
CS162 
Operating Systems and  
Systems Programming  

Lecture 19  
  

File Systems (Con’t), 
MMAP, Buffer Cache

November 4th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: Building a File System
• File System: Layer of OS that transforms block interface

of disks (or other block devices) into Files, Directories, etc.
• File System Components

– Disk Management: collecting disk blocks into files
– Naming: Interface to find files by name, not by blocks
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite crashes,
media failures, attacks, etc

• User vs. System View of a File
– User’s view:

» Durable Data Structures
– System’s view (system call interface):

» Collection of Bytes (UNIX)
» Doesn’t matter to system what kind of data structures you want

to store on disk!
– System’s view (inside OS):

» Collection of blocks (a block is a logical transfer unit, while a
sector is the physical transfer unit)

» Block size ≥ sector size; in UNIX, block size is 4KB

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Recall: Characteristics of Files

• Most files are small
• Most of the space is occupied

by the rare big ones

4/8/15 Kubiatowicz CS162 ©UCB Spring 2015 4

Recall: Multilevel Indexed Files (Original 4.1 BSD)
• Sample file in multilevel  

indexed format:
– 10 direct ptrs, 1K blocks
– How many accesses for  
block #23? (assume file  
header accessed on open)?

» Two: One for indirect block,  
one for data

– How about block #5?
» One: One for data

– Block #340?
» Three: double indirect block,  

indirect block, and data
• UNIX 4.1 Pros and cons

– Pros: Simple (more or less)  
 Files can easily expand (up to a point)  
 Small files particularly cheap and easy

– Cons: Lots of seeks 
 Very large files must read many indirect block (four I/Os per
block!)

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 5

UNIX BSD 4.2
• Same as BSD 4.1 (same file header and triply indirect

blocks), except incorporated ideas from Cray DEMOS:
– Uses bitmap allocation in place of freelist
– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned next slide)

• Problem: When create a file, don’t know how big it will
become (in UNIX, most writes are by appending)
– How much contiguous space do you allocate for a file?
– In BSD 4.2, just find some range of free blocks

» Put each new file at the front of different range
» To expand a file, you first try successive blocks in bitmap,

then choose new range of blocks
– Also in BSD 4.2: store files from same directory near
each other

• Fast File System (FFS)
– Allocation and placement policies for BSD 4.2

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay

– Issue: Read one block, do processing, and read next block. In
meantime, disk has continued turning: missed next block! Need
1 revolution/block!

– Solution1: Skip sector positioning (“interleaving”)
» Place the blocks from one file on every other block of a track:

give time for processing to overlap rotation
– Solution2: Read ahead: read next block right after first, even
if application hasn’t asked for it yet.

» This can be done either by OS (read ahead)
» By disk itself (track buffers). Many disk controllers have internal

RAM that allows them to read a complete track
• Important Aside: Modern disks+controllers do many complex

things “under the covers”
– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Where are inodes stored?

• In early UNIX and DOS/Windows’ FAT file system,
headers stored in special array in outermost
cylinders
– Header not stored anywhere near the data blocks. To
read a small file, seek to get header, seek back to
data.

– Fixed size, set when disk is formatted. At formatting
time, a fixed number of inodes were created (They
were each given a unique number, called an “inumber”)

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Where are inodes stored?

• Later versions of UNIX moved the header information to
be closer to the data blocks
– Often, inode for file stored in same “cylinder group” as
parent directory of the file (makes an ls of that directory
run fast).

– Pros:
» UNIX BSD 4.2 puts a portion of the file header array on each

of many cylinders. For small directories, can fit all data, file
headers, etc. in same cylinder ⇒ no seeks!

» File headers much smaller than whole block (a few hundred
bytes), so multiple headers fetched from disk at same time

» Reliability: whatever happens to the disk, you can find many of
the files (even if directories disconnected)

– Part of the Fast File System (FFS)
» General optimization to avoid seeks

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 9

4.2 BSD Locality: Block Groups

• File system volume is divided into a
set of block groups
– Close set of tracks

• Data blocks, metadata, and free
space interleaved within block group
– Avoid huge seeks between user data

and system structure
• Put directory and its files in common

block group
• First-Free allocation of new  

file blocks
– To expand file, first try  

successive blocks in bitmap, then
choose new range of blocks

– Few little holes at start, big sequential
runs at end of group

– Avoids fragmentation
– Sequential layout for big files

• Important: keep 10% or more free!
– Reserve space in the BG

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 10

FFS First Fit Block Allocation

• Fills in the small holes at the start of block group
• Avoids fragmentation, leaves contiguous free space

at end

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 11

FFS

• Pros
– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data

• Cons
– Inefficient for tiny files (a 1 byte file requires
both an inode and a data block)

– Inefficient encoding when file is mostly contiguous
on disk (no equivalent to superpages)

– Need to reserve 10-20% of free space to prevent
fragmentation

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Linux Example: Ext2/3 Disk Layout

• Disk divided into block
groups
– Provides locality
– Each group has two block-
sized bitmaps (free
blocks/inodes)

– Block sizes settable  
at format time:  
1K, 2K, 4K, 8K…

• Actual Inode structure
similar to 4.2BSD
– with 12 direct pointers

• Ext3: Ext2 w/Journaling
– Several degrees of
protection with more or
less cost • Example: create a file1.dat  

under /dir1/ in Ext3

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 13

A bit more on directories

• Stored in files, can be read, but typically don’t
– System calls to access directories
– Open / Creat traverse the structure
– mkdir /rmdir add/remove entries
– Link / Unlink

» Link existing file to a directory
» Forms a DAG

• When can file be deleted?
– Maintain ref-count of links to the file
– Delete after the last reference is gone.

• libc support
– DIR * opendir (const char *dirname)
– struct dirent * readdir (DIR *dirstream)
– int readdir_r (DIR *dirstream, struct dirent *entry,  
 struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Links

• Hard link
– Sets another directory entry to contain the file
number for the file

– Creates another name (path) for the file
– Each is “first class”

• Soft link or Symbolic Link
– Directory entry contains the name of the file
– Map one name to another name

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Large Directories: B-Trees (dirhash)

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Administrivia

• Midterm Grades
• HW grades?
• GHW status?

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 17

NTFS

• New Technology File System (NTFS)
– Common on Microsoft Windows systems

• Variable length extents
– Rather than fixed blocks

• Everything (almost) is a sequence of
<attribute:value> pairs
– Meta-data and data

• Mix direct and indirect freely
• Directories organized in B-tree structure by default

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 18

NTFS

• Master File Table
– DataBase with Flexible 1KB entries for metadata/data
– Variable-sized attribute records (data or metadata)
– Extend with variable depth tree (non-resident)

• Extents – variable length contiguous regions
– Block pointers cover runs of blocks
– Similar approach in Linux (ext4)
– File create can provide hint as to size of file

• Journalling for reliability
– Discussed later

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 19

NTFS Small File

Create time, modify time, access time,
Owner id, security specifier, flags (ro, hid, sys)

data attribute

Attribute list

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 20

NTFS Medium File

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 21

NTFS Multiple Indirect Blocks

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 22

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 23

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 24

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes

In-Memory File System Structures

4/8/15 Kubiatowicz CS162 ©UCB Spring 2015 25

Authorization: Who Can Do What?

• How do we decide who is  
authorized to do actions in the  
system?

• Access Control Matrix: contains 
all permissions in the system
– Resources across top

» Files, Devices, etc…

– Domains in columns
» A domain might be a user or a  

group of users
» E.g. above: User D3 can read F2 or

execute F3

– In practice, table would be huge and
sparse!

4/8/15 Kubiatowicz CS162 ©UCB Spring 2015 26

Authorization: Two Implementation Choices
• Access Control Lists: store permissions with object

– Still might be lots of users!
– UNIX limits each file to: r,w,x for owner, group, world
– More recent systems allow definition of groups of users and
permissions for each group

– ACLs allow easy changing of an object’s permissions
» Example: add Users C, D, and F with rw permissions

• Capability List: each process tracks which objects has
permission to touch
– Popular in the past, idea out of favor today
– Consider page table: Each process has list of pages it has
access to, not each page has list of processes …

– Capability lists allow easy changing of a domain’s permissions
» Example: you are promoted to system administrator and should

be given access to all system files

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Memory Mapped Files

• Traditional I/O involves explicit transfers
between buffers in process address space to
regions of a file
– This involves multiple copies into caches in memory,
plus system calls

• What if we could “map” the file directly into an
empty region of our address space
– Implicitly “page it in” when we read it
– Write it and “eventually” page it out

• Executable file is treated this way when we exec
the process !!

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Recall: Who does what, when?

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Using Paging to mmap files

virtual address

MMU PT instruction

physical address
page#

frame#

offset
page fault

Process

File

mmap file to region of VAS

Create PT entries
for mapped region
as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 30

mmap system call

• May map a specific region or let the system find one for
you
– Tricky to know where the holes are

• Used both for manipulating files and for sharing between
processes

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 31

An example
#include <sys/mman.h>

int something = 162;

int main (int argc, char *argv[]) {
 int myfd;
 char *mfile;

 printf("Data at: %16lx\n", (long unsigned int) &something);
 printf("Heap at : %16lx\n", (long unsigned int) malloc(1));
 printf("Stack at: %16lx\n", (long unsigned int) &mfile);

 /* Open the file */
 myfd = open(argv[1], O_RDWR | O_CREATE);
 if (myfd < 0) { perror((“open failed!”);exit(1); }

 /* map the file */
 mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);
 if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

 printf("mmap at : %16lx\n", (long unsigned int) mfile);

 puts(mfile);
 strcpy(mfile+20,"Let's write over it");
 close(myfd);
 return 0;
}

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 33

File System Caching

• Key Idea: Exploit locality by caching data in memory
– Name translations: Mapping from paths→inodes
– Disk blocks: Mapping from block address→disk content

• Buffer Cache: Memory used to cache kernel resources, including
disk blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Replacement policy? LRU
– Can afford overhead of timestamps for each disk block
– Advantages:

» Works very well for name translation
» Works well in general as long as memory is big enough to accommodate

a host’s working set of files.
– Disadvantages:

» Fails when some application scans through file system, thereby flushing
the cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies
– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 34

File System Caching (con’t)

• Cache Size: How much memory should the OS allocate to the
buffer cache vs virtual memory?
– Too much memory to the file system cache ⇒ won’t be able to
run many applications at once

– Too little memory to file system cache ⇒ many applications
may run slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk access
rates for paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early
– Key Idea: exploit fact that most common file access is
sequential by prefetching subsequent disk blocks ahead of
current read request (if they are not already in memory)

– Elevator algorithm can efficiently interleave groups of
prefetches from concurrent applications

– How much to prefetch?
» Too many imposes delays on requests by other applications
» Too few causes many seeks (and rotational delays) among

concurrent file requests

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 35

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent out to

disk
– Instead, write() copies data from user space buffer to
kernel buffer (in cache)

» Enabled by presence of buffer cache: can leave written file
blocks in cache for a while

» If some other application tries to read data before written to
disk, file system will read from cache

– Flushed to disk periodically (e.g. in UNIX, every 30 sec)
– Advantages:

» Disk scheduler can efficiently order lots of requests
» Disk allocation algorithm can be run with correct size value for a

file
» Some files need never get written to disk! (e..g temporary

scratch files written /tmp often don’t exist for 30 sec)
– Disadvantages

» What if system crashes before file has been written out?
» Worse yet, what if system crashes before a directory file has

been written out? (lose pointer to inode!)

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Important “ilities”
• Availability: the probability that the system can accept and

process requests
– Often measured in “nines” of probability. So, a 99.9%
probability is considered “3-nines of availability”

– Key idea here is independence of failures
• Durability: the ability of a system to recover data despite

faults
– This idea is fault tolerance applied to data
– Doesn’t necessarily imply availability: information on pyramids
was very durable, but could not be accessed until discovery of
Rosetta Stone

• Reliability: the ability of a system or component to perform
its required functions under stated conditions for a specified
period of time (IEEE definition)
– Usually stronger than simply availability: means that the system
is not only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability
– Must make sure data survives system crashes, disk crashes,
other problems

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 37

How to make file system durable?
• Disk blocks contain Reed-Solomon error correcting codes (ECC) to

deal with small defects in disk drive
– Can allow recovery of data from small media defects

• Make sure writes survive in short term
– Either abandon delayed writes or
– use special, battery-backed RAM (called non-volatile RAM or
NVRAM) for dirty blocks in buffer cache.

• Make sure that data survives in long term
– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck by

lightning….
» Could put copies on servers in different continents…

• RAID: Redundant Arrays of Inexpensive Disks
– Data stored on multiple disks (redundancy)
– Either in software or hardware

» In hardware case, done by disk controller; file system may not even
know that there is more than one disk in use

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 38

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its "shadow“
– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:
– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully
synchronized (hard to do exactly)

• Reads may be optimized
– Can have two independent reads to same data

• Recovery:
– Disk failure ⇒ replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be used
for immediate replacement

recovery
group

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 39

• Data stripped across  
multiple disks
– Successive blocks  
stored on successive  
(non-parity) disks

– Increased bandwidth 
over single disk

• Parity block (in green)  
constructed by XORing  
data bocks in stripe
– P0=D0⊕D1⊕D2⊕D3
– Can destroy any one  
disk and still  
reconstruct data

– Suppose D3 fails,  
then can reconstruct: 
D3=D0⊕D1⊕D2⊕P0

• Later in term: talk about spreading information widely across
internet for durability.

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

11/9/15 Kubiatowicz CS162 ©UCB Fall 2015 40

Higher Durability/Reliability through Geographic Replication

• Highly durable – hard to destroy bits
• Highly available for reads
• Low availability for writes

– Can’t write if any one is not up
– Or – need relaxed consistency model

• Reliability?

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 41

File System Summary (1/2)
• File System:

– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”
• Naming: act of translating from user-visible names to actual

system resources
– Directories used for naming for local file systems
– Linked or tree structure stored in files

• Multilevel Indexed Scheme
– inode contains file info, direct pointers to blocks, indirect blocks,

doubly indirect, etc..
– NTFS uses variable extents, rather than fixed blocks, and tiny files

data is in the header
• 4.2 BSD Multilevel index files

– Inode contains pointers to actual blocks, indirect blocks, double
indirect blocks, etc.

– Optimizations for sequential access: start new files in open ranges of
free blocks, rotational Optimization

11/4/15 Kubiatowicz CS162 ©UCB Fall 2015 42

File System Summary (2/2)

• File layout driven by freespace management
– Integrate freespace, inode table, file blocks and
directories into block group

• Deep interactions between memory management, file
system, and sharing
– mmap(): map file or anonymous segment to memory
– ftok/shmget/shmat: Map (anon) shared-memory segments

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations
– Can contain “dirty” blocks (blocks yet on disk)

• Important system properties
– Availability: how often is the resource available?
– Durability: how well is data preserved against faults?
– Reliability: how often is resource performing correctly?

