
CS162 
Operating Systems and  
Systems Programming  

Lecture 8  
  

Locks, Semaphores, Monitors,  
and  

Quick Intro to Scheduling

September 23rd, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Review: Synchronization problem with Threads

• One thread per transaction, each running:
 Deposit(acctId, amount) {  
 acct = GetAccount(actId); /* May use disk I/O */  
 acct->balance += amount;  
 StoreAccount(acct); /* Involves disk I/O */  
 }

• Unfortunately, shared state can get corrupted: 
 Thread 1 Thread 2 
 load r1, acct->balance  
 load r1, acct->balance 
 add r1, amount2 
 store r1, acct->balance 
 add r1, amount1 
 store r1, acct->balance

• Atomic Operation: an operation that always runs to
completion or not at all
– It is indivisible: it cannot be stopped in the middle and state
cannot be modified by someone else in the middle

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:
 Thread A Thread B
 leave note A; leave note B;  
 while (note B) {\\X if (noNote A) {\\Y 
 do nothing; if (noMilk) { 
 } buy milk; 
 if (noMilk) { } 
 buy milk; } 
 } remove note B; 
 remove note A;

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• At X:
– if no note B, safe for A to buy,
– otherwise wait to find out what will happen

• At Y:
– if no note A, safe for B to buy
– Otherwise, A is either buying or waiting for B to quit

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Review: Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

(more in a moment).
– Acquire(&mylock) – wait until lock is free, then grab
– Release(&mylock) – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are
waiting for the lock and both see it’s free, only one
succeeds to grab the lock

• Then, our milk problem is easy:
 Acquire(&milklock);
 if (nomilk)
 buy milk;
 Release(&milklock);

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Goals for Today

• Explore several implementations of locks
• Continue with Synchronization Abstractions

– Semaphores, Monitors, and Condition variables
• Very Quick Introduction to scheduling

Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne
Note: Some slides and/or pictures in the following are
adapted from slides ©2005 Silberschatz, Galvin, and Gagne.
Many slides generated from my lecture notes by Kubiatowicz.

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Better Implementation of Locks by Disabling Interrupts

• Key idea: maintain a lock variable and impose mutual
exclusion only during operations on that variable

int value = FREE;

Acquire() {  
 disable interrupts;  
 if (value == BUSY) { 
 put thread on wait queue; 
 Go to sleep(); 
 // Enable interrupts? 
 } else { 
 value = BUSY;  
 }  
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if (anyone on wait queue) { 
 take thread off wait queue 
 Place on ready queue; 
 } else { 
 value = FREE;  
 }  
 enable interrupts;  
}  
 

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Recall: How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you

call sleep:
– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire
and re-enables interrupts

 Thread A Thread B
 .  
 .  
 disable ints  
 sleep

 sleep return  
 enable ints

 . 
 . 
 .

 disable int  
 sleep

 sleep return  
 enable ints  
 .  
 .

context 
switch

context 

switch

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */ 

 result = M[address];  
 M[address] = 1;  
 return result;  
}

• swap (&address, register) { /* x86 */  
 temp = M[address]; 
 M[address] = register;  
 register = temp;  
}

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) {  
 M[address] = reg2;  
 return success;  
 } else {  
 return failure;  
 }  
}

• load-linked&store conditional(&address) {  
 /* R4000, alpha */  
 loop:  
 ll r1, M[address];  
 movi r2, 1; /* Can do arbitrary comp */  
 sc r2, M[address];  
 beqz r2, loop;  
}

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Implementing Locks with test&set

• Another flawed, but simple solution:
 int value = 0; // Free
 Acquire() { 
 while (test&set(value)); // while busy  
 }

 Release() { 
 value = 0;  
 }

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock
is now busy. It returns 0 so while exits.

– If lock is busy, test&set reads 1 and sets value=1 (no
change). It returns 1, so while loop continues

– When we set value = 0, someone else can get lock
• Busy-Waiting: thread consumes cycles while waiting

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 10

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient because the busy-waiting thread
will consume cycles waiting

– Waiting thread may take cycles away from thread holding
lock (no one wins!)

– Priority Inversion: If busy-waiting thread has higher
priority than thread holding lock ⇒ no progress!

• Priority Inversion problem with original Martian rover
• For semaphores and monitors, waiting thread may wait

for an arbitrary length of time!
– Thus even if busy-waiting was OK for locks, definitely not
ok for other primitives

– Homework/exam solutions should not have busy-waiting!

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Multiprocessor Spin Locks: test&test&set

• A better solution for multiprocessors:
 int mylock = 0; // Free
 Acquire() {
 do {
 while(mylock); // Wait until might be free  

 } while(test&set(&mylock)); // exit if get lock
 }

 Release() {  
 mylock = 0; 
 }

• Simple explanation:
– Wait until lock might be free (only reading – stays in cache)
– Then, try to grab lock with test&set
– Repeat if fail to actually get lock

• Issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {  
 // Short busy-wait time 
 while (test&set(guard));  
 if anyone on wait queue { 
 take thread off wait queue 
 Place on ready queue; 
 } else { 
 value = FREE;  
 }  
 guard = 0;  

int guard = 0;
int value = FREE;

Acquire() {
 // Short busy-wait time 
 while (test&set(guard));  
 if (value == BUSY) {
 put thread on wait queue;
 go to sleep() & guard = 0;  
 } else { 
 value = BUSY;  
 guard = 0;  
 }  
}

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 13

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) {  
 M[address] = reg2;  
 return success;  
 } else {  
 return failure;  
 }  
}

Here is an atomic add to linked-list function:
 addToQueue(&object) {  
 do { // repeat until no conflict  
 ld r1, M[root] // Get ptr to current head  
 st r1, M[object] // Save link in new object  
 } until (compare&swap(&root,r1,object));  
}

Using of Compare&Swap for queues

root next next

next
New

Object

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Higher-level Primitives than Locks

• Goal of last couple of lectures:
– What is the right abstraction for synchronizing threads that
share memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find
bugs, since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s (10
years after started), systems running UNIX would crash every
week or so – concurrency bugs

• Synchronization is a way of coordinating multiple concurrent
activities that are using shared state
– This lecture and the next presents a couple of ways of
structuring the sharing

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer
value and supports the following two operations:
– P(): an atomic operation that waits for semaphore to
become positive, then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore
by 1, waking up a waiting P, if any

» This of this as the signal() operation
– Note that P() stands for “proberen” (to test) and V()
stands for “verhogen” (to increment) in Dutch

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015

• Semaphores are like integers, except
– No negative values
– Only operations allowed are P and V – can’t read or write
value, except to set it initially

– Operations must be atomic
» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from

V – even if they both happen at same time

• Semaphore from railway analogy
– Here is a semaphore initialized to 2 for resource control:

Value=0Value=2

16

Value=2Value=1Value=0

Semaphores Like Integers Except

Value=1Value=0

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Two Uses of Semaphores
• Mutual Exclusion (initial value = 1)

– Also called “Binary Semaphore”.
– Can be used for mutual exclusion:

 semaphore.P();  
 // Critical section goes here  
 semaphore.V();

• Scheduling Constraints (initial value = 0)
– Locks are fine for mutual exclusion, but what if you
want a thread to wait for something?

– Example: suppose you had to implement ThreadJoin
which must wait for thread to terminiate:

 Initial value of semaphore = 0
 ThreadJoin {  
 semaphore.P();  
 }

 ThreadFinish {  
 semaphore.V();  
 }

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Producer-consumer with a bounded buffer

• Problem Definition
– Producer puts things into a shared buffer
– Consumer takes them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep,
so put a fixed-size buffer between them
– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of cokes in machine
– Consumer can’t take cokes out, if machine is empty

Producer ConsumerBuffer

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Correctness constraints for solution
• Correctness Constraints:

– Consumer must wait for producer to fill buffers, if none full
(scheduling constraint)

– Producer must wait for consumer to empty buffers, if all full
(scheduling constraint)

– Only one thread can manipulate buffer queue at a time (mutual
exclusion)

• Remember why we need mutual exclusion
– Because computers are stupid
– Imagine if in real life: the delivery person is filling the machine
and somebody comes up and tries to stick their money into the
machine

• General rule of thumb:  
Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Full Solution to Bounded Buffer
 Semaphore fullBuffer = 0; // Initially, no coke
 Semaphore emptyBuffers = numBuffers;  
 // Initially, num empty slots

 Semaphore mutex = 1; // No one using machine
 
Producer(item) {  
 emptyBuffers.P(); // Wait until space  
 mutex.P(); // Wait until buffer free  
 Enqueue(item);  
 mutex.V();  
 fullBuffers.V(); // Tell consumers there is  
 // more coke  
}

 Consumer() {  
 fullBuffers.P(); // Check if there’s a coke  
 mutex.P(); // Wait until machine free  
 item = Dequeue();  
 mutex.V();  
 emptyBuffers.V(); // tell producer need more  
 return item;  
}  

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

Producer(item) {  
 Mutex.P(); // Wait until buffer free
 emptyBuffers.P(); // Could Wait forever!
 Enqueue(item); 
 mutex.V(); 
 fullBuffers.V(); // Tell consumers more coke 
}

• Is order of V’s important?
– No, except that it might affect scheduling efficiency

• What if we have 2 producers or 2 consumers?
– Do we need to change anything?

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Motivation for Monitors and Condition Variables

• Semaphores are a huge step up; just think of trying to
do the bounded buffer with only loads and stores
– Problem is that semaphores are dual purpose:

» They are used for both mutex and scheduling constraints
» Example: the fact that flipping of P’s in bounded buffer

gives deadlock is not immediately obvious. How do you prove
correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and
condition variables for scheduling constraints

• Definition: Monitor: a lock and zero or more condition
variables for managing concurrent access to shared data
– Some languages like Java provide this natively
– Most others use actual locks and condition variables

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 23

 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something
inside a critical section
– Key idea: make it possible to go to sleep inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Simple Monitor Example (version 1)
• Here is an (infinite) synchronized queue
 Lock lock; 
 Queue queue;

 AddToQueue(item) { 
 lock.Acquire(); // Lock shared data 
 queue.enqueue(item); // Add item 
 lock.Release(); // Release Lock 
 }  

 RemoveFromQueue() { 
 lock.Acquire(); // Lock shared data 
 item = queue.dequeue();// Get next item or null 
 lock.Release(); // Release Lock 
 return(item); // Might return null  
 }

• Not very interesting use of “Monitor”
– It only uses a lock with no condition variables
– Cannot put consumer to sleep if no work!

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Condition Variables
• How do we change the RemoveFromQueue() routine to

wait until something is on the queue?
– Could do this by keeping a count of the number of things
on the queue (with semaphores), but error prone

• Condition Variable: a queue of threads waiting for
something inside a critical section
– Key idea: allow sleeping inside critical section by
atomically releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section
• Operations:

– Wait(&lock): Atomically release lock and go to sleep.
Re-acquire lock later, before returning.

– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Complete Monitor Example (with condition variable)
• Here is an (infinite) synchronized queue
 Lock lock;  
 Condition dataready;  
 Queue queue;

 AddToQueue(item) {  
 lock.Acquire(); // Get Lock  
 queue.enqueue(item); // Add item  
 dataready.signal(); // Signal any waiters  
 lock.Release(); // Release Lock  
 }  

 RemoveFromQueue() {  
 lock.Acquire(); // Get Lock  
 while (queue.isEmpty()) {  
 dataready.wait(&lock); // If nothing, sleep  
 }  
 item = queue.dequeue(); // Get next item  
 lock.Release(); // Release Lock  
 return(item);  
 }

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and

wait. Consider a piece of our dequeue code:
 while (queue.isEmpty()) {  

 dataready.wait(&lock); // If nothing, sleep 
 }  
 item = queue.dequeue(); // Get next item

– Why didn’t we do this?
 if (queue.isEmpty()) {  

 dataready.wait(&lock); // If nothing, sleep 
 }  
 item = queue.dequeue(); // Get next item

• Answer: depends on the type of scheduling
– Hoare-style (most textbooks):

» Signaler gives lock, CPU to waiter; waiter runs immediately
» Waiter gives up lock, processor back to signaler when it exits

critical section or if it waits again
– Mesa-style (most real operating systems):

» Signaler keeps lock and processor
» Waiter placed on ready queue with no special priority
» Practically, need to check condition again after wait

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Recall: CPU Scheduling

• Earlier, we talked about the life-cycle of a thread
– Active threads work their way from Ready queue to Running to
various waiting queues.

• Question: How is the OS to decide which of several tasks to
take off a queue?
– Obvious queue to worry about is ready queue
– Others can be scheduled as well, however

• Scheduling: deciding which threads are given access to
resources from moment to moment

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Scheduling Assumptions
• CPU scheduling big area of research in early 70’s
• Many implicit assumptions for CPU scheduling:

– One program per user
– One thread per program
– Programs are independent

• Clearly, these are unrealistic but they simplify the problem
so it can be solved
– For instance: is “fair” about fairness among users or
programs?

» If I run one compilation job and you run five, you get five times
as much CPU on many operating systems

• The high-level goal: Dole out CPU time to optimize some
desired parameters of system

USER1 USER2 USER3 USER1 USER2

Time

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if
you only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 31

First-Come, First-Served (FCFS) Scheduling

• First-Come, First-Served (FCFS)
– Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program  
scheduled until done (including I/O)

» Now, means keep CPU until thread blocks
• Example: Process Burst Time 

 P1 24  
 P2 3  
 P3 3

– Suppose processes arrive in the order: P1 , P2 , P3  
The Gantt Chart for the schedule is: 
 
 
 
 

– Waiting time for P1 = 0; P2 = 24; P3 = 27
– Average waiting time: (0 + 24 + 27)/3 = 17
– Average Completion time: (24 + 27 + 30)/3 = 27

• Convoy effect: short process behind long process

P1 P2 P3

24 27 300

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 32

FCFS Scheduling (Cont.)
• Example continued:

– Suppose that processes arrive in order: P2 , P3 , P1  
Now, the Gantt chart for the schedule is: 

– Waiting time for P1 = 6; P2 = 0; P3 = 3
– Average waiting time: (6 + 0 + 3)/3 = 3
– Average Completion time: (3 + 6 + 30)/3 = 13

• In second case:
– average waiting time is much better (before it was 17)
– Average completion time is better (before it was 27)

• FIFO Pros and Cons:
– Simple (+)
– Short jobs get stuck behind long ones (-)

» Safeway: Getting milk, always stuck behind cart full of small items.

P1P3P2

63 300

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 33

First peak at responsiveness scheduler: 
Multi-Level Feedback Scheduling

• A method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing

exponentially (highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute 
Tasks Demoted to  

Low Priority

9/23/15 Kubiatowicz CS162 ©UCB Fall 2015 34

Summary
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()
• Scheduling: selecting a waiting process from the ready queue and

allocating the CPU to it
• FCFS Scheduling:

– Run threads to completion in order of submission
– Pros: Simple
– Cons: Short jobs get stuck behind long ones

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle

between all ready threads
– Pros: Better for short jobs
– Cons: Poor when jobs are same length

