CS162
Operating Systems and
Systems Programming

Lecture 20

Reliability, Transactions
Distributed Systems

November 9th, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: File System Caching

- Buffer Cache: Memory used to cache kernel resources, including disk blocks
and name translations
- Can contain "dirty” blocks (blocks yet on disk)
- Read Ahead Prefetching: fetch sequential blocks early
- exploit fact that most common file access is sequential

- Elevator algorithm can efficiently interleave prefetches from different
applications

- How much to prefetch? it's a balance
- Delayed Writes: Writes not immediately sent out to disk
- write () copies data from user space buffer to kernel buffer
» other application read data from cache instead of disk
- Flushed to disk periodically (e.g. in UNIX, every 30 sec)
- Advantages:
» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a file

» Some files need never get written to disk! (e..g temporary scratch files written /
tmp often don't exist for 30 sec)

- Disadvantages
» What if system crashes before file has been written out?

» Worse yet, what if system crashes before a directory file has been written out?
(lose pointer to inodel)

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 2

Recall: Important “ilities”

- Availability: the probability that the system can accept and
process requests

- Often measured in “nines” of probability. So, a 99.9%
probability is considered "3-nines of availability”

- Key idea here is independence of failures
- Durability: the ability of a system to recover data despite
faults
- This idea is fault tolerance applied to data

- Doesn't necessarily imply availability: information on pyramids
was very durable, but could not be accessed until discovery of
Rosetta Stone

- Reliability: the ability of a system or component to perform
its required functions under stated conditions for a specified
period of time (IEEE definition)

- Usually stronger than simply availability: means that the system
is not only "up”, but also working correctly
- Includes availability, security, fault tolerance/durability
- Must make sure data survives system crashes, disk crashes,
other problems
11/9/15 Kubiatowicz €5162 ©®UCB Fall 2015 3

RAID 5+: High I/0O Rate Parity
. Da‘lrs TTr‘Lp.pﬁd across //Ls,mpe
muftiple disks po| b1 | [p2| [p3| PO
- Successive blocks
stored on successive [ncreasing
(non-parity) disks D4 | |DS | |D6 | |P1 D7 | |ogical
- Increased bandwidth | Disk
over single disk D8 | |D9 [[P2 D10| |p11| [‘ddresses
- Parity block (in green)
constructed by XORing D12[|P3 D13| |D14] |D15
data bocks in stripe |
- PO=D0®D1®D2®D3 P4 D16| [D17| |D18| |[D19
- Can destroy any one
disk and still 20 21 22
reconstruct data b b D bz3) |P5
) f;“gﬁf:n ?.ZC‘:‘:‘Q:;.UC N Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

D3=D0®D1®D2®P0O

- Later in term: talk about spreading information widely across

infernet for durability.

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015

4

File System Reliability

- What can happen if disk loses power or machine
software crashes?

- Some operations in progress may complete
- Some operations in progress may be lost
- Overwrite of a block may only partially complete

- Having RAID doesn't necessarily protect against all
such failures

- Bit-for-bit protection of bad state?
- What if one disk of RAID group not written?
- File system wants durability (as a minimuml)

- Data previously stored can be retrieved (maybe after
some recovery step), regardless of failure

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015

Storage Reliability Problem

- Single logical file operation can involve updates to
multiple physical disk blocks

- inode, indirect block, data block, bitmap, ..

- With remapping, single update to physical disk block
can require multiple (even lower level) updates

- At a physical level, operations complete one at a
time
- Want concurrent operations for performance

- How do we guarantee consistency regardless of
when crash occurs?

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015

11/9/15

Threats to Reliability

Interrupted Operation

- Crash or power failure in the middle of a series of
related updates may leave stored data in an
inconsistent state.

- e.g.: transfer funds from BofA to Schwab. What
if transfer is interrupted after withdrawal and
before deposit

Loss of stored data

- Failure of non-volatile storage media may cause
previously stored data to disappear or be corrupted

Kubiatowicz €S162 ©UCB Fall 2015

Reliability Approach #1: Careful Ordering

Sequence operations in a specific order

- Careful design to allow sequence to be interrupted
safely

Post-crash recovery

- Read data structures to see if there were any
operations in progress

- Clean up/finish as needed

Approach taken in FAT, FFS (fsck), and many
app-level recovery schemes (e.g., Word)

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015

FFS: Create a File

Normal operation:

11/9/15

Allocate data block
Write data block
Allocate inode

Recovery:
- Scan inode table
- If any unlinked files (not

Write inode block in any directory), delete
Update bitmap of - Compare free block
free blocks bitmap against inode
Update directory with Trees

file name -> file - Scan directories for
number missing update/access

Update modify time Times

for directory
Recovery time proportional
to size of disk

Kubiatowicz €S162 ©UCB Fall 2015 9

Application Level

Normal operation: Recovery:

4/13/15

open file to app folder any files were left

Write changes to open

backup file . - If so, look for
Rename backup file to backup file

be file (atomic
operation provided by * If so, ask user to
file system) compare versions

Delete list in app
folder on clean
shutdown

Kubiatowicz €S162 ©UCB Spring 2015 10

Reliability Approach #2:
Copy on Write File Layout

- To update file system, write a new version of the
file system containing the update

- Never update in place
- Reuse existing unchanged disk blocks
- Seems expensive! But
- Updates can be batched
- Almost all disk writes can occur in parallel

- Approach taken in network file server appliances
(WAFL, ZFS)

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 11

COVW integrated with file system

old version new version

\
P oI

\

Write t

- If file represented as a tree of blocks, just need
to update the leading fringe

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 12

More General Solutions

- Transactions for Atomic Updates

- Ensure that multiple related updates are performed
atomically

- i.e., if a crash occurs in the middle, the state of the
systems reflects either all or none of the updates

- Most modern file systems use transactions internally to
update the many pieces

- Many applications implement their own transactions
- Redundancy for media failures

- Redundant representation (error correcting codes)

- Replication

- E.g., RAID disks

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 13

Transactions

- Closely related to critical sections in manipulating
shared data structures

- Extend concept of atomic update from memory to
stable storage

- Atomically update multiple persistent data structures

- Many ad hoc approaches

- FFS carefully ordered the sequence of updates so
that if a crash occurred while manipulating directory
or inodes the disk scan on reboot would detect and
recover the error, -- fsck

- Applications use temporary files and rename

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 14

Key concept: Transaction

- An atomic sequence of actions (reads/writes) on a
storage system (or database)

- That takes it from one consistent state to
another

transaction
{consis’ren’r state 1} >£consis‘rem‘ state 2}

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 15

Typical Structure

- Begin a transaction - get transaction id

- Do a bunch of updates
- If any fail along the way, roll-back
- Or, if any conflicts with other transactions, roll-back

- Commit the transaction

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 16

"Classic” Example: Transaction

BEGIN; —-BEGIN TRANSACTION
UPDATE accounts SET balance = balance -
WHERE name = 'Alice’;

UPDATE branches SET balance = balance -
WHERE name = (SELECT branch name FROM
WHERE name = 'Alice');

UPDATE accounts SET balance = balance +
WHERE name = 'Bob’';

UPDATE branches SET balance = balance +

WHERE name = (SELECT branch name FROM
WHERE name = 'Bob');
COMMIT; --COMMIT WORK

100.00

100.00
accounts

100.00

100.00
accounts

Transfer $100 from Alice’s account to Bob’s account

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015

17

The ACID properties of Transactions

- Atomicity: all actions in the transaction happen, or none
happen

- Consistency: transactions maintain data integrity, e.qg.,
- Balance cannot be negative

- Cannot reschedule meeting on February 30

- Isolation: execution of one transaction is isolated from
that of all others; no problems from concurrency

- Durability: if a transaction commits, its effects persist
despite crashes

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 18

Transactional File Systems

- Better reliability through use of log
- All changes are treated as transactions

- A transaction is committed once it is written to the log
» Data forced to disk for reliability
» Process can be accelerated with NVRAM

- Although File system may not be updated immediately,
data preserved in the log

- Difference between “"Log Structured” and “Journaled”
- In a Log Structured filesystem, data stays in log form
- In a Journaled filesystem, Log used for recovery

- Journaling File System

- Applies updates to system metadata using transactions
(using logs, etc.)

- Updates to non-directory files (i.e., user stuff) can be
done in place (without logs), full logging optional

- Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 19

Logging File Systems

- Instead of modifying data structures on disk directly, write
changes to a journal/log

- Intention list: set of changes we intend to make
- Log/Journal is append-only
- Single commit record commits transaction
- Once changes are in the log, it is safe to apply changes to data
structures on disk
- Recovery can read log to see what changes were intended
- Can take our time making the changes
» As long as new requests consult the log first
- Once changes are copied, safe to remove log
- But, .
- If the last atomic action is not done .. poof ... all gone
- Basic assumption:

- Updates to sectors are atomic and ordered

- Not necessarily true unless very careful, but key assumption
11/9/15 Kubiatowicz 5162 ©UCB Fall 2015 20

Redo Logging

* Prepare - Recovery
- Write all changes (in - Read log
transaction) fo log - Redo any operations
- Commit for committed

- Single disk write to transactions
make transaction - Garbage collect log

durable

* Redo
- Copy changes to disk

- Garbage collection
- Reclaim space in log

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 21

Example: Creating a file

- Find free data block(s)
- Find free inode entry
- Find dirent insertion point

Free
""""""""""""" Space map
- Write map (i.e., mark used) Data blocks
- Write inode entry to point to Inode table
block(s)
- Write dirent to point to inode Directory
entries

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 22

Ex: Creating a file (as a transaction)

- Find free data block(s)
- Find free inode entry

- Find dirent insertion point
Free

Space map
Data blocks

Inode table

- Write map (used)

- Write inode entry to point to
block(s)

Write dirent to point to inode

Directory
entries

tail head

[1om

-
done pending §
[7)

commit

Log in non-volatile storage (Flash or on Disk)

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 23

- After Commit
- All access to file system first

looks in log

- Eventually copy changes to disk

tail tail

done

ReDo log

Free
Space map

Data blocks
Inode table

Directory
entries

tai tail +qil head

ommit

\ start)

Log in non-volatile storage (Flash) P€"

11/9/15

"

ding

Kubiatowicz €S162 ©UCB Fall 2015

[

24

Crash during logging -

Recover

Detect transaction start
with no commit

Upon recovery scan the long

Log in non-volatile storage (Flash or on Disk)

11/9/15

Kubiatowicz €S162 ©UCB Fall 2015

Free
Discard log entries Space map
] I Data block
Disk remains unchanged ata blocks
Inode table
Directory
entries
tail head
- W /
done pending I
0 ":-: %
[\

25

Recovery After Commit

- Scan log, find start
- Find matching commit

Free
Space map

Data blocks
Inode table

- Redo it as usual
- Or just let it happen later

Directory
entries
head

Lo

Log in non-volatile storage (Flash or on Disk)

tail

-
done pending §
[7)

commit

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 26

Next Objective

10/5/15

Ke
o5
A
o O intro \&
@ %, .
o~

3
0\&\ Fwe Y%%f
%

: o) >
%?@ . % Aouan™ &

—~
2,

4
&

=

&

i
&

Kubiatowicz €S162 ©UCB Fall 2015

27

- The world is a large P
distributed system

- Microprocessors in everything A T
- Vast infrastructure behind — T E . W
*hem e Y
Internet Scalable, Reliable,

Connectivity l | Secure Services
I

Databases
Information Collect
Remote Storage
Online Games
Commerce

Sensor Nets
11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 28

Client/Server Model
Peer-to-Peer Model

- Centralized System: System in which major functions are
performed by a single physical computer
- Originally, everything on single computer
- Later: client/server model
- Distributed System: physically separate computers working
together on some task

- Early model: multiple servers working together
» Probably in the same room or building
» Often called a "cluster”

- Later models: peer-to-peer/wide-spread collaboration
11/9/15 Kubiatowicz €S162 ©®UCB Fall 2015 29

Distributed Systems: Motivation/Issues

Why do we want distributed systems?
- Cheaper and easier to build lots of simple computers
- Easier to add power incrementally
- Users can have complete control over some components
- Collaboration: Much easier for users to collaborate through network
resources (such as network file systems)
The promise of distributed systems:
- Higher availability: one machine goes down, use another
- Better durability: store data in multiple locations
- More security: each piece easier to make secure
Reality has been disappointing

- Worse availability: depend on every machine being up
» Lamport: "a distributed system is one where I can't do work because
some machine I've never heard of isn't working!”

- Worse reliability: can lose data if any machine crashes
- Worse security: anyone in world can break into system
Coordination is more difficult
- Must coordinate multiple copies of shared state information (using only
a network)

- What would be easy in a centralized system becomes a lot more
difficult

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 30

Distributed Systems: Goals/Requirements

- Transparency: the ability of the system to mask its
complexity behind a simple interface
- Possible transparencies:
- Location: Can't tell where resources are located
- Migration: Resources may move without the user knowing
- Replication: Can't tell how many copies of resource exist
- Concurrency: Can't tell how many users there are
- Parallelism: System may speed up large jobs by spliting
them into smaller pieces
- Fault Tolerance: System may hide varoius things that go
wrong in the system

- Transparency and collaboration require some way for

11/9/15

Summary

Important system properties

- Availability: how often is the resource available?

- Durability: how well is data preserved against faults?

- Reliability: how often is resource performing correctly?
RAID: Redundant Arrays of Inexpensive Disks

- RAID1: mirroring, RAID5: Parity block
Use of Log to improve Reliability

- Journaled file systems such as ext3, NTFS

Transactions: ACID semantics
- Afomicity
- Consistency
- Isolation
- Durability

11/9/15 Kubiatowicz €S162 ©UCB Fall 2015 32

