
CS162 
Operating Systems and  
Systems Programming  

Lecture 9  
  

Synchronization Continued, 
Readers/Writers example, 

Scheduling

February 23rd, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015

• Semaphores are like integers, except
– No negative values
– Only operations allowed are P and V – can’t read or write
value, except to set it initially

– Operations must be atomic
» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from

V – even if they both happen at same time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=0Value=2

2

Value=2Value=1Value=0

Semaphores Like Integers Except

Value=1Value=0

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Review: Full Solution to Bounded Buffer
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;  
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine
 
Producer(item) {  
 emptyBuffers.P(); // Wait until space  
 mutex.P(); // Wait until buffer free  
 Enqueue(item);  
 mutex.V();  
 fullBuffers.V(); // Tell consumers there is  
 // more coke  
}

 Consumer() {  
 fullBuffers.P(); // Check if there’s a coke  
 mutex.P(); // Wait until machine free  
 item = Dequeue();  
 mutex.V();  
 emptyBuffers.V(); // tell producer need more  
 return item;  
}  

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Condition Variables
• Monitor: a lock and zero or more condition variables

for managing concurrent access to shared data
• Condition Variable: a queue of threads waiting for

something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
 Lock lock;  
 Condition dataready;  
 Queue queue;

 AddToQueue(item) {  
 lock.Acquire(); // Get Lock  
 queue.enqueue(item); // Add item  
 dataready.signal(); // Signal any waiters  
 lock.Release(); // Release Lock  
 }  

 RemoveFromQueue() {  
 lock.Acquire(); // Get Lock  
 while (queue.isEmpty()) {  
 dataready.wait(&lock); // If nothing, sleep  
 }  
 item = queue.dequeue(); // Get next item  
 lock.Release(); // Release Lock  
 return(item);  
 }

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {  

 dataready.wait(&lock); // If nothing, sleep 
 }  
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {  

 dataready.wait(&lock); // If nothing, sleep 
 }  
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Extended example: Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()  
 Wait until no writers  
 Access data base  
 Check out – wake up a waiting writer

– Writer()  
 Wait until no active readers or writers 
 Access database  
 Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Conditioin okToWrite = NIL

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Code for a Reader
 Reader() {  
 // First check self into system  
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 okToRead.wait(&lock); // Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 lock.release();

 // Perform actual read-only access  
 AccessDatabase(ReadOnly);

 // Now, check out of system  
 lock.Acquire();  
 AR--; // No longer active  
 if (AR == 0 && WW > 0) // No other active readers  
 okToWrite.signal(); // Wake up one writer  
 lock.Release();  
}

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 10

 Writer() {  
 // First check self into system  
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 okToWrite.wait(&lock); // Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++; // Now we are active!  
 lock.release();

 // Perform actual read/write access  
 AccessDatabase(ReadWrite);

 // Now, check out of system  
 lock.Acquire();  
 AW--; // No longer active  
 if (WW > 0){ // Give priority to writers  
 okToWrite.signal(); // Wake up one writer  
 } else if (WR > 0) { // Otherwise, wake reader  
 okToRead.broadcast(); // Wake all readers  
 }  
 lock.Release();  
}

Code for a Writer

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Simulation of Readers/Writers solution
• Consider the following sequence of operators:

– R1, R2, W1, R3
• On entry, each reader checks the following:

 while ((AW + WW) > 0) { // Is it safe to read?  
WR++; // No. Writers exist
okToRead.wait(&lock); // Sleep on cond var  
WR--; // No longer waiting  
 }

 AR++; // Now we are active!

• First, R1 comes along: 
 AR = 1, WR = 0, AW = 0, WW = 0

• Next, R2 comes along: 
 AR = 2, WR = 0, AW = 0, WW = 0

• Now, readers make take a while to access database
– Situation: Locks released
– Only AR is non-zero

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Simulation(2)

• Next, W1 comes along: 
 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 okToWrite.wait(&lock); // Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;

• Can’t start because of readers, so go to sleep:
 AR = 2, WR = 0, AW = 0, WW = 1
• Finally, R3 comes along: 

 AR = 2, WR = 1, AW = 0, WW = 1
• Now, say that R2 finishes before R1: 

 AR = 1, WR = 1, AW = 0, WW = 1
• Finally, last of first two readers (R1) finishes and

wakes up writer:
 if (AR == 0 && WW > 0) // No other active readers  
 okToWrite.signal(); // Wake up one writer

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Simulation(3)

• When writer wakes up, get: 
 AR = 0, WR = 1, AW = 1, WW = 0

• Then, when writer finishes:
 if (WW > 0){ // Give priority to writers  
 okToWrite.signal(); // Wake up one writer  
 } else if (WR > 0) { // Otherwise, wake reader  
 okToRead.broadcast(); // Wake all readers  
 }

– Writer wakes up reader, so get:
 AR = 1, WR = 0, AW = 0, WW = 0

• When reader completes, we are finished

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 okToRead.wait(&lock); // Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active  
 if (AR == 0 && WW > 0) // No other active readers  
 okToWrite.signal(); // Wake up one writer

• Further, what if we turn the signal() into broadcast()
 AR--; // No longer active  
 okToWrite.broadcast(); // Wake up one writer

• Finally, what if we use only one condition variable (call
it “okToContinue”) instead of two separate ones?
– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Can we construct Monitors from Semaphores?

• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }
– Doesn’t work: Wait() may sleep with lock held

• Does this work better?
 Wait(Lock lock) {  
 lock.Release();  
 semaphore.P();  
 lock.Acquire();  
}  
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have
history:

» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and no one is waiting? Increment
» What if thread later does P? Decrement and continue

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter
what order they occur

– Condition variables are NOT commutative
• Does this fix the problem?

 Wait(Lock lock) {  
 lock.Release();  
 semaphore.P();  
 lock.Acquire();  
}  
Signal() {  
 if semaphore queue is not empty  
 semaphore.V();  
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock
release and before waiter executes semaphore.P()

• It is actually possible to do this correctly
– Complex solution for Hoare scheduling in book

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Monitor Conclusion

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads
can proceed

• Basic structure of monitor-based program:
 lock  
while (need to wait) {  
 condvar.wait();  
}  
unlock  
 
do something so no need to wait  
 
lock  

 condvar.signal();
 
unlock

Check and/or update 
state variables

Wait if necessary

Check and/or update
state variables

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 18

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a
critical section

 int Rtn() {  
 lock.acquire();  
 … 
 if (exception) {  
 lock.release();  
 return errReturnCode;  
 } 
 … 
 lock.release();  
 return OK;  
}

– Watch out for setjmp/longjmp!
» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back

to procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 19

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy
to make a non-local exit without releasing lock)

– Consider:
 void Rtn() {  
 lock.acquire();  
 …  
 DoFoo();  
 …  
 lock.release();  
 }  
 void DoFoo() {  
 …  
 if (exception) throw errException;  
 …  
 }

– Notice that an exception in DoFoo() will exit without
releasing the lock!

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 20

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception: 
 void Rtn() {  
 lock.acquire();  
 try {  
 …  
 DoFoo();  
 …  
 } catch (…) { // catch exception 
 lock.release(); // release lock  
 throw; // re-throw the exception  
 }  
 lock.release();  
 }  
 void DoFoo() {  
 …  
 if (exception) throw errException;  
 …  
 }

– Even Better: auto_ptr<T> facility. See C++ Spec.
» Can deallocate/free lock regardless of exit method

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Java Language Support for Synchronization

• Java has explicit support for threads and thread
synchronization

• Bank Account example: 
 class Account {  
 private int balance;  
 // object constructor  
 public Account (int initialBalance) {  
 balance = initialBalance;  
 }  
 public synchronized int getBalance() {  
 return balance;  
 }  
 public synchronized void deposit(int amount) {  
 balance += amount;  
 }  
 }

– Every object has an associated lock which gets
automatically acquired and released on entry and exit
from a synchronized method.

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
 synchronized (object) {  
 …  
 }

– Since every Java object has an associated lock, this type
of statement acquires and releases the object’s lock on
entry and exit of the body

– Works properly even with exceptions:
 synchronized (object) {  
 …  
 DoFoo(); 
 …  
 }  
 void DoFoo() { 
 throw errException; 
 }

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single

condition variable associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Recall: Better Implementation of Locks  
by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

• Really only works in kernel – why?

int mylock = FREE;
Acquire(&mylock) – wait until lock is free, then grab
Release(&mylock) – Unlock, waking up anyone waiting

Acquire(int *lock) {  
 disable interrupts;  
 if (*lock == BUSY) { 
 put thread on wait queue; 
 Go to sleep(); 
 // Enable interrupts? 
 } else { 
 *lock = BUSY;  
 }  
 enable interrupts;  
}

Release(int *lock) {  
 disable interrupts;  
 if (anyone on wait queue) { 
 take thread off wait queue 
 Place on ready queue; 
 } else { 
 *lock = FREE;  
 }  
 enable interrupts;  
}  
 

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 25

In-Kernel Lock: Simulation

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Value: 0 waiters owner

Thread A Thread B
Running

READY

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 26

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

In-Kernel Lock: Simulation

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

READY

Running
Value: 1 waiters owner

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 27

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running
Value: 1 waiters owner

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 28

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

RunningRunning
INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

Value: 1 waiters owner

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 29

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running
Value: 1 waiters owner

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 30

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running
Value: 1 waiters owner

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Recall: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to Running to
various waiting queues.

• Question: How is the OS to decide which of several tasks to
take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access to
resources from moment to moment

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the problem
so it can be solved
– For instance: is “fair” about fairness among users or
programs?

» If I run one compilation job and you run five, you get five times
as much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Assumption: CPU Bursts

• Execution model: programs alternate between bursts of CPU and
I/O
– Program typically uses the CPU for some period of time, then does
I/O, then uses CPU again

– Each scheduling decision is about which job to give to the CPU for
use by its next CPU burst

– With timeslicing, thread may be forced to give up CPU before
finishing current CPU burst

Weighted toward small bursts

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 34

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching
than if you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 35

First-Come, First-Served (FCFS) Scheduling
• First-Come, First-Served (FCFS)

– Also “First In, First Out” (FIFO) or “Run until done”
» In early systems, FCFS meant one program  

scheduled until done (including I/O)
» Now, means keep CPU until thread blocks

• Example: Process Burst Time 
 P1 24  
 P2 3  
 P3 3

– Suppose processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is: 
 
 
 
 

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 36

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of small items.
Upside: get to read about space aliens!

P1P3P2

63 300

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Scheduling: selecting a waiting process from the ready queue and

allocating the CPU to it
• FCFS Scheduling:

– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes;

cycle between all ready threads
– Pros: Better for short jobs
– Cons: Poor when jobs are same length

