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Network-Attached Storage and the CAP Theorem

• Consistency:  
– Changes appear to everyone in the same serial order 

• Availability: 
– Can get a result at any time 

• Partition-Tolerance 
– System continues to work even when network becomes partitioned 

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: 
Cannot have all three at same time 
– Otherwise known as “Brewer’s Theorem”

Network



11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 3

mount 
coeus:/sue

mount 
kubi:/prog

mount 
kubi:/jane

Distributed File Systems

• Distributed File System:  
– Transparent access to files stored on a remote disk 

• Naming choices (always an issue): 
– Hostname:localname: Name files explicitly 

» No location or migration transparency 
– Mounting of remote file systems 

» System manager mounts remote file system 
by giving name and local mount point 

» Transparent to user: all reads and writes  
look like local reads and writes to user  
e.g. /users/sue/foo→/sue/foo on server 

– A single, global name space: every file  
in the world has unique name 

» Location Transparency: servers  
can change and files can move  
without involving user

Network
Read File

Data
Client Server
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Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server 
– Use Remote Procedure Calls (RPC) to translate file system calls into 
remote requests  

– No local caching/can be caching at server-side 
• Advantage: Server provides completely consistent view of file 

system to multiple clients 
• Problems?  Performance! 

– Going over network is slower than going to local memory 
– Lots of network traffic/not well pipelined 
– Server can be a bottleneck

Client

Server

Read (RPC)
Return (Data)

Client

Write
 (RP

C)

ACK

cache
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Server cache
F1:V1F1:V2

Use of caching to reduce network load

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

• Idea: Use caching to reduce network load 
– In practice: use buffer cache at source and destination 

• Advantage: if open/read/write/close can be done locally, don’t 
need to do any network traffic…fast! 

• Problems:  
– Failure: 

» Client caches have data not committed at server 
– Cache consistency! 

» Client caches not consistent with server/each other

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Crash!Crash!
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Failures

• What if server crashes? Can client wait until server comes 
back up and continue as before? 
– Any data in server memory but not on disk can be lost 
– Shared state across RPC: What if server crashes after seek? 
Then, when client does “read”, it will fail 

– Message retries: suppose server crashes after it does UNIX 
“rm foo”, but before acknowledgment? 

» Message system will retry: send it again 
» How does it know not to delete it again? (could solve with two-

phase commit protocol, but NFS takes a more ad hoc approach) 
• Stateless protocol: A protocol in which all information 

required to process a request is passed with request 
– Server keeps no state about client, except as hints to help 
improve performance (e.g. a cache) 

– Thus, if server crashes and restarted, requests can continue 
where left off (in many cases) 

• What if client crashes? 
– Might lose modified data in client cache

Crash!
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Network File System (NFS)
• Three Layers for NFS system 

– UNIX file-system interface: open, read, write, close calls + 
file descriptors 

– VFS layer: distinguishes local from remote files 
» Calls the NFS protocol procedures for remote requests 

– NFS service layer: bottom layer of the architecture 
» Implements the NFS protocol 

• NFS Protocol: RPC for file operations on server 
– Reading/searching a directory  
– manipulating links and directories  
– accessing file attributes/reading and writing files 

• Write-through caching: Modified data committed to 
server’s disk before results are returned to the client  
– lose some of the advantages of caching 
– time to perform write() can be long 
– Need some mechanism for readers to eventually notice 
changes! (more on this later)
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NFS Continued
• NFS servers are stateless; each request provides all arguments 

require for execution 
– E.g. reads include information for entire operation, such as 
ReadAt(inumber,position), not Read(openfile) 

– No need to perform network open() or close() on file – each 
operation stands on its own 

• Idempotent: Performing requests multiple times has same effect 
as performing it exactly once 

– Example: Server crashes between disk I/O and message send, client 
resend read, server does operation again 

– Example: Read and write file blocks: just re-read or re-write file 
block – no side effects 

– Example: What about “remove”?  NFS does operation twice and 
second time returns an advisory error  

• Failure Model: Transparent to client system 
– Is this a good idea?  What if you are in the middle of reading a file 
and server crashes?  

– Options (NFS Provides both): 
» Hang until server comes back up (next week?) 
» Return an error. (Of course, most applications don’t know they are 

talking over network)
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• NFS protocol: weak consistency 
– Client polls server periodically to check for changes 

» Polls server if data hasn’t been checked in last 3-30 seconds 
(exact timeout it tunable parameter). 

» Thus, when file is changed on one client, server is notified, but 
other clients use old version of file until timeout. 

– What if multiple clients write to same file?  
» In NFS, can get either version (or parts of both) 
» Completely arbitrary!

cache
F1:V2

Server
Write

 (RP
C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)
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• What sort of cache coherence might we expect? 
– i.e. what if one CPU changes file, and before it’s done, another 
CPU reads file? 

• Example: Start with file contents = “A” 

• What would we actually want? 
– Assume we want distributed system to behave exactly the same as 
if all processes are running on single system 

» If read finishes before write starts, get old copy 
» If read starts after write finishes, get new copy 
» Otherwise, get either new or old copy 

– For NFS: 
» If read starts more than 30 seconds after write, get new copy; 

otherwise, could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time
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NFS Pros and Cons

• NFS Pros: 
– Simple, Highly portable 

• NFS Cons: 
– Sometimes inconsistent! 
– Doesn’t scale to large # clients 

» Must keep checking to see if caches out of date 
» Server becomes bottleneck due to polling traffic
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Andrew File System

• Andrew File System (AFS, late 80’s) → DCE DFS (commercial 
product) 

• Callbacks: Server records who has copy of file 
– On changes, server immediately tells all with old copy 
– No polling bandwidth (continuous checking) needed 

• Write through on close 
– Changes not propagated to server until close() 
– Session semantics: updates visible to other clients only after the 
file is closed 

» As a result, do not get partial writes: all or nothing! 
» Although, for processes on local machine, updates visible immediately 

to other programs who have file open 

• In AFS, everyone who has file open sees old version 
– Don’t get newer versions until reopen file
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Andrew File System (con’t)
• Data cached on local disk of client as well as memory 

– On open with a cache miss (file not on local disk): 
» Get file from server, set up callback with server  

– On write followed by close: 
» Send copy to server; tells all clients with copies to fetch new 

version from server on next open (using callbacks) 
• What if server crashes? Lose all callback state! 

– Reconstruct callback information from client: go ask 
everyone “who has which files cached?” 

• AFS Pro: Relative to NFS, less server load: 
– Disk as cache ⇒ more files can be cached locally 
– Callbacks ⇒ server not involved if file is read-only 

• For both AFS and NFS: central server is bottleneck! 
– Performance: all writes→server, cache misses→server 
– Availability: Server is single point of failure 
– Cost: server machine’s high cost relative to workstation
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Implementation of NFS
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Enabling Factor: Virtual Filesystem (VFS)

• VFS: Virtual abstraction similar to local file system 
– Provides virtual superblocks, inodes, files, etc 
– Compatible with a variety of local and remote file systems 

» provides object-oriented way of implementing file systems 
• VFS allows the same system call interface (the API) to be used for 

different types of file systems 
– The API is to the VFS interface, rather than any specific type of 
file system 

• In linux, “VFS” stands for “Virtual Filesystem Switch”
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Key Value Storage

• Handle huge volumes of data, e.g., PBs 
– Store (key, value) tuples 

• Simple interface 
– put(key, value); // insert/write “value” associated 
with “key” 

– value = get(key); // get/read data associated with 
“key” 

• Used sometimes as a simpler but more scalable 
“database”
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• Amazon: 
– Key: customerID 
– Value: customer profile (e.g., buying history, credit 
card, ..) 

• Facebook, Twitter: 
– Key: UserID  
– Value: user profile (e.g., posting history, photos, 
friends, …) 

    
• iCloud/iTunes: 

– Key: Movie/song name 
– Value: Movie, Song

Key Values: Examples 
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Key-value storage systems in real life

• Amazon 
– DynamoDB: internal key value store used to power Amazon.com 

(shopping cart) 
– Simple Storage System (S3) 

• BigTable/HBase/Hypertable: distributed, scalable data storage 

• Cassandra: “distributed data management system” (developed by 
Facebook) 

• Memcached: in-memory key-value store for small chunks of 
arbitrary data (strings, objects)  

• eDonkey/eMule: peer-to-peer sharing system 

• …
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Key Value Store

• Also called Distributed Hash Tables (DHT) 
• Main idea: partition set of key-values across many 

machines
key, value

…
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Challenges

• Fault Tolerance: handle machine failures without 
losing data  and without degradation in performance 

• Scalability:  
– Need to scale to thousands of machines  
– Need to allow easy addition of new machines 

• Consistency: maintain data consistency in face of 
node failures and message losses  

• Heterogeneity (if deployed as peer-to-peer 
systems): 
– Latency: 1ms to 1000ms 
– Bandwidth: 32Kb/s to 100Mb/s

…



11/30/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Key Questions

• put(key, value): where do you store a new  
(key, value) tuple? 

• get(key): where is the value associated with a given 
“key” stored? 

• And, do the above while providing  
– Fault Tolerance 
– Scalability 
– Consistency
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Directory-Based Architecture

• Have a node maintain the mapping between keys 
and the machines (nodes) that store the values 
associated with the keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

put(K14, V14)

pu
t(K

14
, V

14
)
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Directory-Based Architecture

• Have a node maintain the mapping between keys and the 
machines (nodes) that store the values associated with the 
keys

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14
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Directory-Based Architecture

• Having the master relay the requests ! recursive query 
• Another method: iterative query (this slide) 

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

N3
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Directory-Based Architecture

• Having the master relay the requests ! recursive query 
• Another method: iterative query 

– Return node to requester and let requester contact node

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N3

K105 N50

Master/Directory
get(K14)

get(K14)

V14
N3
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Discussion: Iterative vs. Recursive Query

• Recursive Query: 
– Advantages:  

» Faster, as typically master/directory closer to nodes 
» Easier to maintain consistency, as master/directory can 

serialize puts()/gets() 
– Disadvantages: scalability bottleneck, as all “Values” go 

through  master/directory 
• Iterative Query 

– Advantages: more scalable 
– Disadvantages: slower, harder to enforce data consistency

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory

get(K14)

ge
t(K

14
)

V1
4

V14

…

N1 N2 N3 N50

K14 V14

K14 N3

Master/Directory
get(K14)

get(K14)

V14
N3

Recursive Iterative
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Fault Tolerance

• Replicate value on several nodes 
• Usually, place replicas on different racks in a datacenter 

to guard against rack failures

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14), N1

N1, N3

K14 V14

put(K14, V14)
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Fault Tolerance

• Again, we can have  
– Recursive replication (previous slide) 
– Iterative replication (this slide)

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

N1, N3

K14 V14

pu
t(K

14
, V

14
)
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Fault Tolerance

• Or we can use recursive query and iterative 
replication…

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 

K105 N50

Master/Directory
put(K14, V14)

put(K14, V14)

K14 V14

put(K14, V14)
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Scalability

• Storage: use more nodes 

• Number of requests:  
– Can serve requests from all nodes on which a value is 
stored in parallel 

– Master can replicate a popular value on more nodes 

• Master/directory scalability: 
– Replicate it 
– Partition it, so different keys are served by 
different masters/directories 

» How do you partition? 
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Scalability: Load Balancing

• Directory keeps track of the storage availability at each 
node 
– Preferentially insert new values on nodes with more storage 
available 

• What happens when a new node is added? 
– Cannot insert only new values on new node. Why? 
– Move values from the heavy loaded nodes to the new node 

• What happens when a node fails? 
– Need to replicate values from fail node to other nodes
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Consistency

• Need to make sure that a value is replicated correctly 
• How do you know a value has been replicated on every 

node?  
– Wait for acknowledgements from every node 

• What happens if a node fails during replication? 
– Pick another node and try again 

• What happens if a node is slow? 
– Slow down the entire put()? Pick another node? 

• In general, with multiple replicas 
– Slow puts and fast gets
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Consistency (cont’d)

• If concurrent updates (i.e., puts to same key) 
may need to make sure that updates happen in 
the same order 

…

N1 N2 N3 N50

K5 V5 K14 V14 K105 V105

K5 N2
K14 N1,N3 
K105 N50

Master/Directory
put(K14, V14’)

put(K14, V14’)

K14 V14

put(K14, V14’’)

put(K14, V14’’)

put(K14, V14’)

put(K14, V14’')

K14 V14’’K14 V14’

• put(K14, V14’) and put(K14, V14’’) 
reach N1 and N3 in reverse  order

• What does get(K14) return?
• Undefined!
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Consistency (cont’d)

• Large variety of consistency models: 
– Atomic consistency (linearizability): reads/writes (gets/puts) to 
replicas appear as if there was a single underlying replica 
(single system image) 

» Think “one updated at a time” 
» Transactions 

– Eventual consistency: given enough time all updates will 
propagate through the system 

» One of the weakest form of consistency; used by many systems 
in practice 

– And many others: causal consistency, sequential consistency, 
strong consistency, …
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Quorum Consensus

• Improve put() and get() operation performance 

• Define a replica set of size N 
– put() waits for acknowledgements from at least W 
replicas 

– get() waits for responses from at least R replicas 
– W+R > N 

• Why does it work? 
– There is at least one node that contains the update 

• Why might you use W+R > N+1? 
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Quorum Consensus Example

• N=3, W=2, R=2 
• Replica set for K14: {N1, N3, N4} 
• Assume put() on N3 fails

N1 N2 N3 N4

K14 V14K14 V14

pu
t(K

14
, V

14
)

ACK

put(K14, V14)pu
t(K

14
, V

14
)

ACK
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Quorum Consensus Example

• Now, issuing get() to any two nodes out of three will 
return the answer

N1 N2 N3 N4

K14 V14K14 V14

ge
t(K

14
)

V14

get(K14)

nill
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Scaling Up Directory

• Challenge: 
– Directory contains a number of entries equal to number 
of (key, value) tuples in the system 

– Can be tens or hundreds of billions of entries in the 
system! 

• Solution: consistent hashing 
• Associate to each node a unique id in an uni-

dimensional space 0..2m-1 
– Partition this space across m machines 
– Assume keys are in same uni-dimensional space 
– Each (Key, Value) is stored at the node with the 
smallest ID larger than Key
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Key to Node Mapping Example

• m = 6 ! ID space: 0..63  
• Node  8 maps keys [5,8] 
• Node 15 maps keys [9,15] 
• Node 20 maps keys [16, 20] 
• … 
• Node 4 maps keys [59, 4]

4

20

3235

8

15

44

58

14 V14

63 0
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Lookup in Chord-like system (with Leaf Set)

0…

10…

110…

111…

Lookup ID

Source

Response

• Assign IDs to nodes 
– Map hash values to 
node with closest ID 

• Leaf set is successors 
and predecessors 
– All that’s needed for 
correctness 

• Routing table matches 
successively longer 
prefixes 
– Allows efficient lookups 

• Data Replication: 
– On leaf set
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DynamoDB Example: Service Level Agreements (SLA)

• Application can deliver its 
functionality in a bounded time:  
– Every dependency in the 

platform needs to deliver its 
functionality with even tighter 
bounds. 

• Example: service guaranteeing 
that it will provide a response 
within 300ms for 99.9% of its 
requests for a peak client load 
of 500 requests per second 

• Contrast to services which 
focus on mean response time

Service-oriented architecture of  
Amazon’s platform
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Summary (1/2)
• Distributed File System:  

– Transparent access to files stored on a remote disk 
– Caching for performance 

• Cache Consistency: Keeping client caches consistent with one 
another 
– If multiple clients, some reading and some writing, how do stale 
cached copies get updated? 

– NFS: check periodically for changes 
– AFS: clients register callbacks to be notified by server of 
changes 

• Remote Procedure Call (RPC): Call procedure on remote machine 
– Provides same interface as procedure 
– Automatic packing and unpacking of arguments (in stub) 

• VFS: Virtual File System layer 
– Provides mechanism which gives same system call interface for 
different types of file systems
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Summary (2/2)

• Key-Value Store: 
– Two operations 

» put(key, value) 
» value = get(key) 

– Challenges 
» Fault Tolerance ! replication 
» Scalability ! serve get()’s in parallel; replicate/cache hot 

tuples 
» Consistency ! quorum consensus to improve put() 

performance


