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Next Objective
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Centralized vs Distributed Systems

• Centralized System: System in which major functions are 
performed by a single physical computer 
– Originally, everything on single computer 
– Later: client/server model 

• Distributed System: physically separate computers working 
together on some task 
– Early model: multiple servers working together 

» Probably in the same room or building 
» Often called a “cluster” 

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model
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Distributed Systems: Motivation/Issues
• Why do we want distributed systems? 

– Cheaper and easier to build lots of simple computers 
– Easier to add power incrementally 
– Users can have complete control over some components 
– Collaboration: Much easier for users to collaborate through network 
resources (such as network file systems) 

• The promise of distributed systems: 
– Higher availability: one machine goes down, use another 
– Better durability: store data in multiple locations 
– More security: each piece easier to make secure  

• Reality has been disappointing 
– Worse availability: depend on every machine being up 

» Lamport: “a distributed system is one where I can’t do work because 
some machine I’ve never heard of isn’t working!” 

– Worse reliability: can lose data if any machine crashes 
– Worse security: anyone in world can break into system 

• Coordination is more difficult 
– Must coordinate multiple copies of shared state information (using only 
a network) 

– What would be easy in a centralized system becomes a lot more 
difficult



11/16/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Recall: Distributed Systems: Goals/Requirements

• Transparency: the ability of the system to mask its 
complexity behind a simple interface 

• Possible transparencies: 
– Location: Can’t tell where resources are located 
– Migration: Resources may move without the user knowing 
– Replication: Can’t tell how many copies of resource exist 
– Concurrency: Can’t tell how many users there are 
– Parallelism: System may speed up large jobs by spliting them 
into smaller pieces 

– Fault Tolerance: System may hide varoius things that go 
wrong in the system 

• Transparency and collaboration require some way for 
different processors to communicate with one another
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Networking Definitions

• Network: physical connection that allows two computers 
to communicate 

• Packet: unit of transfer, sequence of bits carried over 
the network 
– Network carries packets from one CPU to another 
– Destination gets interrupt when packet arrives 

• Protocol: agreement between two parties as to how 
information is to be transmitted
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Recall: Use of TCP: Sockets
• Socket: an abstraction of a network I/O queue 

– Embodies one side of a communication channel 
» Same interface regardless of location of other end 
» Could be local machine (called “UNIX socket”) or remote machine 

(called “network socket”) 
– First introduced in 4.2 BSD UNIX: big innovation at time 

» Now most operating systems provide some notion of socket 
• Using Sockets for Client-Server (C/C++ interface): 

– On server: set up “server-socket” 
» Create socket, Bind to protocol (TCP), local address, port 
» Call listen(): tells server socket to accept incoming requests 
» Perform multiple accept() calls on socket to accept incoming 

connection request 
» Each successful accept() returns a new socket for a new  

connection; can pass this off to handler thread 
– On client:  

» Create socket, Bind to protocol (TCP), remote address, port 
» Perform connect() on socket to make connection 
» If connect() successful, have socket connected to server
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Server 
Socket

socket socketconnection
Reque

st Co
nnect

ion
new 

socket

ServerClient

Recall: Socket Setup over TCP/IP

• Server Socket: Listens for new connections 
– Produces new sockets for each unique connection 

• Things to remember: 
– Connection involves 5 values: 

[ Client Addr, Client Port, Server Addr, Server Port, Protocol ] 
– Often, Client Port “randomly” assigned 

» Done by OS during client socket setup 
– Server Port often “well known” 

» 80 (web), 443 (secure web), 25 (sendmail), etc 
» Well-known ports from 0—1023 
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Distributed Applications
• How do you actually program a distributed application? 

– Need to synchronize multiple threads, running on different 
machines  

» No shared memory, so cannot use test&set 

– One Abstraction: send/receive messages 
» Already atomic: no receiver gets portion of a message and two 

receivers cannot get same message 
• Interface: 

– Mailbox (mbox): temporary holding area for messages 
» Includes both destination location and queue 

– Send(message,mbox) 
» Send message to remote mailbox identified by mbox 

– Receive(buffer,mbox) 
» Wait until mbox has message, copy into buffer, and return 
» If threads sleeping on this mbox, wake up one of them

Network

Send

Receive
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Using Messages: Send/Receive behavior

• When should send(message,mbox) return? 
– When receiver gets message? (i.e. ack received) 
– When message is safely buffered on destination? 
– Right away, if message is buffered on source node? 

• Actually two questions here: 
– When can the sender be sure that receiver actually 
received the message? 

– When can sender reuse the memory containing message? 
• Mailbox provides 1-way communication from T1→T2 

– T1→buffer→T2 
– Very similar to producer/consumer  

» However, can’t tell if sender/receiver is local or not!
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Messaging for Producer-Consumer Style

• Using send/receive for producer-consumer style: 
  Producer:  
  int msg1[1000];  
  while(1) {  
   prepare message;  
   send(msg1,mbox);  
  } 

  Consumer:  
  int buffer[1000];  
  while(1) {  
   receive(buffer,mbox);  
   process message;  
  } 

• No need for producer/consumer to keep track of space 
in mailbox: handled by send/receive 
– TCP manages the size of buffer on far end 
– Restricts sender to forward only what will fit in buffer

Send 
Message

Receive 
Message
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Messaging for Request/Response communication
• What about two-way communication? 

– Request/Response 
» Read a file stored on a remote machine 
» Request a web page from a remote web server 

– Also called: client-server 
» Client ≡ requester, Server ≡ responder 
» Server provides “service” (file storage) to the client 

• Example: File service 
  Client: (requesting the file)  
  char response[1000];  
 
  send(“read rutabaga”, server_mbox);  
  receive(response, client_mbox);  

  Server: (responding with the file)  
  char command[1000], answer[1000];  
 
  receive(command, server_mbox);  
  decode command;  
  read file into answer;  
  send(answer, client_mbox);

Request 
File

Get  
Response

Receive 
Request

Send 
Response
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• General’s paradox:  
– Constraints of problem:  

» Two generals, on separate mountains 
» Can only communicate via messengers 
» Messengers can be captured 

– Problem: need to coordinate attack 
» If they attack at different times, they all die 
» If they attack at same time, they win 

– Named after Custer, who died at Little Big Horn because he 
arrived a couple of days too early 

• Can messages over an unreliable network be used to guarantee 
two entities do something simultaneously? 
– Remarkably, “no”, even if all messages get through 

– No way to be sure last message gets through!

Yeah, but what if you 

Don’t get this ack?

General’s Paradox

11 am ok?

So, 11 it is?
Yes, 11 works
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Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e. simultaneous 

action), let’s solve a related problem 
– Distributed transaction: Two machines agree to do something, or 
not do it, atomically  

• Two-Phase Commit protocol: 
– Persistent stable log on each machine: keep track of whether 
commit has happened 

» If a machine crashes, when it wakes up it first checks its log to 
recover state of world at time of crash 

– Prepare Phase: 
» The global coordinator requests that all participants will promise to 

commit or rollback the transaction 
» Participants record promise in log, then acknowledge 
» If anyone votes to abort, coordinator writes “Abort” in its log and 

tells everyone to abort; each records “Abort” in log 
– Commit Phase: 

» After all participants respond that they are prepared, then the 
coordinator writes “Commit” to its log 

» Then asks all nodes to commit; they respond with ack 
» After receive acks, coordinator writes “Got Commit” to log 

– Log can be used to complete this process such that all machines 
either commit or don’t commit
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2PC Algorithm

• Developed by Turing award winner Jim Gray (first Berkeley 
CS PhD, 1969) 

• One coordinator  
• N workers (replicas)  
• High level algorithm description 

– Coordinator asks all workers if they can commit 
– If all workers reply “VOTE-COMMIT”, then coordinator 
broadcasts “GLOBAL-COMMIT”,  

 Otherwise coordinator broadcasts “GLOBAL-ABORT” 
– Workers obey the GLOBAL messages 

• Use a persistent, stable log on each machine to keep track 
of what you are doing 
– If a machine crashes, when it wakes up it first checks its log 
to recover state of world at time of crash
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Detailed Algorithm

Coordinator sends VOTE-REQ to all 
workers

– Wait for VOTE-REQ from 
coordinator 

– If ready, send VOTE-COMMIT to 
coordinator 

– If not ready, send VOTE-ABORT to 
coordinator 
– And immediately abort

– If receive VOTE-COMMIT from all 
N workers, send GLOBAL-COMMIT 
to all workers 

– If doesn’t receive VOTE-COMMIT 
from all N workers, send GLOBAL-
ABORT to all workers – If receive GLOBAL-COMMIT then 

commit 
– If receive GLOBAL-ABORT then 

abort

Coordinator Algorithm Worker Algorithm
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Failure Free Example Execution

coordinator

worker 1

time

VOTE-
REQ

VOTE-
COMMIT

GLOBAL-
COMMIT

worker 2

worker 3
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State Machine of Coordinator

• Coordinator implements simple state machine:

INIT

WAIT

ABORT COMMIT

Recv: START 
Send: VOTE-REQ

Recv: VOTE-ABORT 
Send: GLOBAL-ABORT

Recv: all VOTE-COMMIT 
Send: GLOBAL-COMMIT
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State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ 
Send: VOTE-ABORT

Recv: VOTE-REQ 
Send: VOTE-COMMIT

Recv: GLOBAL-
ABORT

Recv: GLOBAL-COMMIT
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Dealing with Worker Failures

• How to deal with worker failures? 
– Failure only affects states in which the node is 
waiting for messages 

– Coordinator only waits for votes in “WAIT” state 
– In WAIT, if doesn’t receive  
–  N votes, it times out and sends 
–  GLOBAL-ABORT INIT

WAIT

ABORT COMMIT

Recv: START 
Send: VOTE-REQ

Recv: VOTE-ABORT 
Send: GLOBAL-
ABORT

Recv: VOTE-COMMIT 
Send: GLOBAL-
COMMIT
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Example of Worker Failure

coordinator

worker 
1

time

VOTE-REQ

VOTE-
COMMIT

GLOBAL-
ABORT

INIT

WAIT

ABORT COMM timeout

worker 
2

worker 
3
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Dealing with Coordinator Failure

• How to deal with coordinator failures? 
– worker waits for VOTE-REQ in INIT 

» Worker can time out and abort (coordinator handles it) 

– worker waits for GLOBAL-* message in READY 
» If coordinator fails, workers must 
 BLOCK waiting for coordinator 
 to recover and send 
 GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ 
Send: VOTE-ABORT

Recv: VOTE-REQ 
Send: VOTE-COMMIT

Recv: GLOBAL-
ABORT

Recv: GLOBAL-
COMMIT
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Example of Coordinator Failure #1

coordinator

worker 1

VOTE-
REQ

VOTE-
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3
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Example of Coordinator Failure #2

VOTE-
REQ

VOTE-
COMMIT

INIT

READY

ABORT COMM

block waiting for 
coordinator

restarted

GLOBAL-
ABORT

coordinator

worker 1

worker 2

worker 3
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Durability

• All nodes use stable storage to store current state 
– stable storage is non-volatile storage (e.g. backed by 
disk) that guarantees atomic writes.  

• Upon recovery, it can restore state and resume: 
– Coordinator aborts in INIT, WAIT, or ABORT 
– Coordinator commits in COMMIT 
– Worker aborts in INIT, ABORT 
– Worker commits in COMMIT 
– Worker asks Coordinator in READY
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Blocking for Coordinator to Recover

• A worker waiting for global decision can ask 
fellow workers about their state 
– If another worker is in ABORT or  
COMMIT state then coordinator  
must have sent GLOBAL-* 

» Thus, worker can safely  
abort or commit, respectively 

– If another worker is still in  
INIT state then both workers  
can decide to abort  

– If all workers are in ready,  
need to BLOCK (don’t know if coordinator wanted 
to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ 
Send: VOTE-ABORT

Recv: VOTE-REQ 
Send: VOTE-COMMIT

Recv: GLOBAL-ABORTRecv: GLOBAL-
COMMIT
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Distributed Decision Making Discussion

• Why is distributed decision making desirable? 
– Fault Tolerance! 
– A group of machines can come to a decision even if one or more 
of them fail during the process 

– After decision made, result recorded in multiple places 
• Undesirable feature of Two-Phase Commit: Blocking 

– One machine can be stalled until another site recovers: 
» Site B writes “prepared to commit” record to its log, sends a 

“yes” vote to the coordinator (site A) and crashes 
» Site A crashes 
» Site B wakes up, check its log, and realizes that it has voted 

“yes” on the update. It sends a message to site A asking what 
happened. At this point, B cannot decide to abort, because 
update may have committed 

» B is blocked until A comes back 
– A blocked site holds resources (locks on updated items, pages 
pinned in memory, etc) until learns fate of update 

• PAXOS: An alternative used by GOOGLE and others that 
does not have this blocking problem 

• What happens if one or more of the nodes is malicious? 
– Malicious: attempting to compromise the decision making
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Byzantine General’s Problem

• Byazantine General’s Problem (n players): 
– One General 
– n-1 Lieutenants 
– Some number of these (f) can be insane or malicious 

• The commanding general must send an order to his n-1 
lieutenants such that: 
– All loyal lieutenants obey the same order 
– If the commanding general is loyal, then all loyal lieutenants obey 
the order he sends

General

Attack!

Attac
k!

Attack!
Retrea

t!

Attack!

Retreat!
Attack!

Attack!Attack!

Lieutenant

Lieutenant

LieutenantMalicious!
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Byzantine General’s Problem (con’t)
• Impossibility Results: 

– Cannot solve Byzantine General’s Problem with n=3 because one 
malicious player can mess up things 

– With f faults, need n > 3f to solve problem 
• Various algorithms exist to solve problem 

– Original algorithm has #messages exponential in n 
– Newer algorithms have message complexity O(n2) 

» One from MIT, for instance (Castro and Liskov, 1999) 
• Use of BFT (Byzantine Fault Tolerance) algorithm 

– Allow multiple machines to make a coordinated decision even if 
some subset of them (< n/3 ) are malicious

General

LieutenantLieutenant
Attack! Attack!

Retreat!

General

LieutenantLieutenant
Attack! Retreat!

Retreat!

Request Distributed 
Decision
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Remote Procedure Call
• Raw messaging is a bit too low-level for programming 

– Must wrap up information into message at source 
– Must decide what to do with message at destination 
– May need to sit and wait for multiple messages to arrive 

• Another option: Remote Procedure Call (RPC) 
– Calls a procedure on a remote machine 
– Client calls:  
 remoteFileSystem→Read(“rutabaga”); 

– Translated automatically into call on server: 
 fileSys→Read(“rutabaga”); 

• Implementation: 
– Request-response message passing (under covers!) 
– “Stub” provides glue on client/server 

» Client stub is responsible for “marshalling” arguments and 
“unmarshalling” the return values 

» Server-side stub is responsible for “unmarshalling” arguments and 
“marshalling” the return values. 

• Marshalling involves (depending on system) 
– Converting values to a canonical form, serializing objects, copying 
arguments passed by reference, etc. 
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RPC Information Flow

Client 
(caller)

Server 
(callee)

Packet 
Handler

Packet 
Handler

call

return

send

receive

send

receive

return

call

N
etwork

N
et

wo
rk

Client 
Stub

bundle 
args

bundle 
ret vals

unbundle 
ret vals

Server 
Stub

unbundle 
args

Machine A

Machine B
mbox1

mbox2
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RPC Details

• Equivalence with regular procedure call 
– Parameters ⇔ Request Message 
– Result ⇔ Reply message 
– Name of Procedure: Passed in request message 
– Return Address: mbox2 (client return mail box)  

• Stub generator: Compiler that generates stubs 
– Input: interface definitions in an “interface definition language 
(IDL)” 

» Contains, among other things, types of arguments/return 
– Output: stub code in the appropriate source language 

» Code for client to pack message, send it off, wait for result, 
unpack result and return to caller 

» Code for server to unpack message, call procedure, pack results, 
send them off 

• Cross-platform issues: 
– What if client/server machines are different architectures or in 
different languages? 

» Convert everything to/from some canonical form 
» Tag every item with an indication of how it is encoded (avoids 

unnecessary conversions).
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RPC Details (continued)

• How does client know which mbox to send to? 
– Need to translate name of remote service into network endpoint 
(Remote machine, port, possibly other info) 

– Binding: the process of converting a user-visible name into a 
network endpoint 

» This is another word for “naming” at network level 
» Static: fixed at compile time 
» Dynamic: performed at runtime 

• Dynamic Binding 
– Most RPC systems use dynamic binding via name service 

» Name service provides dynamic translation of service→mbox 
– Why dynamic binding? 

» Access control: check who is permitted to access service 
» Fail-over: If server fails, use a different one 

• What if there are multiple servers? 
– Could give flexibility at binding time 

» Choose unloaded server for each new client 
– Could provide same mbox (router level redirect) 

» Choose unloaded server for each new request 
» Only works if no state carried from one call to next 

• What if multiple clients? 
– Pass pointer to client-specific return mbox in request
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Problems with RPC
• Non-Atomic failures 

– Different failure modes in distributed system than on a single 
machine 

– Consider many different types of failures 
» User-level bug causes address space to crash 
» Machine failure, kernel bug causes all processes on same machine 

to fail 
» Some machine is compromised by malicious party 

– Before RPC: whole system would crash/die 
– After RPC: One machine crashes/compromised while others keep 
working 

– Can easily result in inconsistent view of the world 
» Did my cached data get written back or not? 
» Did server do what I requested or not? 

– Answer? Distributed transactions/Byzantine Commit 
• Performance 

– Cost of Procedure call « same-machine RPC « network RPC 
– Means programmers must be aware that RPC is not free  

» Caching can help, but may make failure handling complex
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Cross-Domain Communication/Location Transparency
• How do address spaces communicate with one another? 

– Shared Memory with Semaphores, monitors, etc… 
– File System 
– Pipes (1-way communication) 
– “Remote” procedure call (2-way communication) 

• RPC’s can be used to communicate between address spaces 
on different machines or the same machine 
– Services can be run wherever it’s most appropriate 
– Access to local and remote services looks the same 

• Examples of modern RPC systems: 
– CORBA (Common Object Request Broker Architecture) 
– DCOM (Distributed COM) 
– RMI (Java Remote Method Invocation)



11/16/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Microkernel operating systems
• Example: split kernel into application-level servers. 

– File system looks remote, even though on same machine 

• Why split the OS into separate domains? 
– Fault isolation: bugs are more isolated (build a firewall) 
– Enforces modularity: allows incremental upgrades of pieces of 
software (client or server) 

– Location transparent: service can be local or remote 
» For example in the X windowing system: Each X client can be on a 

separate machine from X server; Neither has to run on the 
machine with the frame buffer.

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File 
sys windows

RPC address 
spaces

threads

Microkernel Structure
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Summary
• Protocol: Agreement between two parties as to how information is to 

be transmitted 
• Two-phase commit: distributed decision making 

– First, make sure everyone guarantees that they will commit if asked 
(prepare) 

– Next, ask everyone to commit 

• Byzantine General’s Problem: distributed decision making with malicious 
failures 

– One general, n-1 lieutenants: some number of them may be malicious 
(often “f” of them) 

– All non-malicious lieutenants must come to same decision 
– If general not malicious, lieutenants must follow general 
– Only solvable if n ≥ 3f+1 

• Remote Procedure Call (RPC): Call procedure on remote machine 
– Provides same interface as procedure 
– Automatic packing and unpacking of arguments without user programming 
(in stub)


