
CE441: Data and Network Security Fall 2021

Project #31

Due: Monday, Azar 22 - 11:59pm.

Introduction

This project is all about network security. Specifically, you will both use existing
software to examine remote machines and local traffic as well as play the part of a
powerful network attacker. Parts one and two should show you how a simple port
scanning can reveal a large amount of information about a remote server, as well as
teach you how to use Wireshark to closely monitor and understand network traffic
observable by your machine. Part three will focus on a dump of network traffic in
your mobile network, and will teach you how to identify different types of anomalies.
Finally, in part four, you will get to implement a DNS spoofer that hijacks a HTTP
connection. In doing so, you will learn how to use Python packet manipulation
libraries and TCP sockets, and solidify your understanding of the mechanics and
shortfalls of the DNS and HTTP protocols.

Part 1: Port Scanning

Port scanning is a method that can be used by an attacker to probe which ports are
open on a given host, learning details about which software the server is running on
publically-addressable interfaces. With this information, an attacker gains a better
understanding of where and how to attack the victim server. Port scanning takes
advantage of conventions in TCP and ICMP that seek to provide a sender with
(perhaps too much!) information on why their connection failed.

In this part, you will use the nmap tool (https://nmap.org; https://en.wikipedia.
org/wiki/Nmap) to scan the server scanme.nmap.org. By doing so, you should be
able to see the powerful information that a simple scan can reveal. In your scan,
make sure to:

1. Only scan scanme.nmap.org! Do not scan any other servers. You should only
scan a server if you have explicit permission from the server operator to do so.

2. Record the traffic with Wireshark (see part 2)
1* Acknowledgment: This project is obtained from CS155, Spring 2020, Stanford University.

Edited By H. Ahmadzadeh & A. Ehteshami.

https://nmap.org
https://en.wikipedia.org/wiki/Nmap
https://en.wikipedia.org/wiki/Nmap


3. Use a TCP SYN scan. (Hint: Read the nmap man pages to find the appropriate
flag to use.)

4. Enable OS detection, version detection, script scanning, and traceroute. (Hint:
This is a single flag.)

5. Do a quick scan (-T4).

6. Scan all ports.

When you get the result, report the following about the target server (scanme.nmap.org)
based on the results of the scan:

1. What is the full command you used to run the port scan (including arguments)?

2. What is the IP address of scanme.nmap.org?

3. What ports are open on the target server? What applications are running on
those ports? (For this part, you only need to report the service name printed
by nmap.)

4. The target machine is also running a webserver. What webserver software and
version is being used? What ports does it run on?

Please answer all questions briefly; no response should take more than two sen-
tences.

Note: running nmap from the VM takes a few hours for some people. You can
install nmap/Wireshark locally (which may be faster) or just leave it running for a
while in the VM. To prevent your computer from sleeping during the scan you can run
caffeinate from the terminal on macOS or disable sleep in settings for Windows/Linux.

Part 1 Deliverables

PortScanAnswers.txt: A text file containing your answers to questions 1–4 above.
Make sure you follow the answer format in the file, since your responses are auto-
graded. If you don’t follow the format, you will lose points.

Part 2: Wireshark packet sniffing

Wireshark is a tool to monitor local network traffic. Wireshark has access to complete
header information of all packets on a monitored interface and presents a helpful GUI
for understanding the structure of different protocols. Because of this it can be a
valuable debugging tool for networking projects, as you will see in part 4.

2



Use the Wireshark packet analyzer (https://www.wireshark.org/; https://
en.wikipedia.org/wiki/Wireshark) to examine the traffic generated by nmap dur-
ing the scan in Part 1. You will need to start Wireshark and record traffic on the
interface nmap will use to scan before actually running the scan. The VM we provide
has wireshark installed, just run wireshark. You can also install and run wireshark
locally.

When you get the result, take a look at the Wireshark capture. Use Wireshark’s
filtering functionality to look at how nmap scans a single port. Report the following
about the target server based on the results of the scan:

1. What does it mean for a port on scanme.nmap.org to be “closed?” More specif-
ically, what is the TCP packet type, if any, the server gives in response to a
SYN packet sent to port that is “closed?”

2. What does it mean for a port on scanme.nmap.org to be “filtered?” More specif-
ically, what is the TCP packet type, if any, the server gives in response to a
SYN packet sent to port that is “filtered?”

3. In addition to performing an HTTP GET request to the webserver, what other
http request types does nmap send?

Once again, please answer all questions briefly; no response should take more than
three sentences.

Part 2 Deliverables

WiresharkAnswers.txt: A text file containing your answers to questions 1–3 above.

Part 3: Packet log processing

You have been given a dump of packet header information for the network that your
mobile device is on (trace.txt). Your device’s IP address is 10.30.22.101. Lately, there
have been a number of sketchy occurrences on this network. In order to learn more
about network security, your job is to sift through the packet header information and
detect some anomalous behavior on the network. Since the volume of packets is large,
it is expected that you will write scripts in the language(s) of your choice to do the
following:

1. Your mobile device has accessed a number of websites. List 5 IP addresses of
websites that have been accessed by your mobile device. (Hint: What port is
typically used for webservers? Your mobile device’s IP address is 10.30.22.101.
There may be more than 5 valid answers to this question, but you should only
list 5.)

3

https://www.wireshark.org/
https://en.wikipedia.org/wiki/Wireshark
https://en.wikipedia.org/wiki/Wireshark


2. Someone sketchy has been looking for attack vectors into hosts on this network
by scanning for open ports on a machine. (Hint 1: What kind of pattern would
you expect from a host that is port scanning other hosts? How might you isolate
this pattern in the packet dump? Hint 2: It’s okay if some small ranges of ports
are ’skipped’ in the port scan - think about why this might be!)

(a) What is the IP address of the origin of the port scan?
(b) What is the IP address of the host that was scanned?
(c) What range of ports was scanned?

3. There has been an unusually high volume of SYN packets going from one host
on this network to another host on this network. This can be indicative of a
type of Denial of Service (DoS) attack called a SYN flood.

(a) What is the IP address of the SYN-flooding sender?
(b) What is the IP address of the SYN-flooded receiver?
(c) How many SYN packets were sent from this sender to this receiver?

4. Some malware on your phone has caused it to behave improperly and inject
a malicious packet in the network. More specifically, your phone has sent a
packet during a TCP connection that it should not have sent. Doing so can
sometimes cause problems on the network and crash hosts that are not imple-
mented correctly. What is the checksum value of the injected packet? (Hint:
Under what conditions will a client send a packet with a sequence number that
has already been sent and acknowledged? Should these packets always have
identical content? What does the checksum of a packet indicate?)

Part 3 Deliverables

1. PacketSniffingAnswers.txt: A text file containing your answers to questions
1–4 above.

2. Any scripts you wrote to answer the above questions.

Part 4: DNS Spoofing and Man in the Middle

Now that you’ve learned how to use existing programs to both analyze network traffic
locally and discover what software is running on remote machines, it’s time to write
an exploit of your own. By doing so, you will reveal security issues associated with the
lack of authentication in the DNS and HTTP protocols and learn how to use powerful
packet-manipulation libraries. In this task, you will play the part of a network attacker
who tricks a victim web-browser to connect to the attacker’s server instead of a site

4



the victim wanted to visit. By doing so, the attacker can perform a man-in-the-middle
attack to forward the victim’s requests to and from the site without being noticed
while stealing confidential information along the way. To do so, you will have to spoof
a DNS response to trick the user into associating the hostname “fakeBank.com” with
the attacker’s IP address instead of its real address. You will use the “scapy” Python
library to manipulate packet headers in a quick and reliable manner. Once the DNS
response has been successfully spoofed, you will accept a connection from the victim
and forward all requests to and from the actual webserver for “fakeBank.com”.

The topology of the system is shown below. For this assignment, we will act as if
the attacker has infected a router between the victim and the victim’s DNS resolver
and can thus sniff packets to the resolver and prevent packets from being forwarded
from the resolver to external clients.

Your steps are the following. All code changes will be made to attacker/attacker.py.

Tasks:

1. Open a TCP socket on the attacker’s web port to accept connections from
victims.

5



2. Sniff for DNS lookups on the network. Use scapy’s sniff function to trigger a
callback when a DNS packet is detected. This callback should respond to DNS
queries with a fake DNS response which directs the victim to the attacker’s IP
address.

3. Once the DNS response has been sent, wait for the client to connect to the
attacker’s web port and accept HTTP requests on that socket.

(a) The attacker should read the contents of each request and check for confi-
dential information to log to the attacker’s filesystem. For this assignment,
you will look for a POST request with parameters username and password
and call the log_credentials function to log this data to the filesystem.

(b) You will then forward the exact contents of the HTTP requests to the
actual host fakeBank.com (whose IP should be resolved by calling the pro-
vided resolveHostname function) and relay the host’s response back to
the victim. The downloaded contents in client/lib/downloadedPage.txt
should match httpserver/lib/fileToDownload.txt if the forwarding is
handled correctly.

4. Close the connection and exit the program once the server and client are done
communicating. The client will signal the end of its session with a POST to
/post_logout.

Additional Information

• We will provide you with a VM to develop on, which already has all requirements
installed. We highly recommend you develop on this VM. You can download
VM from this link. username: "user", password: "ce441".

• All hosts will have local IPs, communicating locally over the local loopback
interface (’lo’). Running ./run.sh will create and run the topology, giving an
IP address to the client, DNS server, web server and attacker and launching
each process. Note: the client tries to resolve the server’s hostname and login
automatically (see client.py for details).

• For this assignment, assume the attacker controls the router between the victim
and the resolver. Thus, there will be no race conditions between the attacker’s
response to the victim and that of the actual resolver. Note that this often
would not be the case in reality.

• Use Wireshark to debug on the ’lo’ local loopback interface. You gained some
exposure to Wireshark in part 2, and being able to see exactly what packets are
being sent across the network is a powerful debugging tool.

• Scapy’s sniff function can trigger a callback whenever certain packets are de-
tected on the network.

6

http://partov.ce.sharif.edu/assets/40441-991/ce441_proj3.ova


– To pass in additional arguments to a callback, consider using a lambda
function. For example:
cb = lambda originalArg, args=(extraArg1,extraArg2):

callback(originalArg,args)
would invoke the callback with originalArg, extraArg1, and extraArg2.

• Scapy builds packets by constructing each individual layer and stacking them
together. You pass in various header fields and scapy fills in default values for the
rest. Scapy documentation can be found at https://scapy.readthedocs.io/
en/latest/, but doesn’t provide much information on individual parameters
so below we provide some headers with some possible parameters. You don’t
necessarily need to use all of the headers/parameters listed below.
IP(src="sourceip",dst="dest_ip",proto=protocol, ttl=TTL)

TCP(sport=source_port, dport=dest_port, flags="TCP_flags" (A=ack, F=fin
etc., ))

UDP(sport= X, dport=X)

DNS(id=id, qd=DNSQR(query), qdcount=X, an=DNSRR(answer), ancount=X,
...)

DNSRR(rdata="IP_address of host", rrname="host.com", ttl=TTL)

– Additional flags for DNS follow DNS header convention (aa, rd, qr, ...).
For more information on DNS flags see: http://www.networksorcery.
com/enp/protocol/dns.htm

• Use Python’s socket library to create both TCP client and server sockets. Refer
to Python documentation: https://docs.python.org/2/library/socket.html

• Remember that HTTP 1.0 uses a unique TCP connection for each request (you
can confirm this with Wireshark!).

Part 4 Deliverables

attacker.py: Your completed attacker.py file.

Submitting

1. Push your files in your private repository at tarasht. Put them in proj3 direc-
tory. For part4, only push attacker.py file.

2. Make sure the deliverables mentioned in this writeup for part[1,2,3,4] are in
their respective directories; misplaced deliverables may not receive credit. Many
items will be autograded, so be careful to follow the given formats exactly.

7

https://scapy.readthedocs.io/en/latest/
https://scapy.readthedocs.io/en/latest/
http://www.networksorcery.com/enp/protocol/dns.htm
http://www.networksorcery.com/enp/protocol/dns.htm
https://docs.python.org/2/library/socket.html
tarasht.ce.sharif.ir


3. For parts 3 & 4, record your screen with voice and explain your solution step by
step. Your screen recording should contain all the tools you have used to solve
the problems. Submit only one screen recording for each part and try to mini-
mize the size of each one (max size: 30 MB). Moreover, each screen recording’s
length should be less than 10 minutes. Do Not push your screen recordings to
your repository in Tarasht. Upload them to a file hosting service, e.g. Google
Drive, and insert links in proj3/links.txt. Push proj3/links.txt to your
repository in Tarasht.

8


