
CS162 
Operating Systems and  
Systems Programming  

Lecture 23  
  

Distributed Storage, 
Key-Value Stores

November 30th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Network-Attached Storage and the CAP Theorem

• Consistency:
– Changes appear to everyone in the same serial order

• Availability:
– Can get a result at any time

• Partition-Tolerance
– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem:
Cannot have all three at same time
– Otherwise known as “Brewer’s Theorem”

Network

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 3

mount
coeus:/sue

mount
kubi:/prog

mount
kubi:/jane

Distributed File Systems

• Distributed File System:
– Transparent access to files stored on a remote disk

• Naming choices (always an issue):
– Hostname:localname: Name files explicitly

» No location or migration transparency
– Mounting of remote file systems

» System manager mounts remote file system 
by giving name and local mount point

» Transparent to user: all reads and writes  
look like local reads and writes to user  
e.g. /users/sue/foo→/sue/foo on server

– A single, global name space: every file  
in the world has unique name

» Location Transparency: servers  
can change and files can move  
without involving user

Network
Read File

Data
Client Server

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server
– Use Remote Procedure Calls (RPC) to translate file system calls into
remote requests

– No local caching/can be caching at server-side
• Advantage: Server provides completely consistent view of file

system to multiple clients
• Problems? Performance!

– Going over network is slower than going to local memory
– Lots of network traffic/not well pipelined
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache

11/16/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load
– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t
need to do any network traffic…fast!

• Problems:
– Failure:

» Client caches have data not committed at server
– Cache consistency!

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Crash!Crash!

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Failures

• What if server crashes? Can client wait until server comes
back up and continue as before?
– Any data in server memory but not on disk can be lost
– Shared state across RPC: What if server crashes after seek?
Then, when client does “read”, it will fail

– Message retries: suppose server crashes after it does UNIX
“rm foo”, but before acknowledgment?

» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach)
• Stateless protocol: A protocol in which all information

required to process a request is passed with request
– Server keeps no state about client, except as hints to help
improve performance (e.g. a cache)

– Thus, if server crashes and restarted, requests can continue
where left off (in many cases)

• What if client crashes?
– Might lose modified data in client cache

Crash!

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls +
file descriptors

– VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

– NFS service layer: bottom layer of the architecture
» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server
– Reading/searching a directory
– manipulating links and directories
– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to
server’s disk before results are returned to the client
– lose some of the advantages of caching
– time to perform write() can be long
– Need some mechanism for readers to eventually notice
changes! (more on this later)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 8

NFS Continued
• NFS servers are stateless; each request provides all arguments

require for execution
– E.g. reads include information for entire operation, such as
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each
operation stands on its own

• Idempotent: Performing requests multiple times has same effect
as performing it exactly once

– Example: Server crashes between disk I/O and message send, client
resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-write file
block – no side effects

– Example: What about “remove”? NFS does operation twice and
second time returns an advisory error

• Failure Model: Transparent to client system
– Is this a good idea? What if you are in the middle of reading a file
and server crashes?

– Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don’t know they are

talking over network)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 9

• NFS protocol: weak consistency
– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

– What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 10

• What sort of cache coherence might we expect?
– i.e. what if one CPU changes file, and before it’s done, another
CPU reads file?

• Example: Start with file contents = “A”

• What would we actually want?
– Assume we want distributed system to behave exactly the same as
if all processes are running on single system

» If read finishes before write starts, get old copy
» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

– For NFS:
» If read starts more than 30 seconds after write, get new copy;

otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 11

NFS Pros and Cons

• NFS Pros:
– Simple, Highly portable

• NFS Cons:
– Sometimes inconsistent!
– Doesn’t scale to large # clients

» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS (commercial
product)

• Callbacks: Server records who has copy of file
– On changes, server immediately tells all with old copy
– No polling bandwidth (continuous checking) needed

• Write through on close
– Changes not propagated to server until close()
– Session semantics: updates visible to other clients only after the
file is closed

» As a result, do not get partial writes: all or nothing!
» Although, for processes on local machine, updates visible immediately

to other programs who have file open

• In AFS, everyone who has file open sees old version
– Don’t get newer versions until reopen file

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Andrew File System (con’t)
• Data cached on local disk of client as well as memory

– On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

– On write followed by close:
» Send copy to server; tells all clients with copies to fetch new

version from server on next open (using callbacks)
• What if server crashes? Lose all callback state!

– Reconstruct callback information from client: go ask
everyone “who has which files cached?”

• AFS Pro: Relative to NFS, less server load:
– Disk as cache ⇒ more files can be cached locally
– Callbacks ⇒ server not involved if file is read-only

• For both AFS and NFS: central server is bottleneck!
– Performance: all writes→server, cache misses→server
– Availability: Server is single point of failure
– Cost: server machine’s high cost relative to workstation

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Implementation of NFS

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system
– Provides virtual superblocks, inodes, files, etc
– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
• VFS allows the same system call interface (the API) to be used for

different types of file systems
– The API is to the VFS interface, rather than any specific type of
file system

• In linux, “VFS” stands for “Virtual Filesystem Switch”

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Key Value Storage

• Handle huge volumes of data, e.g., PBs
– Store (key, value) tuples

• Simple interface
– put(key, value); // insert/write “value” associated
with “key”

– value = get(key); // get/read data associated with
“key”

• Used sometimes as a simpler but more scalable
“database”

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 17

• Amazon:
– Key: customerID
– Value: customer profile (e.g., buying history, credit
card, ..)

• Facebook, Twitter:
– Key: UserID
– Value: user profile (e.g., posting history, photos,
friends, …)

• iCloud/iTunes:

– Key: Movie/song name
– Value: Movie, Song

Key Values: Examples

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Key-value storage systems in real life

• Amazon
– DynamoDB: internal key value store used to power Amazon.com

(shopping cart)
– Simple Storage System (S3)

• BigTable/HBase/Hypertable: distributed, scalable data storage

• Cassandra: “distributed data management system” (developed by
Facebook)

• Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

• eDonkey/eMule: peer-to-peer sharing system

• …

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Key Value Store

• Also called Distributed Hash Tables (DHT)
• Main idea: partition set of key-values across many

machines
key, value

…

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Challenges

• Fault Tolerance: handle machine failures without
losing data and without degradation in performance

• Scalability:
– Need to scale to thousands of machines
– Need to allow easy addition of new machines

• Consistency: maintain data consistency in face of
node failures and message losses

• Heterogeneity (if deployed as peer-to-peer
systems):
– Latency: 1ms to 1000ms
– Bandwidth: 32Kb/s to 100Mb/s

…

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Key Questions

• put(key, value): where do you store a new  
(key, value) tuple?

• get(key): where is the value associated with a given
“key” stored?

• And, do the above while providing
– Fault Tolerance
– Scalability
– Consistency

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Directory-Based Architecture

• Have a node maintain the mapping between keys
and the machines (nodes) that store the values
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)

pu
t(K

14
, V

14
)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Directory-Based Architecture

• Have a node maintain the mapping between keys and the
machines (nodes) that store the values associated with the
keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Directory-Based Architecture

• Having the master relay the requests ! recursive query
• Another method: iterative query (this slide)

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Directory-Based Architecture

• Having the master relay the requests ! recursive query
• Another method: iterative query

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

get(K14)

V14
N3

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Discussion: Iterative vs. Recursive Query

• Recursive Query:
– Advantages:

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()
– Disadvantages: scalability bottleneck, as all “Values” go

through master/directory
• Iterative Query

– Advantages: more scalable
– Disadvantages: slower, harder to enforce data consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

get(K14)

V14
N3

Recursive Iterative

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Fault Tolerance

• Replicate value on several nodes
• Usually, place replicas on different racks in a datacenter

to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14), N1

N1, N3

K14 V14

put(K14, V14)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Fault Tolerance

• Again, we can have
– Recursive replication (previous slide)
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

N1, N3

K14 V14

pu
t(K

14
, V

14
)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Fault Tolerance

• Or we can use recursive query and iterative
replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

K14 V14

put(K14, V14)

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Scalability

• Storage: use more nodes

• Number of requests:
– Can serve requests from all nodes on which a value is
stored in parallel

– Master can replicate a popular value on more nodes

• Master/directory scalability:
– Replicate it
– Partition it, so different keys are served by
different masters/directories

» How do you partition?

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Scalability: Load Balancing

• Directory keeps track of the storage availability at each
node
– Preferentially insert new values on nodes with more storage
available

• What happens when a new node is added?
– Cannot insert only new values on new node. Why?
– Move values from the heavy loaded nodes to the new node

• What happens when a node fails?
– Need to replicate values from fail node to other nodes

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Consistency

• Need to make sure that a value is replicated correctly
• How do you know a value has been replicated on every

node?
– Wait for acknowledgements from every node

• What happens if a node fails during replication?
– Pick another node and try again

• What happens if a node is slow?
– Slow down the entire put()? Pick another node?

• In general, with multiple replicas
– Slow puts and fast gets

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Consistency (cont’d)

• If concurrent updates (i.e., puts to same key)
may need to make sure that updates happen in
the same order

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3
K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K14, V14’’)

put(K14, V14’’)

put(K14, V14’)

put(K14, V14’')

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’)
reach N1 and N3 in reverse order

• What does get(K14) return?
• Undefined!

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 34

Consistency (cont’d)

• Large variety of consistency models:
– Atomic consistency (linearizability): reads/writes (gets/puts) to
replicas appear as if there was a single underlying replica
(single system image)

» Think “one updated at a time”
» Transactions

– Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency; used by many systems
in practice

– And many others: causal consistency, sequential consistency,
strong consistency, …

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 35

Quorum Consensus

• Improve put() and get() operation performance

• Define a replica set of size N
– put() waits for acknowledgements from at least W
replicas

– get() waits for responses from at least R replicas
– W+R > N

• Why does it work?
– There is at least one node that contains the update

• Why might you use W+R > N+1?

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Quorum Consensus Example

• N=3, W=2, R=2
• Replica set for K14: {N1, N3, N4}
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

ACK

put(K14, V14)pu
t(K

14
, V

14
)

ACK

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Quorum Consensus Example

• Now, issuing get() to any two nodes out of three will
return the answer

N1 N2 N3 N4

K14 V14K14 V14

ge
t(K

14
)

V14

get(K14)

nill

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Scaling Up Directory

• Challenge:
– Directory contains a number of entries equal to number
of (key, value) tuples in the system

– Can be tens or hundreds of billions of entries in the
system!

• Solution: consistent hashing
• Associate to each node a unique id in an uni-

dimensional space 0..2m-1
– Partition this space across m machines
– Assume keys are in same uni-dimensional space
– Each (Key, Value) is stored at the node with the
smallest ID larger than Key

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 39

Key to Node Mapping Example

• m = 6 ! ID space: 0..63
• Node 8 maps keys [5,8]
• Node 15 maps keys [9,15]
• Node 20 maps keys [16, 20]
• …
• Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 40

Lookup in Chord-like system (with Leaf Set)

0…

10…

110…

111…

Lookup ID

Source

Response

• Assign IDs to nodes
– Map hash values to
node with closest ID

• Leaf set is successors
and predecessors
– All that’s needed for
correctness

• Routing table matches
successively longer
prefixes
– Allows efficient lookups

• Data Replication:
– On leaf set

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 41

DynamoDB Example: Service Level Agreements (SLA)

• Application can deliver its
functionality in a bounded time:
– Every dependency in the

platform needs to deliver its
functionality with even tighter
bounds.

• Example: service guaranteeing
that it will provide a response
within 300ms for 99.9% of its
requests for a peak client load
of 500 requests per second

• Contrast to services which
focus on mean response time

Service-oriented architecture of
Amazon’s platform

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 42

Summary (1/2)
• Distributed File System:

– Transparent access to files stored on a remote disk
– Caching for performance

• Cache Consistency: Keeping client caches consistent with one
another
– If multiple clients, some reading and some writing, how do stale
cached copies get updated?

– NFS: check periodically for changes
– AFS: clients register callbacks to be notified by server of
changes

• Remote Procedure Call (RPC): Call procedure on remote machine
– Provides same interface as procedure
– Automatic packing and unpacking of arguments (in stub)

• VFS: Virtual File System layer
– Provides mechanism which gives same system call interface for
different types of file systems

11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 43

Summary (2/2)

• Key-Value Store:
– Two operations

» put(key, value)
» value = get(key)

– Challenges
» Fault Tolerance ! replication
» Scalability ! serve get()’s in parallel; replicate/cache hot

tuples
» Consistency ! quorum consensus to improve put()

performance

