way it addresses (1) the environment problem and (2) th%rementally over a period of 15 years, as well as finding

path explosion problem. .) bugs that had been around over a decade. The techniques
To the best of our knowledge, traditional symbolic ex- e qescribe should work well with other tools and give

ecution systems [11, 12, 24] are static in a Strict Sensgjiar help in handling a broad class of applications.
and do not call out into the live running environment at

all. They either cannot handle programs that make use of

the environment or require a complete working model.8 ~Acknowledgements

More recent work in test generation [10, 19, 28] does al-

low external interactions but forces them to use entirelyWe would like to thank the GNU GREUTILS develop-
concrete procedure call arguments. This approach alers, and in particular Jim Meyering, the maintainer of
lows these tools to check this kind of code, but preventsCoREUTILS, for promptly confirming our bug reports
them from exploring more behaviors: a concrete exter-and fixing the bugs, as well as providing us with a va-
nal call will do exactly what it did, rather than all things riety of useful information about GREUTILS.

6 Related Work

13

We would also like to thank Nickolai Zeldovich, the [16]
designer of HISTAR, for his great help in checking 13-
TAR and in particular for providing us with a user-level
driver. [17]
We also thank Philip Guo for his careful proofreading

and valuable comments on the text. (18]

References
[19]
[1] IEEE Std 1003.1, 2004 editiorhtt p: / / www. uni x. or g/
ver si on3/i eee_std. ht nl , May 2008.

[2] Security focus website,htt p://waw. securityfocus.
com March 2008. [20]

[3] uCLibc websitehtt p: // www. ucl i bc. or g/, May 2008.

[4] United States National Vulnerability Database webditet p:
/I nvd. ni st. gov, March 2008. (21]

[5] ANAND, S., GODEFROID, P.,AND TILLMANN, N. Demand-
driven compositional symbolic execution. Trools and Algo-
rithms for the Construction and Analysis of Systems (TACAS
2008)(2008).

[6] BOONSTOPPELP., CADAR, C.,AND ENGLER, D. RWset: At-
tacking path explosion in constraint-based test generatitn
Tools and Algorithms for the Construction and Analysis of-Sy
tems (TACAS 200§p008).

[7] BRAT, G., HAVELUND, K., PARK, S.,AND VISSER W. Model
checking programs. ItEEE International Conference on Auto-
mated Software Engineering (ASP00).

[8] BRUMLEY, D., NEWSOME, J., ONG, D., WANG, H., AND
JHA, S. Towards automatic generation of vulnerability-badgd s
natures. IrProceedings of the 2006 IEEE Symposium on Security
and Privacy(2006).

[9] CADAR, C.,AND ENGLER, D. Execution generated test cases:
How to make systems code crash itself. Aroceedings of the
12th International SPIN Workshop on Model Checking of Soft-
ware (August 2005).

[10] CADAR, C., GANESH, V., PawLowskl, P., DiLL, D., AND
ENGLER, D. EXE: Automatically generating inputs of death.
In Proceedings of the 13th ACM Conference on Computer and
Communications SecuriffDctober-November 2006).

(22]

(23]

(24]

[25]

[26]

[27]

[11] CLARKE, E.,AND KROENING, D. Hardware verification using 28]
ANSI-C programs as a reference. Pmoceedings of ASP-DAC
2003 (January 2003), IEEE Computer Society Press, pp. 308—
311.

[12] CLARKE, E., KROENING, D.,AND LERDA, F. A tool for check-
ing ANSI-C programs. InTools and Algorithms for the Con- [29]
struction and Analysis of Systems (TAC&E)04), K. Jensen and
A. Podelski, Eds., vol. 2988 dfecture Notes in Computer Sci-
ence Springer, pp. 168-176.

[13] CORBETT, J., DWYER, M., HATCLIFF, J., LAUBACH, S.,
PAsAREANU, C., ROBBY, AND ZHENG, H. Bandera: Extracting
finite-state models from Java source codeldS8E 20002000).

[14] CosTA, M., CASTRO, M., ZHou, L., ZHANG, L., AND
PEINADO, M. Bouncer: Securing software by blocking bad in-
put. InProceedings of the 21th ACM Symposium on Operating
Systems Principles (SOS@)ctober 2007).

[15] CosSTA, M., CROWCROFT J., CASTRO, M., ROWSTRON A.,
ZHou, L., ZHANG, L., AND BARHAM, P. Vigilante: end-to-
end containment of Internet worms. Rroceedings of the 20th
ACM Symposium on Operating Systems Principles (SQS&)
tober 2005).

14

EmMMI, M., MAJUMDAR, R.,AND SEN, K. Dynamic test input
generation for database applicationslrternational Symposium
on Software Testing and Analysis (ISSTA'@Q07), ACM.

GODEFROID, P. Model Checking for Programming Languages
using VeriSoft. InProceedings of the 24th ACM Symposium on
Principles of Programming Languagé$997).

GODEFROID, P. Compositional dynamic test generation Pho-
ceedings of the 34th Symposium on Principles of Programming
Languages (POPL'07(Jan. 2007).

GODEFROID, P., KLARLUND, N., AND SEN, K. DART: Di-
rected automated random testing. Rmceedings of the Con-
ference on Programming Language Design and Implementation
(PLDI) (Chicago, IL USA, June 2005), ACM Press.

GODEFROID, P., LEVIN, M. Y., AND MOLNAR, D. Automated
whitebox fuzz testing. IINDSS '08: Proceedings of Network and
Distributed Systems Securig008), pp. 151-166.

HoLzMANN, G. J. The model checker SPINSoftware Engi-
neering 235 (1997), 279-295.

HoLzMANN, G. J. From code to models. Rroc. 2nd Int.
Conf. on Applications of Concurrency to System Degew-
castle upon Tyne, U.K., 2001), pp. 3-10.

KHURSHID, S., ASAREANU, C. S.,AND VISSER W. Gen-
eralized symbolic execution for model checking and testitrg
Proceedings of the Ninth International Conference on Teold
Algorithms for the Construction and Analysis of Systé93).

KROENING, D., CLARKE, E.,AND YORAv, K. Behavioral con-
sistency of C and Verilog programs using bounded model check
ing. In Proceedings of DAC 200@003), ACM Press, pp. 368—
371.

LATTNER, C.,AND ADVE, V. LIivm: A compilation framework
for lifelong program analysis & transformation. RGO '04:
Proceedings of the international symposium on Code geioerat
and optimizatior{(Washington, DC, USA, 2004), IEEE Computer
Society, p. 75.

MAJUMDAR, R.,AND SEN, K. Hybrid concolic testing. IrfPro-
ceedings of the 29th International Conference on Softwaig-E
neering (ICSE'07(May 2007).

MILLER, B., Koskl, D., LEE, C. P., MAGANTY, V., MURTHY,
R., NATARAJAN, A., AND STEIDL, J. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and senés.
Tech. rep., University of Wisconsin - Madison, 1995.

SEN, K., MARINOV, D.,AND AGHA, G. CUTE: A concolic unit
testing engine for C. Iim 5th joint meeting of the European Soft-
ware Engineering Conference and ACM SIGSOFT Symposium on
the Foundations of Software Engineering (ESEC/FSE(S&)pt.
2005).

ZELDOVICH, N., BOYD-WICKIZER, S., KOHLER, E., AND
MAZIERES D. Making information flow explicit in HiStar.

In USENIX'06: Proceedings of the 7th conference on USENIX
Symposium on Operating Systems Design and Implementation
(Berkeley, CA, USA, 2006), USENIX Association, pp. 19-19.

