
CS162 
Operating Systems and  
Systems Programming  

Lecture 3  
 

Processes (con’t), Fork,  
Introduction to I/O

September 2nd, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: Four fundamental OS concepts

• Thread
– Single unique execution context
– Program Counter, Registers, Execution Flags, Stack

• Address Space w/ Translation
– Programs execute in an address space that is distinct from the

memory space of the physical machine
• Process

– An instance of an executing program is a process consisting of an
address space and one or more threads of control

• Dual Mode operation/Protection
– Only the “system” has the ability to access certain resources
– The OS and the hardware are protected from user programs and

user programs are isolated from one another by controlling the
translation from program virtual addresses to machine physical
addresses

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the illusion of
multiple processors?
– Multiplex in time!
– Multiple “virtual CPUs”

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Simultaneous MultiThreading/Hyperthreading

• Hardware technique
– Superscalar processors can  
execute multiple instructions 
that are independent.

– Hyperthreading duplicates  
register state to make a 
second “thread,” allowing  
more instructions to run.

• Can schedule each thread  
as if were separate CPU
– But, sub-linear speedup!

• Original technique called “Simultaneous Multithreading”
– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

http://www.cs.washington.edu/research/smt/index.html

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Recall: User/Kernal(Priviledged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Recall: A simple address translation (B&B)

• Can the program touch OS?
• Can it touch other programs?

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…0100…

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Alternative: Address Mapping

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Putting it together: web server

syscall

wait

interrupt

RTU

syscall

wait

interrupt

RTU

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 10

Running Many Programs

• We have the basic mechanism to
– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes from
each other

• Questions ???
– How do we represent user processes in the OS?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting a lot of memory?
– …

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Process Control Block

• Kernel represents each process as a process
control block (PCB)
– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

• Scheduling algorithm selects the next one to run

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Scheduler

• Scheduling: Mechanism for deciding which processes/threads
receive the CPU

• Lots of different scheduling policies provide …
– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if (readyProcesses(PCBs)) {
 nextPCB = selectProcess(PCBs);
 run(nextPCB);
} else {
 run_idle_process();
}

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Implementing Safe Kernel Mode Transfers

• Important aspects:
– Separate kernel stack
– Controlled transfer into kernel (e.g. syscall table)

• Carefully constructed kernel code packs up the user
process state and sets it aside.
– Details depend on the machine architecture

• Should be impossible for buggy or malicious user
program to cause the kernel to corrupt itself.

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Need for Separate Kernel Stacks

• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel
memory) plus User stack (located in user memory)

– Syscall handler copies user args to kernel space
before invoking specific function (e.g., open)

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Before

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 16

During

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Kernel System Call Handler

• Vector through well-defined syscall entry points!
– Table mapping system call number to handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– into user memory

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Hardware support: Interrupt Control
• Interrupt processing not be visible to the user process:

– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)

• OS kernel may enable/disable interrupts
– On x86: CLI (disable interrupts), STI (enable)
– Atomic section when select next process/thread to run
– Atomic return from interrupt or syscall

• HW may have multiple levels of interrupt
– Mask off (disable) certain interrupts, eg., lower priority
– Certain non-maskable-interrupts (nmi)

» e.g., kernel segmentation fault

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software
– Interrupt identity specified with ID line

• CPU can disable all interrupts with internal flag
• Non-maskable interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority Encoder

Tim
er

Int Disable

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 20

How do we take interrupts safely?

• Interrupt vector
– Limited number of entry points into kernel

• Kernel interrupt stack
– Handler works regardless of state of user code

• Interrupt masking
– Handler is non-blocking

• Atomic transfer of control
– “Single instruction”-like to change:

» Program counter
» Stack pointer
» Memory protection
» Kernel/user mode

• Transparent restartable execution
– User program does not know interrupt occurred

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Administrivia
• Office Hours:

– 1630 to 1700 Monday, or email me for an alternate time
• Homework 0 immediately ⇒ Due on Wedesday!

– Get familiar with all the tools
– importance of git

• TA session time slot
– Monday 12:30 to 13:15

• Late registration is this week
– If you are not serious about taking the course, please drop
the course now

• Group sign up form out next week (after “Tarmim”)
– think of selecting group members ASAP
– 4 people in a group!

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Question

• Process is an instance of a program executing.
• The fundamental OS responsibility

• Processes do their work by processing and calling
file system operations

• Are there any operation on processes themselves?

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 23

pid.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <sunistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int arg, char *argv[])
{
int c;

pid_t pid = getpid(); /* get current process PID */

printf(“My pid: %d\n”, pid);
c = fgetc(stdin);
exit(0);
}

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Can a process create a process ?

• Yes
– Unique identity of process is the “process ID” (or pid).

• Fork() system call creates a copy of current process with a
new pid

• Return value from Fork(): integer
– When > 0:

» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• All of the state of original process duplicated in both Parent
and Child!
– Memory, File Descriptors (next topic), etc…

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 25

fork1.c
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>

#define BUFSIZE 1024
int main(int argc, char *argv[])
{
 char buf[BUFSIZE];
 size_t readlen, writelen, slen;
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 exit(1);
 }
 exit(0);
}

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 26

UNIX Process Management

• UNIX fork – system call to create a copy of the
current process, and start it running
– No arguments!

• UNIX exec – system call to change the program
being run by the current process

• UNIX wait – system call to wait for a process to
finish

• UNIX signal – system call to send a notification
to another process

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 27

fork2.c

 int status;
 …
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 tcpid = wait(&status);
 printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 }
 …

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 28

UNIX Process Management

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of
programs to do some task

– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Signals – infloop.c

#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>

#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum)
{
 printf("Caught signal %d - phew!\n",signum);
 exit(1);
}

int main() {
 signal(SIGINT, signal_callback_handler);

 while (1) {}
}

Got
top?

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Process races: fork.c

• Question: What does this program print?
• Does it change if you add in one of the sleep()

statements?

 if (cpid > 0) {
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 for (i=0; i<100; i++) {
 printf("[%d] parent: %d\n", mypid, i);
 // sleep(1);
 }
 } else if (cpid == 0) {
 mypid = getpid();
 printf("[%d] child\n", mypid);
 for (i=0; i>-100; i--) {
 printf("[%d] child: %d\n", mypid, i);
 // sleep(1);
 }
 }

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Break

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Recall: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 34

How does the kernel provide services?

• You said that applications request services from
the operating system via syscall, but …

• I’ve been writing all sort of useful applications
and I never ever saw a “syscall” !!!

• That’s right.
• It was buried in the programming language

runtime library (e.g., libc.a)
• … Layering

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 35

OS run-time library

OS

Proc
1

Proc
2

Proc
n…

OS

Appln login Window
Manager

…
OS

library
OS

library
OS

library

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 36

A Kind of Narrow Waist

Compilers

Web Servers

Web Browsers

Databases
Email

Word Processing

Portable OS Library
System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (10/100/1000)802.11 a/b/g/nSCSI IDE Graphics
PCI

Hardware

Software

System

User
OS

Application / Service

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Key Unix I/O Design Concepts
• Uniformity

– file operations, device I/O, and interprocess communication
through open, read/write, close

– Allows simple composition of programs
» find | grep | wc …

• Open before use
– Provides opportunity for access control and arbitration
– Sets up the underlying machinery, i.e., data structures

• Byte-oriented
– Even if blocks are transferred, addressing is in bytes

• Kernel buffered reads
– Streaming and block devices looks the same
– read blocks process, yielding processor to other task

• Kernel buffered writes
– Completion of out-going transfer decoupled from the application,

allowing it to continue
• Explicit close

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 38

I/O & Storage Layers

High Level I/O
Low Level I/O

Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 39

The file system abstraction

• File
– Named collection of data in a file system
– File data

» Text, binary, linearized objects

– File Metadata: information about the file
» Size, Modification Time, Owner, Security info
» Basis for access control

• Directory
– “Folder” containing files & Directories
– Hierachical (graphical) naming

» Path through the directory graph
» Uniquely identifies a file or directory

•/home/ff/cs162/public_html/fa14/index.html

– Links and Volumes (later)

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 40

C high level File API – streams (review)

• Operate on “streams” - sequence of bytes, whether
text or data, with a position

#include <stdio.h>
FILE *fopen(const char *filename, const char *mode);
int fclose(FILE *fp);

Mode Text Binary Descriptions

r rb Open existing file for reading

w wb Open for writing; created if does not exist

a ab Open for appending; created if does not exist

r+ rb+ Open existing file for reading & writing.

w+ wb+ Open for reading & writing; truncated to zero if exists, create otherwise

a+ ab+ Open for reading & writing. Created if does not exist. Read from beginning,
write as append

Do
n’t

 f
or
ge
t
to
 f
lus

h

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 41

Connecting Processes, Filesystem, and Users

• Process has a ‘current working directory’
• Absolute Paths

– /home/ff/cs152
• Relative paths

– index.html, ./index.html - current WD
– ../index.html - parent of current WD
– ~, ~cs152 - home directory

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 42

C API Standard Streams

• Three predefined streams are opened implicitly when the
program is executed.
– FILE *stdin – normal source of input, can be redirected
– FILE *stdout – normal source of output, can too
– FILE *stderr – diagnostics and errors

• STDIN / STDOUT enable composition in Unix
– Recall: Use of pipe symbols connects STDOUT and STDIN

» find | grep | wc …

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 43

C high level File API – stream ops
#include <stdio.h>
// character oriented
int fputc(int c, FILE *fp); // rtn c or
EOF on err
int fputs(const char *s, FILE *fp); // rtn >0 or EOF

int fgetc(FILE * fp);
char *fgets(char *buf, int n, FILE *fp);

// block oriented
size_t fread(void *ptr, size_t size_of_elements,
 size_t number_of_elements, FILE *a_file);

size_t fwrite(const void *ptr, size_t size_of_elements,
 size_t number_of_elements, FILE *a_file);

// formatted
int fprintf(FILE *restrict stream, const char *restrict
format, ...);
int fscanf(FILE *restrict stream, const char *restrict format,
...);

9/2/15 Kubiatowicz CS162 ©UCB Fall 2015 44

Summary

• Process: execution environment with Restricted Rights
– Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process resources

• Interrupts
– Hardware mechanism for regaining control from user
– Notification that events have occurred
– User-level equivalent: Signals

• Native control of Process
– Fork, Exec, Wait, Signal

• Basic Support for I/O
– Standard interface: open, read, write, seek
– Device drivers: customized interface to hardware

