CS162
Operating Systems and
Systems Programming
Lecture 21

Distributed Decision Making,
TCP/IP and Sockets

November 16th, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Next Objective

3
0\&\ Fwe Y%%f
%

%
-
&

F

‘D -~
O intro \¥

()
- A

- %) oV
%?@ . ¢ LauaW &

ress
pad spao

—~
2,

4
&

=

&

i
&

10/5/15 Kubiatowicz €S162 ©UCB Fall 2015

Client/Server Model
Peer-to-Peer Model

- Centralized System: System in which major functions are
performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
- Distributed System: physically separate computers working
together on some task

- Early model: multiple servers working together
» Probably in the same room or building
» Often called a "cluster”

- Later models: peer-to-peer/wide-spread collaboration
11/9/15 Kubiatowicz €S162 ©®UCB Fall 2015 3

Distributed Systems: Motivation/Issues

Why do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through network
resources (such as network file systems)
The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
Reality has been disappointing

- Worse availability: depend on every machine being up
» Lamport: "a distributed system is one where I can't do work because
some machine I've never heard of isn't working!”

- Worse reliability: can lose data if any machine crashes
- Worse security: anyone in world can break into system
Coordination is more difficult
- Must coordinate multiple copies of shared state information (using only
a network)

- What would be easy in a centralized system becomes a lot more
difficult

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 4

Recall: Distributed Systems: Goals/Requirements

- Transparency: the ability of the system to mask its
complexity behind a simple interface

- Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting them
into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system
- Transparency and collaboration require some way for
different processors to communicate with one another

11/16/15

Networking Definitions

- Network: physical connection that allows two computers
to communicate

* Packet: unit of transfer, sequence of bits carried over
the network
- Network carries packets from one CPU to another
- Destination gets interrupt when packet arrives

- Protocol: agreement between two parties as to how
information is to be transmitted

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 6

Recall: Use of TCP: Sockets

- Socket: an abstraction of a network I/O queue

- Embodies one side of a communication channel
» Same interface regardless of location of other end
» Could be local machine (called "UNIX socket”) or remote machine
(called "network socket”)
- First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket

- Using Sockets for Client-Server (C/C++ interface):

- On server: set up "server-socket”
» Create socket, Bind to protocol (TCP), local address, port
» Call listen(): tells server socket to accept incoming requests

» Perform multiple accept() calls on socket to accept incoming
connection request

» Each successful accept() returns a new socket for a new
connection; can pass this off to handler thread

- On client:
» Create socket, Bind to protocol (TCP), remote address, port
» Perform connect() on socket to make connection
» If connect() successful, have socket connected to server

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 7

Recall: Socket Setup over TCP/IP

Server
Socket

new
ocket

Client

- Server Socket: Listens for new connections
- Produces new sockets for each unique connection

- Things to remember:

- Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]
- Often, Client Port "randomly” assigned
» Done by OS during client socket setup

- Server Port often "well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc

» Well-known ports from 0—1023
11/16/15 Kubiatowicz €S162 ©UCB Fall 2015

Distributed Applications

- How do you actually program a distributed application?

- Need to synchronize multiple threads, running on different
machines
» No shared memory, so cannot use test&set

- One Abstraction: send/receive messages
» Already atomic: no receiver gets portion of a message and two
receivers cannot get same message

- Interface:

- Mailbox (mbox): temporary holding area for messages

» Includes both destination location and queue
— Send (message ,mbox)

» Send message to remote mailbox identified by mbox
— Receive (buffer,mbox)

» Wait until mbox has message, copy into buffer, and return
» If threads sleeping on this mbox, wake up one of them

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015

Using Messages: Send/Receive behavior

- When should send (message,mbox) return?
- When receiver gets message? (i.e. ack received)
- When message is safely buffered on destination?
- Right away, if message is buffered on source node?

- Actually two questions here:

- When can the sender be sure that receiver actually
received the message?

- When can sender reuse the memory containing message?

* Mailbox provides 1-way communication from T1—-T2
- T1—buffer—T2

- Very similar to producer/consumer
» However, can't tell if sender/receiver is local or not!

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 10

Messaging for Producer-Consumer Style

- Using send/receive for producer-consumer style:

Producer:
int msgl[1000]; Send
while (1) {
prepare message; Message

send (msgl ,mbox) ;
}

Consumer:
int buffer[1000];

while (1) { :
receive (buffer,mbox) ; Receive
process message;, MeSSO e

}

 No need for producer/consumer to keep track of space
in mailbox: handled by send/receive

- TCP manages the size of buffer on far end
- Restricts sender to forward only what will fit in buffer

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 11

Messaging for Request/Response communication

- What about two-way communication?
- Request/Response
» Read a file stored on a remote machine
» Request a web page from a remote web server
- Also called: client-server
» Client =requester, Server =responder
» Server provides “service” (file storage) to the client

- Example: File service s
Client: (requesting the file) equest
char response[1000]; File

send (“read rutabaga”, server mbox) ;

14

receive (response, client mbox) ; Get

Server: (responding with the file) Response
char command[1000], answer[1000];

_ Receive
receive (command, server mbox) ;

decode command;
read file into answer;
send (answer, client mbox) ;

11/16/15 Kubiatowicz CS16Z ®@UCB Fall 2015 (Response

12

General’'s Paradox

- General's paradox:

- Constraints of problem:
» Two generals, on separate mountains
» Can only communicate via messengers
» Messengers can be captured

- Problem: need to coordinate attack
» If they attack at different times, they all die

» If they attack at same time, they win

- Named after Custer, who died at Little Big Horn because he
arrived a couple of days too early

- Can messages over an unreliable network be used to guarantee
two entities do something simultaneously?
- Remarkably, "no”, even if all messages get throu

"

h

J 1L am ok>
| Yes, 11 works
e
20, 11 jt is?

—
Yoah, but what if you
Don't get this ack?

- No way to be sure last message gets through!
11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 13

Two-Phase Commit

- Since we can't solve the General's Paradox (i.e. simultaneous

action), let's solve a related problem
- Distributed transaction: Two machines agree to do something, or
not do it, atomically
- Two-Phase Commit protocol:
- Persistent stable log on each machine: keep track of whether
commit has happened
» If a machine crashes, when it wakes up it first checks its log to
recover state of world at time of crash
- Prepare Phase:
» The global coordinator requests that all participants will promise to
commit or rollback the transaction
» Participants record promise in log, then acknowledge
» If anyone votes to abort, coordinator writes “Abort” in its log and
tells everyone to abort; each records “Abort” in log
- Commit Phase:
» After all participants respond that they are prepared, then the
coordinator writes “Commit” to its log
» Then asks all nodes to commit; they respond with ack
» After receive acks, coordinator writes “Got Commit” to log
- Log can be used to complete this process such that all machines
either commit or don't commit

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 14

2PC Algorithm

- Developed by Turing award winner Jim Gray (first Berkeley
CS PhD, 1969)

* One coordinator
- N workers (replicas)
- High level algorithm description

- Coordinator asks all workers if they can commit

- If all workers reply "VOTE-COMMIT", then coordinator
broadcasts "GLOBAL-COMMIT",

Otherwise coordinator broadcasts "GLOBAL-ABORT"
- Workers obey the GLOBAL messages

- Use a persistent, stable log on each machine to keep track
of what you are doing

- If a machine crashes, when it wakes up it first checks its log

to recover state of world at time of crash
11/16/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Detailed Algorithm
Coordinator Algorithm Worker Algorithm

Coordinator sends VOTE-REQ to all
workers

— Wait for VOTE-REQ from
coordinator

— If ready, send VOTE-COMMIT to
/| coordinator

. — If not ready, send VOTE-ABORT to

N workers, send GLOBAL-COMMIT

— And immediately abort

to all workers

— |If doesn’t receive VOTE-COMMIT
from all N workers, send GLOBAL-

ABORT to all workers — If receive GLOBAL-COMMIT then
commit

— |If receive GLOBAL-ABORT then
abort

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 16

Failure Free Example Execution

coordinator

>
VOTE- GLOBAL-
worker 1 REQ COMMIT >
worker 2 \\ / / \\ §
VOTE-
worker 3 COMMIT §

time

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 17

State Machine of Coordinator

- Coordinator implements simple state machine:

[INIT]

Recv: START
| Send: VOTE-REQ

[WAIT]
Recv: VOTE-ABORT Recv: all VOTE-COMMIT
Send: GLOBAL-ABOR Send: GLOBAL-COMMIT

[ABORT] [COMMIT]

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 18

11/16/15

State Machine of Workers

[INIT]

Recv: VOTE-REQ
Send: VOTE-ABO

Recv: VOTE-REQ

| Send: VOTE COMMIT

READY

Recv GLOI}/)/ }eﬂv GLOBAL-COMMIT

‘ ABORT \

COMMIT]

Kubiatowicz €S162 ©UCB Fall 2015 19

Dealing with Worker Failures

- How to deal with worker failures?

- Failure only affects states in which the node is
waiting for messages

- Coordinator only waits for votes in "WAIT" state
- In WAIT, if doesn't receive

- N votes, it times out and sends

- GLOBAL-ABORT [INIT]

Recv: START
' Send: VOTE-REQ

[W,;\IT]

Recv: VOTE-ABORT Recv: VOTE-COMMIT
Send: GLOBAL- nd: GLOBAL-
ABORT [

ABORT] COMMIT

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 20

Example of Worker Failure

INIT

~—

wlilT

coordinator ABORT] (comm] timeout

GLOBAL-
VOTE-REQ ABORT
worker
1
VOTE-
worker COMMIT

2
X
worker) _ time

3

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 21

Dealing with Coordinator Failure

- How to deal with coordinator failures?

- worker waits for VOTE-REQ in INIT
» Worker can time out and abort (coordinator handles it)

- worker waits for GLOBAL-* message in READY

» If coordinator fails, workers must
BLOCK waiting for coordinator

to recover and send INIT]

GLOBAL_* message Recvi VOTE-REQ /'|pacv: VOTE-REQ
send: VOTE-ABORT send: VOTE-COMMIT

rerov |

Recv: GLOBAL-

ABO -
ABORT COMMIT

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 22

Recv: GLOBAL-

Example of Coordinator Failure #1

! READY |

coordinator S ‘[ABORT COMM

\\\XXOTE- / / /
worker 1 EQ timeout

/ / oTE-
worker 2 timeout ABORT

worker 3 timeout / §

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015

23

Example of Coordinator Failure #2

coordinator restarted

)é» >
\\V°TE' [\\\
worker 1 E
VOTE- GLOBAL-
worker 2 COMMIT BORT

block waiting for
worker 3 coordinator

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 24

Durability

- All nodes use stable storage to store current state

- stable storage is non-volatile storage (e.g. backed by
disk) that guarantees atomic writes.

- Upon recovery, it can restore state and resume:
- Coordinator aborts in INIT, WAIT, or ABORT
- Coordinator commits in COMMIT
- Worker aborts in INIT, ABORT
- Worker commits in COMMIT
- Worker asks Coordinator in READY

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 25

Blocking for Coordinator to Recover

- A worker waiting for global decision can ask
fellow workers about their state

- If another worker is in ABORT or [T]
COMMIT state then coordinator
must have sent GLOBAL-* Recv: VOTE-REQ /|Recy: VOTE-REQ
Send: VOTE-ABORT|send: VOTE-COMMIT

» Thus, worker can safely
abort or commit, respectively

- If another worker is still in
INIT state then both workers
can decide to abort

- If all workers are in ready,
need to BLOCK (don't know if coordinator wanted
to abort or commit)

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 26

Distributed Decision Making Discussion

- Why is distributed decision making desirable?
- Fault Tolerancel!
- A group of machines can come to a decision even if one or more
of them fail during the process
- After decision made, result recorded in multiple places

* Undesirable feature of Two-Phase Commit: Blocking
- One machine can be stalled until another site recovers:
» Site B writes “prepared to commit” record to its log, sends a
“yes"” vote to the coordinator (site A) and crashes
» Site A crashes
» Site B wakes up, check its log, and realizes that it has voted
“yes” on the update. It sends a message to site A asking what
happened. At this point, B cannot decide to abort, because
update may have committed
» B is blocked until A comes back
- A blocked site holds resources (locks on updated items, pages

pinned in memory, etc) until learns fate of update
- PAXOS: An alternative used by GOOGLE and others that
does not have this blocking problem
- What happens if one or more of the nodes is malicious?

11/1614alicious: attempting to compromise the decision making

Byzantine General's Problem

‘N

tacky
Retreat!

\ Lieutenant

Malicious! Lieutenant
- Byazantine General's Problem (n players):
- One General
- n-1 Lieutenants
- Some number of these (f) can be insane or malicious
- The commanding general must send an order to his n-1
lieutenants such that:
- All loyal lieutenants obey the same order
- If the commanding general is loyal, then all loyal lieutenants obey
the order he sends

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 28

Byzantine General's Problem (con't)

- Impossibility Results:
- Cannot solve Byzantine General's Problem with n=3 because one
malicious player can mess up things

e &

Retreat! Retreat!
- With f faults, need n > 3f to solve problem

- Various algorithms exist to solve problem
- Original algorithm has #messages exponential in n

- Newer algorithms have message complexity O(n2)
» One from MIT, for instance (Castro and Liskov, 1999)

- Use of BFT (Byzantine Fault Tolerance) algorithm

- Allow multiple machines to make a coordinated decision even if
some subset of them (< n/3) are malicious

OQ0|
Request —> C)C)_> Distributed

‘ Decision

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 29

Remote Procedure Call

- Raw messaging is a bit too low-level for programming
- Must wrap up information info message at source
- Must decide what to do with message at destination
- May need to sit and wait for multiple messages to arrive

- Another option: Remote Procedure Call (RPC)
- Calls a procedure on a remote machine
- Client calls:
remoteFileSystem—Read (“rutabaga”) ;
- Translated automatically into call on server:
fileSys—Read (“rutabaga”) ;
- Implementation:
- Request-response message passing (under coversl)

- "Stub” provides glue on client/server

» Client stub is responsible for "marshalling” arguments and
“unmarshalling” the return values

» Server-side stub is responsible for “"unmarshalling” arguments and
“marshalling” the return values.
* Marshalling involves (depending on system)

- Converting values to a canonical form, serializing objects, copying
arguments passed by reference, etc.

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 30

RPC Information Flow

bundle
Qrgs
Client |—=<all __ client |—send _lpacket
(caller) [Stub [: Handler
return receive
unbundle mbo
Machine A . ret vals
Machine B bundle
rl

box1
Server |—return

(callee)l*

»|Packet
Handler

call receive
unbundle
args
11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 31

RPC Details

- Equivalence with regular procedure call
- Parameters < Request Message
- Result < Reply message
- Name of Procedure: Passed in request message
- Return Address: mbox2 (client return mail box)
- Stub generator: Compiler that generates stubs
- Input: interface definitions in an “interface definition language
IDL)"
(» C)on'rains, among other things, types of arguments/return
- Output: stub code in the appropriate source language
» Code for client to pack message, send it off, wait for result,
unpack result and return to caller
» Code for server to unpack message, call procedure, pack results,
send them off

- Cross-platform issues:
- What if client/server machines are different architectures or in
different languages?
» Convert everything to/from some canonical form

» Tag every item with an indication of how it is encoded (avoids
unnecessary conversions).

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 32

RPC Details (continued)

- How does client know which mbox to send to?
- Need to translate name of remote service into network endpoint
(Remote machine, port, possibly other info)
- Binding: the process of converting a user-visible name into a
network endpoint
» This is another word for “"naming” at network level
» Static: fixed at compile time
» Dynamic: performed at runtime
- Dynamic Binding
- Most RPC systems use dynamic binding via name service
» Name service provides dynamic translation of service—mbox
- Why dynamic binding?
» Access control: check who is permitted to access service
» Fail-over: If server fails, use a different one
- What if there are multiple servers?
- Could give flexibility at binding time
» Choose unloaded server for each new client
- Could provide same mbox (router level redirect)

» Choose unloaded server for each new request
» Only works if no state carried from one call to next

- What if multiple clients?

- Pass pointer to clican'r-s‘PicacQ;ilc:6 retuen cmlggi% in request

11/16/15 Kubiatowicz 33

Problems with RPC

* Non-Atomic failures
- Different failure modes in distributed system than on a single
machine

- Consider many different types of failures
» User-level bug causes address space to crash

» Machine failure, kernel bug causes all processes on same machine
to fail
» Some machine is compromised by malicious party

- Before RPC: whole system would crash/die

- After RPC: One machine crashes/compromised while others keep
working

- Can easily result in inconsistent view of the world
» Did my cached data get written back or not?
» Did server do what I requested or not?

- Answer? Distributed transactions/Byzantine Commit
* Performance
- Cost of Procedure call « same-machine RPC « network RPC
- Means programmers must be aware that RPC is not free
» Caching can help, but may make failure handling complex

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 34

Cross-Domain Communication/Location Transparency

- How do address spaces communicate with one another?
- Shared Memory with Semaphores, monitors, etc...
- File System
- Pipes (1-way communication)
- "Remote” procedure call (2-way communication)

- RPC's can be used to communicate between address spaces
on different machines or the same machine

- Services can be run wherever it's most appropriate
- Access to local and remote services looks the same
- Examples of modern RPC systems:
- CORBA (Common Object Request Broker Architecture)
- DCOM (Distributed COM)
- RMI (Java Remote Method Invocation)

11/16/15 Kubiatowicz €S162 ©UCB Fall 2015 35

Microkernel operating systems

- Example: split kernel into application-level servers.

- File system looks remote, even though on same machine

App | [App | |APP

file system \windowing

VM Networking
Threads

Monolithic Structure

File || .
App windows
YA
RPC address
spaces
threads

Microkernel Structure

- Why split the OS into separate domains?

- Fault isolation: bugs are more isolated (build a firewall)

- Enforces modularity: allows incremental upgrades of pieces of

software (client or server)

- Location transparent: service can be local or remote
» For example in the X windowing system: Each X client can be on a

separate machine from X server; Neither has to run on the

machine with the frame buffer.
11/16/15 Kubiatowicz €S162 ©UCB Fall 2015

36

Summary

* Protocol: Agreement between two parties as to how information is to
be transmitted

- Two-phase commit: distributed decision making

- First, make sure everyone guarantees that they will commit if asked
(prepare)
- Next, ask everyone to commit
- Byzantine General's Problem: distributed decision making with malicious
failures

- One general, n-1 lieutenants: some number of them may be malicious
(often “f" of them)

- All non-malicious lieutenants must come to same decision
- If general not malicious, lieutenants must follow general
- Only solvable if n = 3f+1

- Remote Procedure Call (RPC): Call procedure on remote machine
- Provides same interface as procedure

- Automatic packing and unpacking of arguments without user programming
(in stub)
11/16/15 Kubiatowicz €5162 ©UCB Fall 2015 37

