
CS162 
Operating Systems and  
Systems Programming  

Lecture 20  
  

Reliability, Transactions 
Distributed Systems

November 9th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: File System Caching

• Buffer Cache: Memory used to cache kernel resources, including disk blocks
and name translations

– Can contain “dirty” blocks (blocks yet on disk)
• Read Ahead Prefetching: fetch sequential blocks early

– exploit fact that most common file access is sequential
– Elevator algorithm can efficiently interleave prefetches from different
applications

– How much to prefetch? it’s a balance
• Delayed Writes: Writes not immediately sent out to disk

– write() copies data from user space buffer to kernel buffer
» other application read data from cache instead of disk

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a file
» Some files need never get written to disk! (e..g temporary scratch files written /

tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file has been written out?

(lose pointer to inode!)

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Recall: Important “ilities”
• Availability: the probability that the system can accept and

process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data despite

faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids
was very durable, but could not be accessed until discovery of
Rosetta Stone

• Reliability: the ability of a system or component to perform
its required functions under stated conditions for a specified
period of time (IEEE definition)
– Usually stronger than simply availability: means that the system
is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes,
other problems

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 4

• Data stripped across  
multiple disks
– Successive blocks  
stored on successive  
(non-parity) disks

– Increased bandwidth 
over single disk

• Parity block (in green)  
constructed by XORing  
data bocks in stripe
– P0=D0⊕D1⊕D2⊕D3
– Can destroy any one  
disk and still  
reconstruct data

– Suppose D3 fails,  
then can reconstruct: 
D3=D0⊕D1⊕D2⊕P0

• Later in term: talk about spreading information widely across
internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 5

File System Reliability

• What can happen if disk loses power or machine
software crashes?
– Some operations in progress may complete
– Some operations in progress may be lost
– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all
such failures
– Bit-for-bit protection of bad state?
– What if one disk of RAID group not written?

• File system wants durability (as a minimum!)
– Data previously stored can be retrieved (maybe after
some recovery step), regardless of failure

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Storage Reliability Problem

• Single logical file operation can involve updates to
multiple physical disk blocks
– inode, indirect block, data block, bitmap, …
– With remapping, single update to physical disk block
can require multiple (even lower level) updates

• At a physical level, operations complete one at a
time
– Want concurrent operations for performance

• How do we guarantee consistency regardless of
when crash occurs?

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Threats to Reliability

• Interrupted Operation
– Crash or power failure in the middle of a series of
related updates may leave stored data in an
inconsistent state.

– e.g.: transfer funds from BofA to Schwab. What
if transfer is interrupted after withdrawal and
before deposit

• Loss of stored data
– Failure of non-volatile storage media may cause
previously stored data to disappear or be corrupted

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Reliability Approach #1: Careful Ordering

• Sequence operations in a specific order
– Careful design to allow sequence to be interrupted
safely

• Post-crash recovery
– Read data structures to see if there were any
operations in progress

– Clean up/finish as needed

• Approach taken in FAT, FFS (fsck), and many
app-level recovery schemes (e.g., Word)

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 9

FFS: Create a File

Normal operation:
• Allocate data block
• Write data block
• Allocate inode
• Write inode block
• Update bitmap of

free blocks
• Update directory with

file name -> file
number

• Update modify time
for directory

Recovery:
• Scan inode table
• If any unlinked files (not

in any directory), delete
• Compare free block

bitmap against inode
trees

• Scan directories for
missing update/access
times

Recovery time proportional
to size of disk

4/13/15 Kubiatowicz CS162 ©UCB Spring 2015 10

Application Level

Normal operation:
• Write name of each
open file to app folder

• Write changes to
backup file

• Rename backup file to
be file (atomic
operation provided by
file system)

• Delete list in app
folder on clean
shutdown

Recovery:
• On startup, see if
any files were left
open

• If so, look for
backup file

• If so, ask user to
compare versions

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Reliability Approach #2: 
Copy on Write File Layout

• To update file system, write a new version of the
file system containing the update
– Never update in place
– Reuse existing unchanged disk blocks

• Seems expensive! But
– Updates can be batched
– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances
(WAFL, ZFS)

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 12

COW integrated with file system

• If file represented as a tree of blocks, just need
to update the leading fringe

Write

old version new version

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 13

More General Solutions

• Transactions for Atomic Updates
– Ensure that multiple related updates are performed
atomically

– i.e., if a crash occurs in the middle, the state of the
systems reflects either all or none of the updates

– Most modern file systems use transactions internally to
update the many pieces

– Many applications implement their own transactions

• Redundancy for media failures
– Redundant representation (error correcting codes)
– Replication
– E.g., RAID disks

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Transactions

• Closely related to critical sections in manipulating
shared data structures

• Extend concept of atomic update from memory to
stable storage
– Atomically update multiple persistent data structures

• Many ad hoc approaches
– FFS carefully ordered the sequence of updates so
that if a crash occurred while manipulating directory
or inodes the disk scan on reboot would detect and
recover the error, -- fsck

– Applications use temporary files and rename

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Key concept: Transaction

• An atomic sequence of actions (reads/writes) on a
storage system (or database)

• That takes it from one consistent state to
another

consistent state 1 consistent state 2
transaction

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Typical Structure

• Begin a transaction – get transaction id
• Do a bunch of updates

– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 17

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob';

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 18

The ACID properties of Transactions

• Atomicity: all actions in the transaction happen, or none
happen

• Consistency: transactions maintain data integrity, e.g.,
– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from
that of all others; no problems from concurrency

• Durability: if a transaction commits, its effects persist
despite crashes

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Transactional File Systems

• Better reliability through use of log
– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability
» Process can be accelerated with NVRAM

– Although File system may not be updated immediately,
data preserved in the log

• Difference between “Log Structured” and “Journaled”
– In a Log Structured filesystem, data stays in log form
– In a Journaled filesystem, Log used for recovery

• Journaling File System
– Applies updates to system metadata using transactions
(using logs, etc.)

– Updates to non-directory files (i.e., user stuff) can be
done in place (without logs), full logging optional

– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Logging File Systems

• Instead of modifying data structures on disk directly, write
changes to a journal/log
– Intention list: set of changes we intend to make
– Log/Journal is append-only
– Single commit record commits transaction

• Once changes are in the log, it is safe to apply changes to data
structures on disk
– Recovery can read log to see what changes were intended
– Can take our time making the changes

» As long as new requests consult the log first

• Once changes are copied, safe to remove log
• But, …

– If the last atomic action is not done … poof … all gone
• Basic assumption:

– Updates to sectors are atomic and ordered
– Not necessarily true unless very careful, but key assumption

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Redo Logging

• Prepare
– Write all changes (in
transaction) to log

• Commit
– Single disk write to
make transaction
durable

• Redo
– Copy changes to disk

• Garbage collection
– Reclaim space in log

• Recovery
– Read log
– Redo any operations
for committed
transactions

– Garbage collect log

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Example: Creating a file

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (i.e., mark used)
• Write inode entry to point to

block(s)
• Write dirent to point to inode

Data blocks

Free
Space map

…

Inode table

Directory
entries

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Ex: Creating a file (as a transaction)

• Find free data block(s)
• Find free inode entry
• Find dirent insertion point

• Write map (used)
• Write inode entry to point to

block(s)
• Write dirent to point to inode

Data blocks

Free
Space map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 24

ReDo log

• After Commit
• All access to file system first

looks in log
• Eventually copy changes to disk

Data blocks

Free
Space map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash)

headtail

pending

done

st
ar

t

co
m
m
it

tail tail tail tail

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Crash during logging - Recover

• Upon recovery scan the long
• Detect transaction start

with no commit
• Discard log entries
• Disk remains unchanged Data blocks

Free
Space map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Recovery After Commit

• Scan log, find start
• Find matching commit
• Redo it as usual

– Or just let it happen later
Data blocks

Free
Space map

…

Inode table

Directory
entries

Log in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m
m
it

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Next Objective

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Societal Scale Information Systems

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet  
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce
 …

• The world is a large
distributed system
– Microprocessors in everything
– Vast infrastructure behind
them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Centralized vs Distributed Systems

• Centralized System: System in which major functions are
performed by a single physical computer
– Originally, everything on single computer
– Later: client/server model

• Distributed System: physically separate computers working
together on some task
– Early model: multiple servers working together

» Probably in the same room or building
» Often called a “cluster”

– Later models: peer-to-peer/wide-spread collaboration

Server

Client/Server Model
Peer-to-Peer Model

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Distributed Systems: Motivation/Issues
• Why do we want distributed systems?

– Cheaper and easier to build lots of simple computers
– Easier to add power incrementally
– Users can have complete control over some components
– Collaboration: Much easier for users to collaborate through network
resources (such as network file systems)

• The promise of distributed systems:
– Higher availability: one machine goes down, use another
– Better durability: store data in multiple locations
– More security: each piece easier to make secure

• Reality has been disappointing
– Worse availability: depend on every machine being up

» Lamport: “a distributed system is one where I can’t do work because
some machine I’ve never heard of isn’t working!”

– Worse reliability: can lose data if any machine crashes
– Worse security: anyone in world can break into system

• Coordination is more difficult
– Must coordinate multiple copies of shared state information (using only
a network)

– What would be easy in a centralized system becomes a lot more
difficult

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Distributed Systems: Goals/Requirements

• Transparency: the ability of the system to mask its
complexity behind a simple interface

• Possible transparencies:
– Location: Can’t tell where resources are located
– Migration: Resources may move without the user knowing
– Replication: Can’t tell how many copies of resource exist
– Concurrency: Can’t tell how many users there are
– Parallelism: System may speed up large jobs by spliting
them into smaller pieces

– Fault Tolerance: System may hide varoius things that go
wrong in the system

• Transparency and collaboration require some way for
different processors to communicate with one another

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Summary
• Important system properties

– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

• RAID: Redundant Arrays of Inexpensive Disks
– RAID1: mirroring, RAID5: Parity block

• Use of Log to improve Reliability
– Journaled file systems such as ext3, NTFS

• Transactions: ACID semantics
– Atomicity
– Consistency
– Isolation
– Durability

