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Principles of Secure Design
• Compartmentalization 
– Isolation 
– Principle of least privilege 

• Defense in depth 
– Use more than one security mechanism 
– Secure the weakest link 
– Fail securely 

• Keep it simple
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Principle of Least Privilege
• What’s a privilege? 
– Ability to access or modify a resource 

• Assume compartmentalization and isolation 
– Separate the system into isolated compartments 
– Limit interaction between compartments 

• Principle of Least Privilege 
– A system module should only have the minimal 

privileges needed for its intended purposes
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Example: Mail Agent
• Requirements 
– Receive and send email over external network 
– Place incoming email into local user inbox files 

• Sendmail 
– Traditional Unix  
– Monolithic design 
– Historical source of many vulnerabilities 

• Qmail 
– Compartmentalized design
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OS Basics (before examples)

• Isolation between processes 
– Each process has a UID 

• Two processes with same UID have same 
permissions 

– A process may access files, network sockets, …. 
• Permission granted according to UID 

• Relation to previous terminology 
– Compartment defined by UID  
– Privileges defined by actions allowed on system 

resources
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Qmail design
• Isolation based on OS isolation 
– Separate modules run as separate “users” 
– Each user only has access to specific resources 

• Least privilege 
– Minimal privileges for each UID 
– Only one “setuid” program 
• setuid allows a program to run as different users 

– Only one “root” program 
• root program has all privileges
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Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

Incoming external mail Incoming internal mail
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Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue
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Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue
Reads incoming mail directories 
Splits message into header, body 
Signals qmail-send
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Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue
  qmail-send signals 

• qmail-lspawn if local 
• qmail-remote if remote
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Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-send

qmail-inject

qmail-queue

qmail-lspawn 
• Spawns qmail-local  
• qmail-local runs with ID of 

user receiving local mail
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Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-send

qmail-inject

qmail-queue

qmail-local 
• Delivers local mail
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Structure of qmail

qmail-smtpd

qmail-remote

qmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmail-remote 
• Delivers message to remote MTA
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root

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr user
setuid user

qmailq – user who is allowed to read/write mail queue

setuid

root



John Mitchell

Least privilege

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

root

setuid
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Android process isolation

• Android application sandbox 
– Isolation: Each application runs with its own UID in own 

VM 
• Provides memory protection 
• Communication limited to using Unix domain sockets 
• Zygote (spawn another process) run as root 

– Interaction: reference monitor checks permissions on 
inter-component communication  

– Least Privilege: Applications announces permission  
• User grants access at install time
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Discussion?
• Principle of Least Privilege 
• Qmail example 
• Android app sandbox example
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Access control 

• Assumptions 
– System knows who the user is 

• Authentication via name and password, other credential  
– Access requests pass through gatekeeper (reference monitor) 

• System must not allow monitor to be bypassed

Resource
User 

process

Reference 
monitor

access request

policy

?
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Access control matrix    [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Su
bj

ec
ts

O
bj

ec
ts
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Implementation concepts

• Access control list (ACL) 
– Store column of matrix  
   with the resource 

• Capability 
– User holds a “ticket” for  
   each resource 
– Two variations 

• store row of matrix with user, under OS control 
• unforgeable ticket in user space

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access control lists are widely used, often with groups 
Some aspects of capability concept are used in many systems
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ACL vs Capabilities
• Access control list 
– Associate list with each object 
– Check user/group against list 
– Relies on authentication: need to know user 

• Capabilities 
– Capability is unforgeable ticket 
• Random bit sequence, or managed by OS 
• Can be passed from one process to another 

– Reference monitor checks ticket 
• Does not need to know identify of user/process
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ACL vs Capabilities

Process P
User U

Process Q
User U

Process R
User U

Process P
Capabilty c,d,e

Process Q

Process R
Capabilty c

Capabilty c,e
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ACL vs Capabilities
• Delegation 

– Cap: Process can pass capability at run time 
– ACL: Try to get owner to add permission to list? 

• More common: let other process act under current user 
• Revocation 

– ACL: Remove user or group from list 
– Cap: Try to get capability back from process? 

• Possible in some systems if appropriate bookkeeping 
– OS knows which data is capability 
– If capability is used for multiple resources, have to revoke all or 

none … 
• Indirection: capability points to pointer to resource 

– If C → P → R, then revoke capability C by setting P=0
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Roles  (aka Groups)

• Role = set of users 
– Administrator, PowerUser, User, Guest 
– Assign permissions to roles; each user gets permission 

• Role hierarchy 
– Partial order of roles 
– Each role gets 
 permissions of roles below 
– List only new permissions 
   given to each role

Administrator

Guest

PowerUser

User
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Role-Based Access Control

Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantage: users change more frequently than roles
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Access control summary
• Access control involves reference monitor 
– Check permissions: 〈user info, action〉→ yes/no 
– Important: no way around this check 

• Access control matrix 
– Access control lists vs capabilities 
– Advantages and disadvantages of each 

• Role-based access control 
– Use group as “user info”;  use group hierarchies 
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Discussion?
• Access control matrix 
– Access control list (ACL) 
– Capabilities 

• Role-based access control
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Unix access control

• Process has user id 
– Inherit from creating process 
– Process can change id 

• Restricted set of options 
– Special “root” id  

• All access allowed 
• File has access control list (ACL) 

– Grants permission to user ids 
– Owner, group, other

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write
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Unix file access control list

• Each file has owner and group 
• Permissions set by owner 

– Read, write, execute 
– Owner, group, other 
– Represented by vector of 
     four octal values 

• Only owner, root can change permissions 
– This privilege cannot be delegated or shared 

• Setid bits – Discuss in a few slides

rwx rwxrwx-
ownr grp othr

setid
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Process effective user id (EUID)
• Each process has three Ids  (+ more under Linux) 

– Real user ID       (RUID) 
• same as the user ID of parent (unless changed) 
• used to determine which user started the process  

– Effective user ID  (EUID) 
• from set user ID bit on the file being executed, or sys call 
• determines the permissions for process 

– file access and port binding 
– Saved user ID     (SUID) 

• So previous EUID can be restored 

• Real group ID, effective group ID, used similarly 
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Process Operations and IDs
• Root 

– ID=0 for superuser root; can access any file 
• Fork and Exec 

– Inherit three IDs, except exec of file with setuid bit 

• Setuid system call  
– seteuid(newid) can set EUID to 

• Real ID or saved ID, regardless of current EUID 
• Any ID, if EUID=0 

• Details are actually more complicated 
– Several different calls: setuid, seteuid, setreuid
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Setid bits on executable Unix file
• Three setid bits 
– Setuid – set EUID of process to ID of file owner 
– Setgid – set EGID of process to GID of file 
– Sticky 
• Off: if user has write permission on directory, can 

rename or remove files, even if not owner 
• On: only file owner, directory owner, and root can 

rename or remove file in the directory
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Example

…; 
…; 
exec(  );

RUID 25 SetUID

program

…; 
…; 
i=getruid() 
setuid(i); 
…; 
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18
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Unix summary
• Good things 
– Some protection from most users 
– Flexible enough to make things possible 

• Main limitation 
– Too tempting to use root privileges 
– No way to assume some root privileges without all 

root privileges
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Weakness in isolation, privileges
• Network-facing Daemons  

– Root processes with network ports open to all remote parties, 
e.g., sshd, ftpd, sendmail, … 

• Rootkits  
– System extension via  dynamically loaded kernel modules 

• Environment Variables  
– System variables such as LIBPATH that are shared state across 

applications. An attacker can change LIBPATH to load an 
attacker-provided file as a dynamic library
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Weakness in isolation, privileges
• Shared Resources  

– Since any process can create files in /tmp directory, an 
untrusted process may create files that are used by arbitrary 
system processes 

• Time-of-Check-to-Time-of-Use (TOCTTOU) 
– Typically, a root process uses system call to determine if 

initiating user has permission to a particular file, e.g. /tmp/X. 
– After access is authorized and before the file open, user may 

change the file /tmp/X to a symbolic link to a target file /etc/
shadow.
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Access control in Windows
• Some basic functionality similar to Unix 
– Specify access for groups and users 

• Read, modify, change owner, delete  
• Some additional concepts 
– Tokens 
– Security attributes 

• Generally  
– More flexible than Unix 

• Can define new permissions 
• Can transfer some but not all privileges (cf. capabilities)
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Process has set of tokens
• Security context 
– Privileges, accounts, and groups associated with the 

process or thread 
– Presented as set of tokens 

• Impersonation token  
– Used temporarily to adopt a different security 

context, usually of another user
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Object has security descriptor

• Specifies who can perform what actions on the object 
– Header  (revision number, control flags, …) 
– SID of the object's owner 
– SID of the primary group of the object  
– Two attached optional lists:  

• Discretionary Access Control List (DACL) – users, groups, … 
• System Access Control List (SACL) – system logs, .. 
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Example access request

Group1: Administrators
Group2: Writers

Control flags 

Group SID
DACL Pointer
SACL Pointer
     Deny
     Writers
     Read, Write
     Allow
     Mark
     Read, Write

Owner SID

Revision Number

Access token

Security 
descriptor

Access request: write 
Action: denied

•  User Mark requests write permission 
•  Descriptor denies permission to group 
•  Reference Monitor denies request 
(DACL for access, SACL for audit and logging)

Priority: 
Explicit Deny  
Explicit Allow  
Inherited Deny  
Inherited Allow

User:    Mark
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Impersonation Tokens  (compare to setuid)

• Process adopts security attributes of another 
– Client passes impersonation token to server 

• Client specifies impersonation level of server 
– Anonymous 

• Token has no information about the client 
– Identification 

• Obtain the SIDs of client and client's privileges, but 
server cannot impersonate the client 

– Impersonation 
• Impersonate the client on the local system 

– Delegation 
• Lets server impersonate client on local, remote systems
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Weakness in isolation, privileges
• Similar problems to Unix 

– E.g., Rootkits leveraging dynamically loaded kernel 
modules 

• Windows Registry  
– Global hierarchical database to store data for all programs  
– Registry entry can be associated with a security context 

that limits access; common to be able to write sensitive 
entry 

• Enabled By Default 
– Historically, many Windows deployments also came with 

full permissions and functionality enabled
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Web browser: an analogy

Operating system
• Subject: Processes 

– Has User ID (UID, SID) 
– Discretionary access control 

• Objects 
– File 
– Network 
– … 

• Vulnerabilities 
– Untrusted programs 
– Buffer overflow 
– …

Web browser
• Subject: web content (JavaScript) 

– Has “Origin” 
– Mandatory access control 

• Objects 
– Document object model 
– Frames 
– Cookies / localStorage 

• Vulnerabilities 
– Cross-site scripting 
– Implementation bugs 
– …

The web browser enforces its own internal policy. If the 
browser implementation is corrupted, this mechanism 
becomes unreliable.
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Components of security policy

• Frame-Frame relationships 
– canScript(A,B) 

• Can Frame A execute a script that manipulates 
arbitrary/nontrivial DOM elements of Frame B? 

– canNavigate(A,B) 
• Can Frame A change the origin of content for 

Frame B? 
• Frame-principal relationships 

– readCookie(A,S), writeCookie(A,S) 
• Can Frame A read/write cookies from site S?
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Chromium Security Architecture

• Browser ("kernel") 
– Full privileges (file system, 

networking) 
• Rendering engine 
– Up to 20 processes  
– Sandboxed
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Chromium

See: http://dev.chromium.org/developers/design-documents/sandbox/

Communicating sandboxed 
components
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Design Decisions
• Compatibility 
– Sites rely on the existing browser security policy 
– Browser is only as useful as the sites it can render 
– Rules out more “clean slate” approaches 

• Black Box  
– Only renderer may parse HTML, JavaScript, etc. 
– Kernel enforces coarse-grained security policy 
– Renderer to enforces finer-grained policy decisions 

• Minimize User Decisions
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Task Allocation
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Summary
• Security principles 

– Isolation 
– Principle of Least Privilege 
– Qmail example 

• Access Control Concepts 
– Matrix, ACL, Capabilities 

• OS Mechanisms 
– Unix: UID, ACL, Setuid 
– Windows: SID, Tokens, Security Descriptor, Impersonation 

• Browser security architecture 
– Isolation and least privilege example


