
CS162 
Operating Systems and  
Systems Programming  

Lecture 2  
 

Introduction to the Process

August 31st, 2015 
Prof. John Kubiatowicz 

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course 
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.  
When slides are obtained from other sources, a  a reference will be noted on 
the bottom of that slide, in which case a full list of references is provided on the 
last slide.



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: What is an operating system?

• Special layer of software that provides application software 
access to hardware resources 
– Convenient abstraction of complex hardware devices 
– Protected access to shared resources 
– Security and authentication 
– Communication amongst logical entities

Hardware

appln
appln

appln

OS



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Review: What is an Operating System?

• Referee 
– Manage sharing of resources, Protection, Isolation 

» Resource allocation, isolation, communication 
• Illusionist 

– Provide clean, easy to use abstractions of 
physical resources 

» Infinite memory, dedicated machine 
» Higher level objects: files, users, messages 
» Masking limitations, virtualization 

• Glue 
– Common services 

» Storage, Window system, Networking 
» Sharing, Authorization 
» Look and feel



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Review: Increasing Software Complexity

From MIT’s 6.033 course



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Recall: Loading

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection 
Boundary

Ctrlr



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Very Brief History of OS

• Several Distinct Phases: 
– Hardware Expensive, Humans Cheap  

» Eniac, … Multics 
– Hardware Cheaper, Humans Expensive  

» PCs, Workstations, Rise of GUIs 
– Hardware Really Cheap, Humans Really Expensive  

» Ubiquitous devices, Widespread networking

"I think there is a world market for 
maybe five computers." -- Thomas 
Watson, chairman of IBM, 1943



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Very Brief History of OS

• Several Distinct Phases: 
– Hardware Expensive, Humans Cheap  

» Eniac, … Multics 
– Hardware Cheaper, Humans Expensive  

» PCs, Workstations, Rise of GUIs 
– Hardware Really Cheap, Humans Really Expensive  

» Ubiquitous devices, Widespread networking

Thomas Watson was often called “the 
worlds greatest salesman” by the time of 
his death in 1956



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Very Brief History of OS

• Several Distinct Phases: 
– Hardware Expensive, Humans Cheap  

» Eniac, … Multics 
– Hardware Cheaper, Humans Expensive  

» PCs, Workstations, Rise of GUIs 
– Hardware Really Cheap, Humans Really Expensive  

» Ubiquitous devices, Widespread networking



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Very Brief History of OS

• Several Distinct Phases: 
– Hardware Expensive, Humans Cheap  

» Eniac, … Multics 
– Hardware Cheaper, Humans Expensive  

» PCs, Workstations, Rise of GUIs 
– Hardware Really Cheap, Humans Really Expensive  

» Ubiquitous devices, Widespread networking 

• Rapid Change in Hardware Leads to changing OS 
– Batch ⇒ Multiprogramming ⇒ Timesharing ⇒ Graphical UI ⇒ 
Ubiquitous Devices 

– Gradual Migration of Features into Smaller Machines 

• Situation today 
– Small OS: 100K lines/Large: 10M lines (5M browser!) 
– 100-1000 people-years



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 10

OS Archaeology

• Because of the cost of developing an OS from scratch, 
most modern OSes have a long lineage: 

• Multics ! AT&T Unix ! BSD Unix ! Ultrix, SunOS, 
NetBSD,… 

• Mach (micro-kernel) + BSD ! NextStep ! XNU !  
Apple OSX, iphone iOS 

• Linux ! Android OS 

• CP/M ! QDOS ! MS-DOS ! Windows 3.1 ! NT ! 95 ! 
98 ! 2000 ! XP ! Vista ! 7 ! 8 ! phone ! … 

• Linux ! RedHat, Ubuntu, Fedora, Debian, Suse,…



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Today: Four fundamental OS concepts

• Thread 
– Single unique execution context 
– Program Counter, Registers, Execution Flags, Stack 

• Address Space w/ Translation 
– Programs execute in an address space that is distinct from the 

memory space of the physical machine 
• Process 

– An instance of an executing program is a process consisting of an 
address space and one or more threads of control 

• Dual Mode operation/Protection 
– Only the “system” has the ability to access certain resources 
– The OS and the hardware are protected from user programs and 

user programs are isolated from one another by controlling the 
translation from program virtual addresses to machine physical 
addresses



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 12

OS Bottom Line: Run Programs

• Load instruction and data segments of 
executable file into memory 

• Create stack and heap 
• “Transfer control to it” 
• Provide services to it 
• While protecting OS and it

int main() 
{ … ;
 }

ed
it
or

co
m
pi
le
r

Program Source
Executable

foo.c a.out

Lo
ad

 &
 

Ex
ec

ut
e

data

M
em

ory

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

instructions



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Today we need one key concept

The instruction cycle

PC:

Registers

ALU

Instruction fetch

Decode

Execute

Memory

instruction

next

decode

data

Processor



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Fetch 
Exec

R0 
… 

R31 
F0 
… 

F30 
PC

… 
Data1 
Data0 

Inst237 
Inst236 

… 
Inst5 
Inst4 
Inst3 
Inst2  
Inst1 
Inst0

Addr 0

Addr 232-1

Recall: What happens during program execution?

• Execution sequence: 
– Fetch Instruction at PC   
– Decode 
– Execute (possibly using registers) 
– Write results to registers/mem 
– PC = Next Instruction(PC) 
– Repeat 

PC
PC
PC
PC



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 15

First OS Concept: Thread of Control

• Thread: Single unique execution context 
– Program Counter, Registers, Execution Flags, Stack 

• A thread is executing on a processor when it is 
resident in the processor registers. 

• PC register holds the address of executing instruction 
in the thread. 

• Certain registers hold the context of thread 
– Stack pointer holds the address of the top of stack 

» Other conventions: Frame Pointer, Heap Pointer, Data 
– May be defined by the instruction set architecture or by 
compiler conventions 

• Registers hold the root state of the thread. 
– The rest is “in memory”



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Second OS Concept: Program’s Address Space

0x000…

0xFFF…

code

Static Data

heap

stack• Address space ⇒ the set of 
accessible addresses + state 
associated with them: 
– For a 32-bit processor there are   
232 = 4 billion addresses 

• What happens when you read or  
write to an address? 
– Perhaps Nothing 
– Perhaps acts like regular memory 
– Perhaps ignores writes 
– Perhaps causes I/O operation 

» (Memory-mapped I/O) 
– Perhaps causes exception (fault)



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Address Space: In a Picture

Processor 
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

• What’s in the code segment? Data? 
• What’s in the stack segment? 

– How is it allocated? How big is it? 
• What’s in the heap segment? 

– How is it allocated?  How big?



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Multiprogramming - Multiple Threads of Control

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Administrivia: Getting started
• Start homework 0 immediately ⇒ Due Mehr 5th 

– Github account 
– Vagrant virtualbox – VM environment for the course 

» Consistent, managed environment on your machine 
– Get familiar with all the tools 

• Office hours 
• Monday 1630 to 1700, email me for other times 

• TA Class 
• Saturday 12 to 13, or Monday 12 to 13? 

• HW/GHW schedule 
• Do consider murphy’s law 
• things break when you are not expecting it, so plan for it 

• Group sign up form out next week (after drop deadline) 
– Find group members ASAP 
– 4 people in a group!



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 20

CS 162 Collaboration Policy

Explaining a concept to someone in another group 
Discussing algorithms/testing strategies with other groups 
Helping debug someone else’s code (in another group) 
Searching online for generic algorithms (e.g., hash table)  

Sharing code or test cases with another group 
Copying OR reading another group’s code or test cases 
Copying OR reading online code or test cases from from prior 
years  

We compare all project submissions against prior year 
submissions and online solutions and will take actions (described 
on the course overview page) against offenders 



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 21

How can we give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor.  How do we provide the illusion of 
multiple processors? 
– Multiplex in time! 

• Each virtual “CPU” needs a structure to hold: 
– Program Counter (PC), Stack Pointer (SP) 
– Registers (Integer, Floating point, others…?) 

• How switch from one virtual CPU to the next? 
– Save PC, SP, and registers in current state block 
– Load PC, SP, and registers from new state block 

• What triggers switch? 
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 22

The Basic Problem of Concurrency

• The basic problem of concurrency involves resources: 
– Hardware: single CPU, single DRAM, single I/O devices 
– Multiprogramming API: processes think they have exclusive 
access to shared resources 

• OS has to coordinate all activity 
– Multiple processes, I/O interrupts, … 
– How can it keep all these things straight? 

• Basic Idea: Use Virtual Machine abstraction 
– Simple machine abstraction for processes 
– Multiplex these abstract machines 

• Dijkstra did this for the “THE system” 
– Few thousand lines vs 1 million lines in OS 360 (1K bugs)



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Properties of this simple multiprogramming technique

• All virtual CPUs share same non-CPU resources 
– I/O devices the same 
– Memory the same 

• Consequence of sharing: 
– Each thread can access the data of every other 
thread (good for sharing, bad for protection) 

– Threads can share instructions 
(good for sharing, bad for protection) 

– Can threads overwrite OS functions?  
• This (unprotected) model is common in: 

– Embedded applications 
– Windows 3.1/Early Macintosh (switch only with yield) 
– Windows 95—ME (switch with both yield and timer)



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Third OS Concept: Process

• Process: execution environment with Restricted Rights 
– Address Space with One or More Threads 
– Owns memory (address space) 
– Owns file descriptors, file system context, … 
– Encapsulate one or more threads sharing process resources 

• Why processes?  
– Protected from each other! 
– OS Protected from them 
– Processes provides memory protection 
– Threads more efficient than processes (later) 

• Fundamental tradeoff between protection and efficiency 
• Communication easier within a process 
• Communication harder between processes 

• Application instance consists of one or more processes 



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Protection

• Operating System must protect itself from user programs 
– Reliability: compromising the operating system generally causes 

it to crash 
– Security: limit the scope of what processes can do 
– Privacy: limit each process to the data it is permitted to access 
– Fairness: each should be limited to its appropriate share of 

system resources (CPU time, memory, I/O, etc) 
• It must protect User programs from one another 
• Primary Mechanism: limit the translation from program 

address space to physical memory space 
– Can only touch what is mapped into process address space 

• Additional Mechanisms: 
– Privileged instructions, in/out instructions, special registers 
– syscall processing, subsystem implementation  

» (e.g., file access rights, etc) 



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Fourth OS Concept:  Dual Mode Operation

• Hardware provides at least two modes: 
– “Kernel” mode (or “supervisor” or “protected”) 
– “User” mode: Normal programs executed  

• What is needed in the hardware to support “dual mode” 
operation? 
– a bit of state (user/system mode bit) 
– Certain operations / actions only permitted in system/kernel 
mode 

» In user mode they fail or trap 
– User->Kernel transition sets system mode AND saves the user 
PC 

» Operating system code carefully puts aside user state then 
performs the necessary operations 

– Kernel->User transition clears system mode AND restores 
appropriate user PC 

» return-from-interrupt



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 27

For example: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 28

User/Kernal(Priviledged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Simple Protection: Base and Bound (B&B)

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program 
address

Base

Bound <

1000…

1100…
1100…

>=

• Requires relocating loader 
• Still protects OS and isolates pgm 
• No addition on address path



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Another idea: Address Space Translation

• Program operates in an address space that is distinct 
from the physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al
 a

dd
re

ss
”



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 31

A simple address translation with Base and Bound

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program 
address

Base Address

Bound <

1000…

1100…0100…

• Can the program touch OS? 
• Can it touch other programs?



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Tying it together: Simple B&B: OS loads process

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Simple B&B: OS gets ready to switch

• Priv Inst: set 
special registers 

• RTU

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 34

Simple B&B: “Return” to User

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to return to 

system?

0001…



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 35

3 types of Mode Transfer

• Syscall 
– Process requests a system service, e.g., exit 
– Like a function call, but “outside” the process 
– Does not have the address of the system function to call 
– Like a Remote Procedure Call (RPC) – for later 
– Marshall the syscall id and args in registers and exec syscall 

• Interrupt 
– External asynchronous event triggers context switch 
– eg. Timer, I/O device 
– Independent of user process 

• Trap or Exception 
– Internal synchronous event in process triggers context switch 
– e.g., Protection violation (segmentation fault), Divide by zero, … 

• All 3 are an UNPROGRAMMED CONTROL TRANSFER 
– Where does it go?



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 36

How do we get the system target address 
of the “unprogrammed control transfer?”



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Interrupt Vector

interrupt number 
(i)

intrpHandler_i () { 
 …. 
}

Address and properties 
of each interrupt 
handler



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Simple B&B: User => Kernel

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…
• How to return to 

system?

0000 1234



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 39

Simple B&B: Interrupt

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound
0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save 

registers and set 
up system stack?

IntrpVector[i]



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 40

Simple B&B: Switch User Process

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound
0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save 

registers and set 
up system stack?

0001 0124

1000 …

1100 …
0000 1234

regs
00FF…

RTU



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 41

Simple B&B: “resume”

OS

Proc 
1

Proc 
2

Proc 
n…

code

Static Data
heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound
xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save 

registers and set 
up system stack?

000 0248

1000 …

1100 …
0000 1234

regs
00FF…

RTU



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 42

What’s wrong with this simplistic address translation 
mechanism?



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 43

x86 – segments and stacks

CS EIP

SS ESP

DS

ECXES

EDX

ESI

EDI 

EAX

EBX

code

Static Data
heap

stack

code

Static Data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length 
and access rights 
associated with each 
segment



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 44

Virtual Address Translation

• Simpler, more useful schemes too! 
• Give every process the illusion of its own BIG 

FLAT ADDRESS SPACE 
– Break it into pages 
– More on this later



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 45

Providing Illusion of Separate Address Space: 
Load new Translation Map on Switch

Prog 1 
Virtual 
Address 
Space 1

Prog 2 
Virtual 
Address 
Space 2

Code 
Data 
Heap 
Stack

Code 
Data 
Heap 
Stack

Data 2

Stack 1

Heap 1

OS heap &  
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space



8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 46

Conclusion: Four fundamental OS concepts

• Thread 
– Single unique execution context 
– Program Counter, Registers, Execution Flags, Stack 

• Address Space w/ Translation 
– Programs execute in an address space that is distinct from the 

memory space of the physical machine 
• Process 

– An instance of an executing program is a process consisting of an 
address space and one or more threads of control 

• Dual Mode operation/Protection 
– Only the “system” has the ability to access certain resources 
– The OS and the hardware are protected from user programs and 

user programs are isolated from one another by controlling the 
translation from program virtual addresses to machine physical 
addresses


