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Recall: File System Caching

• Buffer Cache: Memory used to cache kernel resources, including disk blocks 
and name translations 

– Can contain “dirty” blocks (blocks yet on disk) 
• Read Ahead Prefetching: fetch sequential blocks early 

– exploit fact that most common file access is sequential 
– Elevator algorithm can efficiently interleave prefetches from different 
applications 

– How much to prefetch? it’s a balance 
• Delayed Writes: Writes not immediately sent out to disk 

– write() copies data from user space buffer to kernel buffer 
» other application read data from cache instead of disk  

– Flushed to disk periodically (e.g. in UNIX, every 30 sec) 
– Advantages:  

» Disk scheduler can efficiently order lots of requests 
» Disk allocation algorithm can be run with correct size value for a file 
» Some files need never get written to disk! (e..g temporary scratch files written /

tmp often don’t exist for 30 sec) 
– Disadvantages 

» What if system crashes before file has been written out? 
» Worse yet, what if system crashes before a directory file has been written out? 

(lose pointer to inode!)
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Recall: Important “ilities”
• Availability: the probability that the system can accept and 

process requests 
– Often measured in “nines” of probability.  So, a 99.9% 
probability is considered “3-nines of availability” 

– Key idea here is independence of failures 
• Durability: the ability of a system to recover data despite 

faults 
– This idea is fault tolerance applied to data 
– Doesn’t necessarily imply availability: information on pyramids 
was very durable, but could not be accessed until discovery of 
Rosetta Stone 

• Reliability: the ability of a system or component to perform 
its required functions under stated conditions for a specified 
period of time (IEEE definition) 
– Usually stronger than simply availability: means that the system 
is not only “up”, but also working correctly 

– Includes availability, security, fault tolerance/durability 
– Must make sure data survives system crashes, disk crashes, 
other problems



11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 4

• Data stripped across  
multiple disks  
– Successive blocks  
stored on successive  
(non-parity) disks 

– Increased bandwidth 
over single disk 

• Parity block (in green)  
constructed by XORing  
data bocks in stripe 
– P0=D0⊕D1⊕D2⊕D3 
– Can destroy any one  
disk and still  
reconstruct data 

– Suppose D3 fails,  
then can reconstruct: 
D3=D0⊕D1⊕D2⊕P0 

• Later in term: talk about spreading information widely across 
internet for durability.

RAID 5+: High I/O Rate Parity

Increasing 
Logical 
Disk  
Addresses

Stripe 
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5
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File System Reliability

• What can happen if disk loses power or machine 
software crashes? 
– Some operations in progress may complete 
– Some operations in progress may be lost 
– Overwrite of a block may only partially complete 

• Having RAID doesn’t necessarily protect against all 
such failures 
– Bit-for-bit protection of bad state? 
– What if one disk of RAID group not written? 

• File system wants durability (as a minimum!) 
– Data previously stored can be retrieved (maybe after 
some recovery step), regardless of failure
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Storage Reliability Problem

• Single logical file operation can involve updates to 
multiple physical disk blocks 
– inode, indirect block, data block, bitmap, … 
– With remapping, single update to physical disk block 
can require multiple (even lower level) updates 

• At a physical level, operations complete one at a 
time 
– Want concurrent operations for performance 

• How do we guarantee consistency regardless of 
when crash occurs?
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Threats to Reliability

• Interrupted Operation 
– Crash or power failure in the middle of a series of 
related updates may leave stored data in an 
inconsistent state. 

– e.g.: transfer funds from BofA to Schwab.  What 
if transfer is interrupted after withdrawal and 
before deposit 

• Loss of stored data 
– Failure of non-volatile storage media may cause 
previously stored data to disappear or be corrupted
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Reliability Approach #1: Careful Ordering

• Sequence operations in a specific order 
– Careful design to allow sequence to be interrupted 
safely 

• Post-crash recovery 
– Read data structures to see if there were any 
operations in progress 

– Clean up/finish as needed 

• Approach taken in FAT, FFS (fsck), and many 
app-level recovery schemes (e.g., Word)
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FFS: Create a File

Normal operation: 
• Allocate data block 
• Write data block 
• Allocate inode 
• Write inode block 
• Update bitmap of 

free blocks 
• Update directory with 

file name -> file 
number 

• Update modify time 
for directory

Recovery: 
• Scan inode table 
• If any unlinked files (not 

in any directory), delete 
• Compare free block 

bitmap against inode 
trees 

• Scan directories for 
missing update/access 
times 

Recovery time proportional 
to size of disk
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Application Level

Normal operation: 
• Write name of each 
open file to app folder 

• Write changes to 
backup file 

• Rename backup file to 
be file (atomic 
operation provided by 
file system) 

• Delete list in app 
folder on clean 
shutdown

Recovery: 
• On startup, see if 
any files were left 
open 

• If so, look for 
backup file 

• If so, ask user to 
compare versions
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Reliability Approach #2: 
Copy on Write File Layout

• To update file system, write a new version of the 
file system containing the update 
– Never update in place 
– Reuse existing unchanged disk blocks 

• Seems expensive!  But 
– Updates can be batched 
– Almost all disk writes can occur in parallel 

• Approach taken in network file server appliances 
(WAFL, ZFS)
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COW integrated with file system

• If file represented as a tree of blocks, just need 
to update the leading fringe

Write 

old version new version
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More General Solutions

• Transactions for Atomic Updates 
– Ensure that multiple related updates are performed 
atomically 

– i.e., if a crash occurs in the middle, the state of the 
systems reflects either all or none of the updates 

– Most modern file systems use transactions internally to 
update the many pieces 

– Many applications implement their own transactions 

• Redundancy for media failures 
– Redundant representation (error correcting codes) 
– Replication 
– E.g., RAID disks
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Transactions

• Closely related to critical sections in manipulating 
shared data structures 

• Extend concept of atomic update from memory to 
stable storage 
– Atomically update multiple persistent data structures 

• Many ad hoc approaches 
– FFS carefully ordered the sequence of updates so 
that if a crash occurred while manipulating directory 
or inodes the disk scan on reboot would detect and 
recover the error, -- fsck 

– Applications use temporary files and rename 
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Key concept: Transaction

• An atomic sequence of actions (reads/writes) on a 
storage system (or database) 

• That takes it from one consistent state to 
another

consistent state 1 consistent state 2
transaction
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Typical Structure

• Begin a transaction – get transaction id 
• Do a bunch of updates 

– If any fail along the way, roll-back 
– Or, if any conflicts with other transactions, roll-back 

• Commit the transaction
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“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00 
WHERE name = 'Alice'; 

UPDATE branches SET balance = balance - 100.00 
WHERE name = (SELECT branch_name FROM accounts 
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00 
WHERE name = 'Bob'; 

UPDATE branches SET balance = balance + 100.00 
WHERE name = (SELECT branch_name FROM accounts 
WHERE name = 'Bob');

BEGIN;    --BEGIN TRANSACTION

COMMIT;    --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account
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The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or none 
happen 

• Consistency: transactions maintain data integrity, e.g., 
– Balance cannot be negative 
– Cannot reschedule meeting on February 30 

• Isolation: execution of one transaction is isolated from 
that of all others; no problems from concurrency 

• Durability: if a transaction commits, its effects persist 
despite crashes
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Transactional File Systems

• Better reliability through use of log 
– All changes are treated as transactions  
– A transaction is committed once it is written to the log 

» Data forced to disk for reliability 
» Process can be accelerated with NVRAM 

– Although File system may not be updated immediately, 
data preserved in the log 

• Difference between “Log Structured” and “Journaled” 
– In a Log Structured filesystem, data stays in log form 
– In a Journaled filesystem, Log used for recovery 

• Journaling File System 
– Applies updates to system metadata using transactions 
(using logs, etc.) 

– Updates to non-directory files (i.e., user stuff) can be 
done in place (without logs), full logging optional 

– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4
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Logging File Systems

• Instead of modifying data structures on disk directly, write 
changes to a journal/log 
– Intention list: set of changes we intend to make 
– Log/Journal is append-only 
– Single commit record commits transaction 

• Once changes are in the log, it is safe to apply changes to data 
structures on disk 
– Recovery can read log to see what changes were intended 
– Can take our time making the changes 

» As long as new requests consult the log first 

• Once changes are copied, safe to remove log 
• But, … 

– If the last atomic action is not done … poof … all gone 
• Basic assumption:  

– Updates to sectors are atomic and ordered 
– Not necessarily true unless very careful, but key assumption
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Redo Logging

• Prepare 
– Write all changes (in 
transaction) to log 

• Commit 
– Single disk write to 
make transaction 
durable 

• Redo 
– Copy changes to disk 

• Garbage collection 
– Reclaim space in log

• Recovery 
– Read log 
– Redo any operations 
for committed 
transactions 

– Garbage collect log
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Example: Creating a file

• Find free data block(s) 
• Find free inode entry 
• Find dirent insertion point 
-------------------------- 
• Write map (i.e., mark used) 
• Write inode entry to point to 

block(s) 
• Write dirent to point to inode

Data blocks

Free 
Space map

…

Inode table

Directory 
entries
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Ex: Creating a file (as a transaction)

• Find free data block(s) 
• Find free inode entry 
• Find dirent insertion point 
-------------------------- 
• Write map (used) 
• Write inode entry to point to 

block(s) 
• Write dirent to point to inode

Data blocks

Free 
Space map

…

Inode table

Directory 
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it
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ReDo log 

• After Commit 
• All access to file system first 

looks in log 
• Eventually copy changes to disk

Data blocks

Free 
Space map

…

Inode table

Directory 
entries

Log in non-volatile storage (Flash)

headtail

pending

done

st
ar

t

co
m
m
it

tail tail tail tail
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Crash during logging - Recover

• Upon recovery scan the long 
• Detect transaction start 

with no commit 
• Discard log entries 
• Disk remains unchanged Data blocks

Free 
Space map

…

Inode table

Directory 
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t
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Recovery After Commit

• Scan log, find start 
• Find matching commit 
• Redo it as usual 

– Or just let it happen later
Data blocks

Free 
Space map

…

Inode table

Directory 
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it
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Next Objective



11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Societal Scale Information Systems

Scalable, Reliable, 
Secure Services

MEMS for  
Sensor Nets

Internet  
Connectivity

Databases 
Information Collection 
Remote Storage 
Online Games 
Commerce 
 … 

• The world is a large 
distributed system 
– Microprocessors in everything 
– Vast infrastructure behind 
them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet
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Centralized vs Distributed Systems

• Centralized System: System in which major functions are 
performed by a single physical computer 
– Originally, everything on single computer 
– Later: client/server model 

• Distributed System: physically separate computers working 
together on some task 
– Early model: multiple servers working together 

» Probably in the same room or building 
» Often called a “cluster” 

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model
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Distributed Systems: Motivation/Issues
• Why do we want distributed systems? 

– Cheaper and easier to build lots of simple computers 
– Easier to add power incrementally 
– Users can have complete control over some components 
– Collaboration: Much easier for users to collaborate through network 
resources (such as network file systems) 

• The promise of distributed systems: 
– Higher availability: one machine goes down, use another 
– Better durability: store data in multiple locations 
– More security: each piece easier to make secure  

• Reality has been disappointing 
– Worse availability: depend on every machine being up 

» Lamport: “a distributed system is one where I can’t do work because 
some machine I’ve never heard of isn’t working!” 

– Worse reliability: can lose data if any machine crashes 
– Worse security: anyone in world can break into system 

• Coordination is more difficult 
– Must coordinate multiple copies of shared state information (using only 
a network) 

– What would be easy in a centralized system becomes a lot more 
difficult
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Distributed Systems: Goals/Requirements

• Transparency: the ability of the system to mask its 
complexity behind a simple interface 

• Possible transparencies: 
– Location: Can’t tell where resources are located 
– Migration: Resources may move without the user knowing 
– Replication: Can’t tell how many copies of resource exist 
– Concurrency: Can’t tell how many users there are 
– Parallelism: System may speed up large jobs by spliting 
them into smaller pieces 

– Fault Tolerance: System may hide varoius things that go 
wrong in the system 

• Transparency and collaboration require some way for 
different processors to communicate with one another
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Summary
• Important system properties 

– Availability: how often is the resource available? 
– Durability: how well is data preserved against faults? 
– Reliability: how often is resource performing correctly? 

• RAID: Redundant Arrays of Inexpensive Disks 
– RAID1: mirroring, RAID5: Parity block 

• Use of Log to improve Reliability 
– Journaled file systems such as ext3, NTFS 

• Transactions: ACID semantics 
– Atomicity 
– Consistency 
– Isolation 
– Durability


