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Network-Attached STor'age and the CAP Theorem
‘ < D Nefwor'k S ‘

Consistency:

- Changes appear to everyone in the same serial order
Availability:

- Can get a result at any time
Partition-Tolerance

- System continues to work even when network becomes partitioned
Consistency, Availability, Partition-Tolerance (CAP) Theorem:
Cannot have all three at same time

- Otherwise known as "Brewer’'s Theorem”
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DlsTrlbuted File Systems

Client

Server
- Distributed File System:

- Transparent access to files stored on a remote disk

- Naming choices (always an issue):
- Hostname:localname: Name files explicitly
» No location or migration transparency
- Mounting of remote file systems
» System manager mounts remote file system
by giving name and local mount point
» Transparent to user: all reads and writes
look like local reads and writes to user
e.g. /users/sue/foo—/sue/foo on server
- A single, global name space: every file

in the world has unique name
» Location Transparency: servers
can change and files can move
without involving user
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Simple Distributed File System
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- Remote Disk: Reads and writes forwarded to server

- Use Remote Procedure Calls (RPC) to translate file system calls into
remote requests

- No local caching/can be caching at server-side
- Advantage: Server provides completely consistent view of file
system to multiple clients
* Problems? Performancel
- 6oing over network is slower than going to local memory
- Lots of network traffic/not well pipelined

- Server can be a bottleneck
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Use of caching to reduce network load

read(f1)—V1
read(fl)—V1
read(fl)—V1
read(fl1)—V1

write(f1)—0K
read(fl)—V2

cache
F1:V1

W

Client

Y

=

Server [cache

cache

Client

- Idea: Use caching to reduce network load
- In practice: use buffer cache at source and destination

- Advantage: if open/read/write/close can be done locally, don't
need to do any network traffic..fast!

- Problems:
- Failure:

» Client caches have data not committed at server

- Cache consistency!

» Client caches not consistent with server/each other
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Failures

- What if server crashes? Can client wait until server comes
back up and continue as before?
- Any data in server memory but not on disk can be lost
- Shared state across RPC: What if server crashes after seek?
Then, when client does "“read”, it will fail
- Message retries: suppose server crashes after it does UNIX

“rm foo”, but before acknowledgment?
» Message system will retry: send it again
» How does it know not to delete it again? (could solve with two-
phase commit protocol, but NFS takes a more ad hoc approach)

- Stateless protocol: A protocol in which all information
required to process a request is passed with request

- Server keeps no state about client, except as hints to help
improve performance (e.g. a cache)

- Thus, if server crashes and restarted, requests can continue
where left off (in many cases)

- What if client crashes?
- Might lose modified data in client cache
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Network File System (NFS)

- Three Layers for NFS system

- UNIX file-system interface: open, read, write, close calls +
file descriptors

- VFS layer: distinguishes local from remote files
» Calls the NFS protocol procedures for remote requests

- NFS service layer: bottom layer of the architecture
» Implements the NFS protocol
- NFS Protocol: RPC for file operations on server
- Reading/searching a directory
- manipulating links and directories
- accessing file attributes/reading and writing files
- Write-through caching: Modified data committed to
server's disk before results are returned to the client
- lose some of the advantages of caching
- time to perform write() can be long

- Need some mechanism for readers to eventually notice
changes! (more on this later)
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NFS Continued

- NFS servers are stateless; each request provides all arguments
require for execution
- E.g. reads include information for entire operation, such as
ReadAt (inumber,position), not Read (openfile)
- No need to perform network open() or close() on file - each
operation stands on its own
- Idempotent: Performing requests multiple times has same effect
as performing it exactly once
- Example: Server crashes between disk I/0 and message send, client
resend read, server does operation again
- Example: Read and write file blocks: just re-read or re-write file
block - no side effects
- Example: What about "remove”? NFS does operation twice and
second time returns an advisory error
* Failure Model: Transparent to client system
- Is this a good idea? What if you are in the middle of reading a file
and server crashes?

- Options (NFS Provides both):
» Hang until server comes back up (next week?)
» Return an error. (Of course, most applications don't know they are
talking over network)
11/30/15 Kubiatowicz €S162 ©UCB Fall 2015 8




NFS Cache consistency

- NFS protocol: weak consistency

- Client polls server periodically to check for changes

» Polls server if data hasn't been checked in last 3-30 seconds
(exact timeout it tunable parameter).

» Thus, when file is changed on one client, server is notified, but
other clients use old version of file until timeout.

nche k2
F1:v2 No: (F1:V2) ° <:>
x> Server [cache
. W
cache O
F1:v
Client

- What if multiple clients write to same file?
» In NFS, can get either version (or parts of both)

» Completely arbitrary!
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Sequential Ordering Constraints

- What sort of cache coherence might we expect?

- i.e. what if one CPU changes file, and before it's done, another
CPU reads file?

- Example: Start with file contents = “"A”

Clienf 1: IMM"WPITC B I |Read: parts of B or d
Client 2: [Read: gets A or B||Write ¢ |
Client 3: |Read: parts of B or g
>
Time

* What would we actually want?
- Assume we want distributed system to behave exactly the same as
if all processes are running on single system
» If read finishes before write starts, get old copy

» If read starts after write finishes, get new copy
» Otherwise, get either new or old copy

- For NFS:

» If read starts more than 30 seconds after write, get new copy:
otherwise, could get partial update
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NFS Pros and Cons

- NFS Pros:

- Simple, Highly portable
- NFS Cons:

- Sometimes inconsistent!

- Doesn't scale to large # clients
» Must keep checking to see if caches out of date
» Server becomes bottleneck due to polling traffic
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Andrew File System

- Andrew File System (AFS, late 80's) — DCE DFS (commercial
product)

- Callbacks: Server records who has copy of file
- On changes, server immediately tells all with old copy
- No polling bandwidth (continuous checking) needed

- Write through on close
- Changes not propagated to server until close()

- Session semantics: updates visible to other clients only after the
file is closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible immediately
to other programs who have file open

- In AFS, everyone who has file open sees old version
- Don't get newer versions until reopen file
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Andrew File System (con't)

- Data cached on local disk of client as well as memory

- On open with a cache miss (file not on local disk):
» Get file from server, set up callback with server

- On write followed by close:

» Send copy to server; tells all clients with copies to fetch new
version from server on next open (using callbacks)

- What if server crashes? Lose all callback statel

- Reconstruct callback information from client: go ask
everyone "who has which files cached?”

- AFS Pro: Relative to NFS, less server load:
- Disk as cache = more files can be cached locally
- Callbacks = server not involved if file is read-only

- For both AFS and NFS: central server is bottleneck!
- Performance: all writes—server, cache misses—server
- Availability: Server is single point of failure
- Cost: server machine's high cost relative to workstation
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Implementation of NFS

client

system-calls interface

!

sarver

»  VFS interface ‘
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file systems system client
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disk J

NFS
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RPC/XDR
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system

‘ UNIX file

.

-

clisk
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Enabling Factor: Virtual Filesystem (VFS)

cp ’
inl = oper ("7 1cppy/TEST', O_RDONLY, 2);
oitf = apen(”tmpitest’

VFS O _WRCALY |O_CREAT|0_TRUNC, 06u0);
do {

i - reac(irf, buf, £096);
weile(culf, buf, 2);

T while (i);

close(outf);

: ) ‘ close(int);
Fx2 IAS-pO

/:np/tSLt /floppy/TEST

- VFS: Virtual abstraction similar to local file system
- Provides virtual superblocks, inodes, files, etc
- Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems
- VFS allows the same system call interface (the APT) to be used for
different types of file systems

- The API is to the VFS interface, rather than any specific type of
file system

* In linux, "VFS"” stands for "Virtual Filesystem Switch”
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Key Value Storage

- Handle huge volumes of data, e.g., PBs
- Store (key, value) tuples

- Simple interface
- put(key, value); // insert/write “value” associated

with “key”
- value = get(key):. // get/read data associated with
\\keyll

- Used sometimes as a simpler but more scalable
"database”
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Key Values: Examples

- Amazon: amazon

- Key: customerID
- Value: customer profile (e.g., buying history, credit

card, ..)
- Facebook, Twitter: l.jJ
- Key: UserID
- Value: user profile (e.g., posting history, photos,
friends, ..)

- iCloud/iTunes: Q @

- Key: Movie/song name
- Value: Movie, Song
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Key-value storage systems in real life

- Amazon

- DynamoDB: internal key value store used to power Amazon.com
(shopping cart)

- Simple Storage System (S3)
- BigTable/HBase/Hypertable: distributed, scalable data storage

- Cassandra: "distributed data management system” (developed by
Facebook)

- Memcached: in-memory key-value store for small chunks of
arbitrary data (strings, objects)

- eDonkey/eMule: peer-to-peer sharing system
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Key Value Store

- Also called Distributed Hash Tables (DHT)

* Main idea: partition set of key-values across many
machines

key, value

E & §  §F
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Challenges

E % - ®

Fault Tolerance: handle machine failures without
losing data and without degradation in performance

Scalability:
- Need to scale to thousands of machines
- Need to allow easy addition of new machines

Consistency: maintain data consistency in face of
node failures and message losses

Heterogeneity (if deployed as peer-to-peer
systems):

- Latency: 1ms to 1000ms

- Bandwidth: 32Kb/s to 100Mb/s
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Key Questions

- put(key, value): where do you store a new
(key, value) tuple?

- get(key): where is the value associated with a given
"key” stored?

- And, do the above while providing
- Fault Tolerance
- Scalability
- Consistency
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Directory-Based Architecture

- Have a node maintain the mapping between keys
and the machines (nodes) that store the values

associated with the keys
Master/Directory

put(K14, V14) -------ooomee . > o N2
E 14 [N3
5:9 ., Ki05IN50 _
g/
§
Q 4
Kb Vo K14 [ V1 K105 V10
N1 N2 N3 N50
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Directory-Based Architecture

- Have a node maintain the mapping between keys and the
machines (nodes) that store the values associated with the
keys

Master/Directory

get(K14) --------ooeee . 5 |N2?
VA4 oo 14 [N3
o/  KIO5IN50
</ w
=/ N/
Ko |Vo K14 | V1 K105 V10
N, N, N Ns

11/30/15 Kubiatowicz €S162 ©UCB Fall 2015 23



Directory-Based Architecture

- Having the master relay the requests - recursive query

- Another method: iterative query (this slide)

- Return node to requester and let requester contact node
Master/Directory

put(K14, V14) ------oome .

g 5 |N2
N3 - 14 [N3

Ty
KOS [Vo K14 [ V1 K105 V10
N, N, N3 Nso
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Directory-Based Architecture

- Having the master relay the requests >

 Another method: iterative query

recursive query

- Return node to requester and let requester contact node

Master/Directory

10

get(K14) ~-----coooooo R -

_______________ 5

NS oo E 14 N3

vid K105 [N50
\ 8 Qefm' N 1UY JINOU |

Y

K5 V5 KI4 (Vi RT05

N, N, N,
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Discussion: Iterative

vs. Recursive Query

Master/Directory

K14 NS

11/30/15

N1 N2

- Recursive Query:
- Advantages:

Viaster/Directory

N3 +—-===———__ E 14 NS
V14 ~
w S~ 9@{
N7
\\’f’«/
lterative AN

SENA

N1 N2 N50

» Faster, as typically master/directory closer to nodes
» Easier to maintain consistency, as master/directory can

serialize puts()/gets()

- Disadvantages: scalability bottleneck, as all "Values” go

through master/directory

- Iterative Query
- Advantages: more scalable

- Disadvantages: slower, harder to enforce data consistency

Kubiatowicz €S162 ©UCB Fall 2015
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Fault Tolerance

- Replicate value on several nodes

- Usually, place replicas on different racks in a datacenter
to guard against rack failures

Master/Directory

! " 5 N2
N1, N3 «---oooocco 14 [N1,N3

~.. Dy K105 IN50
S f(/\'74 V AMAVIo R[N [elV
put(K14 V14) ~q
------------ )/\/7
K14 | V1 KO VO K14 | V1 K105 V10
N, N, N3 Nso
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Fault Tolerance

- Again, we can have
- Recursive replication (previous slide)

- I'terative replication (this slide)
Master/Directory

" 5 N2
N1, N3 «---oooocco 14 [N1,N3
5

" S~ K1 N50
N —
" RN /2
N ~Jlgq
N AR
Q 4 S
K14 | V1 Ko |Vo K14 | V1 K100 V10
N, N, Ns N5
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Fault Tolerance

- Or we can use recursive query and iterative
replication...

Master/Directory

PUL(K14, V14) ~-=--emeemee » 5 N2
14 [N1,N3
" Kio5INs0
VAR T AR
oA T Q(\’\b““
——————— \ ///
4 - -7 T Q:)////
SEEAA K5 [V5 SEEAA KT05 V10
N1 N2 N3 N50
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Scalability

- Storage: use more nodes

* Number of requests:

- Can serve requests from all nodes on which a value is
stored in parallel

- Master can replicate a popular value on more nodes

- Master/directory scalability:
- Replicate it

- Partition it, so different keys are served by
different masters/directories

» How do you partition?
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Scalability: Load Balancing

- Directory keeps track of the storage availability at each
node

- Preferentially insert new values on nodes with more storage
available

- What happens when a new node is added?
- Cannot insert only new values on new node. Why?
- Move values from the heavy loaded nodes to the new node

- What happens when a node fails?
- Need to replicate values from fail node to other nodes
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Consistency

- Need to make sure that a value is replicated correctly

- How do you know a value has been replicated on every
node?

- Wait for acknowledgements from every node
- What happens if a node fails during replication?
- Pick another node and try again
- What happens if a node is slow?
- Slow down the entire put()? Pick another node?
- In general, with multiple replicas
- Slow puts and fast gets
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Consistency (cont'd)

If concurrent updates (i.e

put(K14, V14’) -

put(K14, V14”)

, puts to same key)

may need to make sure that updates happen in
the same order

Master/Directory

put(K14, V14’) and put(K14, V14”)
reach N1 and N3 in reverse order

E K5 [N2  What does get(K14) return?
14 [N1,N3

 Undefined!
105 IN50
) R o R
N T VR R
) R \ /“\
QB A
»\bm s )\bm -7 \ > >
Q(‘ Q(‘ ’ Vel &
Q’/ \\ ;_\\ ‘P-»
) . P
K14 V14 K5 [V5 K14 V14 K105 V10
N, N
11/30/15

3 N50
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Consistency (cont'd)

- Large variety of consistency models:

- Atomic consistency (linearizability): reads/writes (gets/puts) to
replicas appear as if there was a single underlying replica
(single system image)

» Think “"one updated at a time"

» Transactions

- Eventual consistency: given enough time all updates will
propagate through the system

» One of the weakest form of consistency. used by many systems
in practice

- And many others: causal consistency, sequential consistency,
strong consistency, ..
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Quorum Consensus

- Improve put() and get() operation performance

- Define a replica set of size N

- put() waits for acknowledgements from at least W
replicas

- get() waits for responses from at least R replicas
- W+R > N

- Why does it work?

- There is at least one node that contains the update

- Why might you use W+R > N+1?
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Quorum Consensus Example

N=3, W=2, R=2
Replica set for K14: {N1, N3, N4}
Assume put() on N3 fails

A: \ \O
- : N \\9"
> : ‘\ \ L
’\® I \ ’7 \\ﬁ
A/,/ < : \\ O \\ g
\b,‘?’c)l‘/ NZ \NT N 2
C)\%lj, ?:/ "\5'/: R \\\/;
Q// ,/// Q_: \\\ \\'/
‘,/ e 5 ‘\‘ \\_<
K14 | V1 K14 [V1

N, N, N, N,
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Quorum Consensus Example

- Now, issuing get() to any two nodes out of three will
return the answer

’\b‘\/l,/ I%ﬁ |
, -~ 3
Q‘)&j‘;@\?‘/ =
QT N
K14 [ V1 K14 [ V1
N, N, N, N,
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Scaling Up Directory

- Challenge:

- Directory contains a number of entries equal to number
of (key, value) tuples in the system

- Can be tens or hundreds of billions of entries in the
system!

- Solution: consistent hashing

- Associate to each node a unique id in an uni-
dimensional space O..2m-1

- Partition this space across m machines

- Assume keys are in same uni-dimensional space

- Each (Key, Value) is stored at the node with the
smallest ID larger than Key
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Key to Node Mapping Example

m=6 > ID space: 0..63
Node 8 maps keys [5,8]

Node 15 maps keys [9,15] |
Node 20 maps keys [16, 20}

Node 4 maps keys [59, 4] |
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Lookup in Chord-like system (with Leaf Set)

- Assign IDs to nodes Source

- Map hash values to
node with closest ID

- Leaf set is successors
and predecessors

- All that's needed for 110--
correctness

- Routing table matches
successively longer
prefixes

- Allows efficient lookups

- Data Replication:

- On leaf set Lookup ID
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DynamoDB Example: Service Level Agreements (SLA)

- Application can deliver its

Client Recuests
functionality in a bounded time: J )

- Every dependency in the T
platform needs to deliver its R Y e
functionality with even tighter S~
bounds . Request Runlng ]

- Example: service guaranteeing h\ Gy g
that it will provide a response [ o
Within 300ms for' 99.9% Of its | ///,,/' //’/, \\\\\ \-\\\ Sevices
requests for a peak client load R “l 6 ‘;I;-Jf;;..,.l
of 500 requests per second j gl ] l

: : -6 g R’ .

- Contrast to services which u- Yy @7 ‘m -

focus on mean response time Mag/ Yoo
_Dynama instances Cther datzstores

Service-oriented architecture of

Amazon's platform
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Summary (1/2)

Distributed File System:
- Transparent access to files stored on a remote disk
- Caching for performance

Cache Consistency: Keeping client caches consistent with one
another

- If multiple clients, some reading and some writing, how do stale
cached copies get updated?

- NFS: check periodically for changes

- AFS: clients register callbacks to be notified by server of
changes

Remote Procedure Call (RPC): Call procedure on remote machine
- Provides same interface as procedure
- Automatic packing and unpacking of arguments (in stub)

VFS: Virtual File System layer

- Provides mechanism which gives same system call interface for
different types of file systems
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Summary (2/2)

- Key-Value Store:
- Two operations
» put(key, value)
» value = get(key)
- Challenges
» Fault Tolerance > replication

» Scalability > serve get()'s in parallel; replicate/cache hot
tuples

» Consistency - quorum consensus to improve put()
performance
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