
John Mitchell

Secure Architecture
Principles

CS 155 Spring 2016

• Isolation and Least Privilege
• Access Control Concepts
• Operating Systems
• Browser Isolation and Least

Privilege
Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and John Mitchell at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom
of that slide. A full list of references is provided on the last slide.

John Mitchell

Secure Architecture
Principles

Isolation and
Least Privilege

John Mitchell

Principles of Secure Design
• Compartmentalization
– Isolation
– Principle of least privilege

• Defense in depth
– Use more than one security mechanism
– Secure the weakest link
– Fail securely

• Keep it simple

John Mitchell

Principle of Least Privilege
• What’s a privilege?
– Ability to access or modify a resource

• Assume compartmentalization and isolation
– Separate the system into isolated compartments
– Limit interaction between compartments

• Principle of Least Privilege
– A system module should only have the minimal

privileges needed for its intended purposes

John Mitchell

Principle of Least Privilege
• What’s a privilege?
– Ability to access or modify a resource

• Assume compartmentalization and isolation
– Separate the system into isolated compartments
– Limit interaction between compartments

• Principle of Least Privilege
– A system module should only have the minimal

privileges needed for its intended purposes

John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

John Mitchell

Monolithic design

System

Network

User input

File system

Network

User device

File system

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

John Mitchell

Component design

Network

User input

File system

Network

User device

File system

John Mitchell

Principle of Least Privilege
• What’s a privilege?
– Ability to access or modify a resource

• Assume compartmentalization and isolation
– Separate the system into isolated compartments
– Limit interaction between compartments

• Principle of Least Privilege
– A system module should only have the minimal

privileges needed for its intended purposes

John Mitchell

Example: Mail Agent
• Requirements
– Receive and send email over external network
– Place incoming email into local user inbox files

• Sendmail
– Traditional Unix
– Monolithic design
– Historical source of many vulnerabilities

• Qmail
– Compartmentalized design

John Mitchell

OS Basics (before examples)

• Isolation between processes
– Each process has a UID

• Two processes with same UID have same
permissions

– A process may access files, network sockets, ….
• Permission granted according to UID

• Relation to previous terminology
– Compartment defined by UID
– Privileges defined by actions allowed on system

resources

John Mitchell

Qmail design
• Isolation based on OS isolation
– Separate modules run as separate “users”
– Each user only has access to specific resources

• Least privilege
– Minimal privileges for each UID
– Only one “setuid” program
• setuid allows a program to run as different users

– Only one “root” program
• root program has all privileges

John Mitchell

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

Incoming external mail Incoming internal mail

John Mitchell

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr

root

user
setuid user

qmailq – user who is allowed to read/write mail queue

John Mitchell

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue
Reads incoming mail directories
Splits message into header, body
Signals qmail-send

John Mitchell

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue
 qmail-send signals

• qmail-lspawn if local
• qmail-remote if remote

John Mitchell

Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-send

qmail-inject

qmail-queue

qmail-lspawn
• Spawns qmail-local
• qmail-local runs with ID of

user receiving local mail

John Mitchell

Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-send

qmail-inject

qmail-queue

qmail-local
• Delivers local mail

John Mitchell

Structure of qmail

qmail-smtpd

qmail-remote

qmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmail-remote
• Delivers message to remote MTA

John Mitchell

root

Isolation by Unix UIDs

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

qmaild
user

qmailq

qmailsqmailr

qmailr user
setuid user

qmailq – user who is allowed to read/write mail queue

setuid

root

John Mitchell

Least privilege

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-send

qmail-inject

qmail-queue

root

setuid

John Mitchell

Android process isolation

• Android application sandbox
– Isolation: Each application runs with its own UID in own

VM
• Provides memory protection
• Communication limited to using Unix domain sockets
• Zygote (spawn another process) run as root

– Interaction: reference monitor checks permissions on
inter-component communication

– Least Privilege: Applications announces permission
• User grants access at install time

John Mitchell

John Mitchell

App

John Mitchell

Discussion?
• Principle of Least Privilege
• Qmail example
• Android app sandbox example

John Mitchell

Secure Architecture
Principles

Access Control
Concepts

John Mitchell

Access control

• Assumptions
– System knows who the user is

• Authentication via name and password, other credential
– Access requests pass through gatekeeper (reference monitor)

• System must not allow monitor to be bypassed

Resource
User

process

Reference
monitor

access request

policy

?

John Mitchell

Access control matrix [Lampson]

File 1 File 2 File 3 … File n

User 1 read write - - read

User 2 write write write - -

User 3 - - - read read

…

User m read write read write read

Su
bj

ec
ts

O
bj

ec
ts

John Mitchell

Implementation concepts

• Access control list (ACL)
– Store column of matrix
 with the resource

• Capability
– User holds a “ticket” for
 each resource
– Two variations

• store row of matrix with user, under OS control
• unforgeable ticket in user space

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

Access control lists are widely used, often with groups
Some aspects of capability concept are used in many systems

John Mitchell

ACL vs Capabilities
• Access control list
– Associate list with each object
– Check user/group against list
– Relies on authentication: need to know user

• Capabilities
– Capability is unforgeable ticket
• Random bit sequence, or managed by OS
• Can be passed from one process to another

– Reference monitor checks ticket
• Does not need to know identify of user/process

John Mitchell

ACL vs Capabilities

Process P
User U

Process Q
User U

Process R
User U

Process P
Capabilty c,d,e

Process Q

Process R
Capabilty c

Capabilty c,e

John Mitchell

ACL vs Capabilities
• Delegation

– Cap: Process can pass capability at run time
– ACL: Try to get owner to add permission to list?

• More common: let other process act under current user
• Revocation

– ACL: Remove user or group from list
– Cap: Try to get capability back from process?

• Possible in some systems if appropriate bookkeeping
– OS knows which data is capability
– If capability is used for multiple resources, have to revoke all or

none …
• Indirection: capability points to pointer to resource

– If C → P → R, then revoke capability C by setting P=0

John Mitchell

Roles (aka Groups)

• Role = set of users
– Administrator, PowerUser, User, Guest
– Assign permissions to roles; each user gets permission

• Role hierarchy
– Partial order of roles
– Each role gets
 permissions of roles below
– List only new permissions
 given to each role

Administrator

Guest

PowerUser

User

John Mitchell

Role-Based Access Control

Individuals Roles Resources

engineering

marketing

human res

Server 1

Server 3

Server 2

Advantage: users change more frequently than roles

John Mitchell

Access control summary
• Access control involves reference monitor
– Check permissions: 〈user info, action〉→ yes/no
– Important: no way around this check

• Access control matrix
– Access control lists vs capabilities
– Advantages and disadvantages of each

• Role-based access control
– Use group as “user info”; use group hierarchies

John Mitchell

Discussion?
• Access control matrix
– Access control list (ACL)
– Capabilities

• Role-based access control

John Mitchell

Secure Architecture
Principles

Operating
Systems

John Mitchell

Unix access control

• Process has user id
– Inherit from creating process
– Process can change id

• Restricted set of options
– Special “root” id

• All access allowed
• File has access control list (ACL)

– Grants permission to user ids
– Owner, group, other

File 1 File 2 …

User 1 read write -

User 2 write write -

User 3 - - read

…

User m Read write write

John Mitchell

Unix file access control list

• Each file has owner and group
• Permissions set by owner

– Read, write, execute
– Owner, group, other
– Represented by vector of
 four octal values

• Only owner, root can change permissions
– This privilege cannot be delegated or shared

• Setid bits – Discuss in a few slides

rwx rwxrwx-
ownr grp othr

setid

John Mitchell

Process effective user id (EUID)
• Each process has three Ids (+ more under Linux)

– Real user ID (RUID)
• same as the user ID of parent (unless changed)
• used to determine which user started the process

– Effective user ID (EUID)
• from set user ID bit on the file being executed, or sys call
• determines the permissions for process

– file access and port binding
– Saved user ID (SUID)

• So previous EUID can be restored

• Real group ID, effective group ID, used similarly

John Mitchell

Process Operations and IDs
• Root

– ID=0 for superuser root; can access any file
• Fork and Exec

– Inherit three IDs, except exec of file with setuid bit

• Setuid system call
– seteuid(newid) can set EUID to

• Real ID or saved ID, regardless of current EUID
• Any ID, if EUID=0

• Details are actually more complicated
– Several different calls: setuid, seteuid, setreuid

John Mitchell

Setid bits on executable Unix file
• Three setid bits
– Setuid – set EUID of process to ID of file owner
– Setgid – set EGID of process to GID of file
– Sticky
• Off: if user has write permission on directory, can

rename or remove files, even if not owner
• On: only file owner, directory owner, and root can

rename or remove file in the directory

John Mitchell

Example

…;
…;
exec();

RUID 25 SetUID

program

…;
…;
i=getruid()
setuid(i);
…;
…;

RUID 25
EUID 18

RUID 25
EUID 25

-rw-r--r--
file

-rw-r--r--
file

Owner 18

Owner 25

read/write

read/write

Owner 18

John Mitchell

Unix summary
• Good things
– Some protection from most users
– Flexible enough to make things possible

• Main limitation
– Too tempting to use root privileges
– No way to assume some root privileges without all

root privileges

John Mitchell

Weakness in isolation, privileges
• Network-facing Daemons

– Root processes with network ports open to all remote parties,
e.g., sshd, ftpd, sendmail, …

• Rootkits
– System extension via dynamically loaded kernel modules

• Environment Variables
– System variables such as LIBPATH that are shared state across

applications. An attacker can change LIBPATH to load an
attacker-provided file as a dynamic library

John Mitchell

Weakness in isolation, privileges
• Shared Resources

– Since any process can create files in /tmp directory, an
untrusted process may create files that are used by arbitrary
system processes

• Time-of-Check-to-Time-of-Use (TOCTTOU)
– Typically, a root process uses system call to determine if

initiating user has permission to a particular file, e.g. /tmp/X.
– After access is authorized and before the file open, user may

change the file /tmp/X to a symbolic link to a target file /etc/
shadow.

John Mitchell

Access control in Windows
• Some basic functionality similar to Unix
– Specify access for groups and users

• Read, modify, change owner, delete
• Some additional concepts
– Tokens
– Security attributes

• Generally
– More flexible than Unix

• Can define new permissions
• Can transfer some but not all privileges (cf. capabilities)

John Mitchell

John Mitchell

Process has set of tokens
• Security context
– Privileges, accounts, and groups associated with the

process or thread
– Presented as set of tokens

• Impersonation token
– Used temporarily to adopt a different security

context, usually of another user

John Mitchell

Object has security descriptor

• Specifies who can perform what actions on the object
– Header (revision number, control flags, …)
– SID of the object's owner
– SID of the primary group of the object
– Two attached optional lists:

• Discretionary Access Control List (DACL) – users, groups, …
• System Access Control List (SACL) – system logs, ..

John Mitchell

Example access request

Group1: Administrators
Group2: Writers

Control flags

Group SID
DACL Pointer
SACL Pointer
 Deny
 Writers
 Read, Write
 Allow
 Mark
 Read, Write

Owner SID

Revision Number

Access token

Security
descriptor

Access request: write
Action: denied

• User Mark requests write permission
• Descriptor denies permission to group
• Reference Monitor denies request
(DACL for access, SACL for audit and logging)

Priority:
Explicit Deny  
Explicit Allow  
Inherited Deny  
Inherited Allow

User: Mark

John Mitchell

Impersonation Tokens (compare to setuid)

• Process adopts security attributes of another
– Client passes impersonation token to server

• Client specifies impersonation level of server
– Anonymous

• Token has no information about the client
– Identification

• Obtain the SIDs of client and client's privileges, but
server cannot impersonate the client

– Impersonation
• Impersonate the client on the local system

– Delegation
• Lets server impersonate client on local, remote systems

John Mitchell

Weakness in isolation, privileges
• Similar problems to Unix

– E.g., Rootkits leveraging dynamically loaded kernel
modules

• Windows Registry
– Global hierarchical database to store data for all programs
– Registry entry can be associated with a security context

that limits access; common to be able to write sensitive
entry

• Enabled By Default
– Historically, many Windows deployments also came with

full permissions and functionality enabled

John Mitchell

Secure Architecture
Principles

Browser Isolation
and Least Privilege

John Mitchell

Web browser: an analogy

Operating system
• Subject: Processes

– Has User ID (UID, SID)
– Discretionary access control

• Objects
– File
– Network
– …

• Vulnerabilities
– Untrusted programs
– Buffer overflow
– …

Web browser
• Subject: web content (JavaScript)

– Has “Origin”
– Mandatory access control

• Objects
– Document object model
– Frames
– Cookies / localStorage

• Vulnerabilities
– Cross-site scripting
– Implementation bugs
– …

The web browser enforces its own internal policy. If the
browser implementation is corrupted, this mechanism
becomes unreliable.

John Mitchell

Components of security policy

• Frame-Frame relationships
– canScript(A,B)

• Can Frame A execute a script that manipulates
arbitrary/nontrivial DOM elements of Frame B?

– canNavigate(A,B)
• Can Frame A change the origin of content for

Frame B?
• Frame-principal relationships

– readCookie(A,S), writeCookie(A,S)
• Can Frame A read/write cookies from site S?

John Mitchell

Chromium Security Architecture

• Browser ("kernel")
– Full privileges (file system,

networking)
• Rendering engine
– Up to 20 processes
– Sandboxed

John Mitchell

Chromium

See: http://dev.chromium.org/developers/design-documents/sandbox/

Communicating sandboxed
components

John Mitchell

Design Decisions
• Compatibility
– Sites rely on the existing browser security policy
– Browser is only as useful as the sites it can render
– Rules out more “clean slate” approaches

• Black Box
– Only renderer may parse HTML, JavaScript, etc.
– Kernel enforces coarse-grained security policy
– Renderer to enforces finer-grained policy decisions

• Minimize User Decisions

John Mitchell

Task Allocation

John Mitchell

Summary
• Security principles

– Isolation
– Principle of Least Privilege
– Qmail example

• Access Control Concepts
– Matrix, ACL, Capabilities

• OS Mechanisms
– Unix: UID, ACL, Setuid
– Windows: SID, Tokens, Security Descriptor, Impersonation

• Browser security architecture
– Isolation and least privilege example

