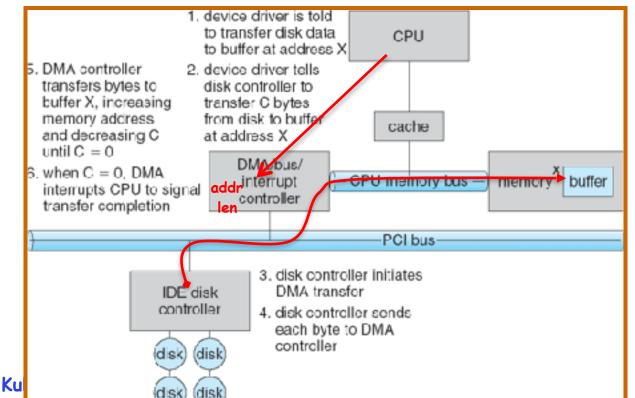
CS162 Operating Systems and Systems Programming Lecture 17

Performance Storage Devices, Queueing Theory

October 10th, 2015 Prof. John Kubiatowicz http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course taught by John Kubiatowicz at Berkeley, with few minor updates/changes. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide, in which case a full list of references is provided on the last slide.


Recall: Memory-Mapped Display Controller

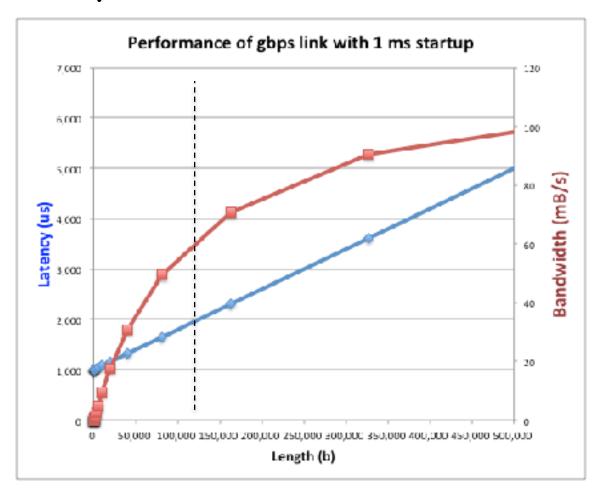
Memory-Mapped: - Hardware maps control registers and display memory into physical address space	Graphics Command
 Addresses set by hardware jumpers or programming at boot time 0x80010000 Simply writing to display memory (also called the "frame buffer") changes image on screen 	Queue Display Memory
 » Addr: 0x8000F000—0x8000FFFF Ox8000F000 Writing graphics description to command-queue area » Say enter a set of triangles that describe 0x0007F004 0x0007F000 	Command Status
 » Addr: 0x80010000—0x8001FFFF - Writing to the command register may cause on board graphics hardware to do something » Say render the above scene » Addr: 0x0007F004 Can protect with address translation 	sical Address

•

Transferring Data To/From Controller

- Programmed I/O:
 - Each byte transferred via processor in/out or load/store
 - Pro: Simple hardware, easy to program
 - Con: Consumes processor cycles proportional to data size
- Direct Memory Access:
 - Give controller access to memory bus
 - Ask it to transfer data blocks to/from memory directly
- Sample interaction with DMA controller (from OSC):

- Finish discussion of device interfaces
- Discussion of performance
- Disks and SSDs
 - Hardware performance parameters
 - Queuing Theory


Note: Some slides and/or pictures in the following are adapted from slides ©2005 Silberschatz, Galvin, and Gagne. Many slides generated from my lecture notes by Kubiatowicz. 10/28/15 Kubiatowicz CS162 ©UCB Fall 2015

- Response Time or Latency: Time to perform an operation (s)
- Bandwidth or Throughput: Rate at which operations are performed (op/s)
 - Files: mB/s, Networks: mb/s, Arithmetic: GFLOP/s
- Start up or "Overhead": time to initiate an operation
- Most I/O operations are roughly linear

- Latency (n) = Ovhd + n/Bandwidth

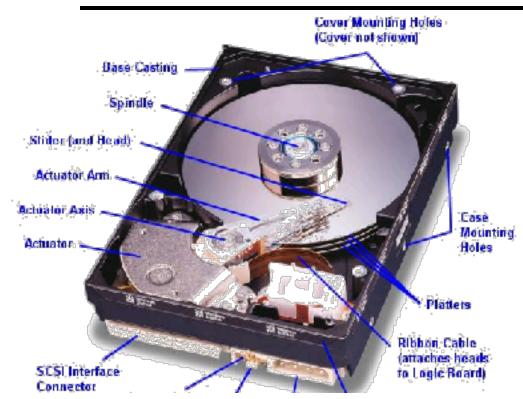
Example (fast network)

- Consider a gpbs link (125 MB/s)
 - With a startup cost S = 1 ms

Example: at 10 ms startup (like Disk)

- Bus Speed
 - PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
 - ULTRA WIDE SCSI: 40 MB/s
 - Serial Attached SCSI & Serial ATA & IEEE 1394 (firewire) : 1.6 Gbps full duplex (200 MB/s)
 - USB 1.5 12 MB/s
- Device Transfer Bandwidth
 - Rotational speed of disk
 - Write / Read rate of NAND flash
 - Signaling rate of network link
- Whatever is the bottleneck in the path

- Magnetic disks
 - Storage that rarely becomes corrupted
 - Large capacity at low cost
 - Block level random access (except for SMR later!)
 - Slow performance for random access
 - Better performance for streaming access
- Flash memory
 - Storage that rarely becomes corrupted
 - Capacity at intermediate cost (50x disk ???)
 - Block level random access
 - Good performance for reads; worse for random writes
 - Erasure requirement in large blocks
 - Wear patterns


Are we in an inflection point?

An Accelerating Trend towards PC SSD

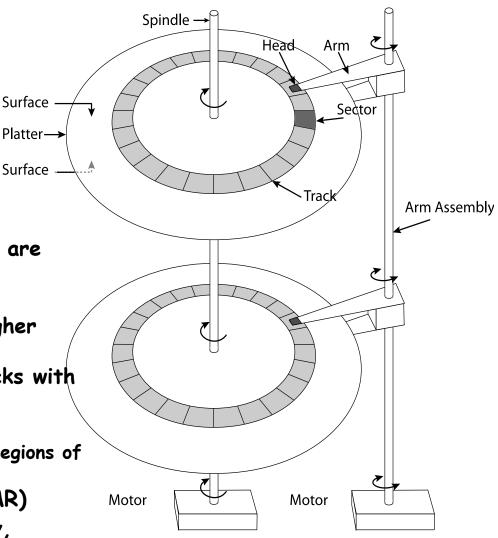
10/28/15

Hard Disk Drives (HDDs)

Western Digital Drive http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986) 30 MB hard disk - \$500 30-40ms seek time 0.7-1 MB/s (est.)

Read/Write Head Side View

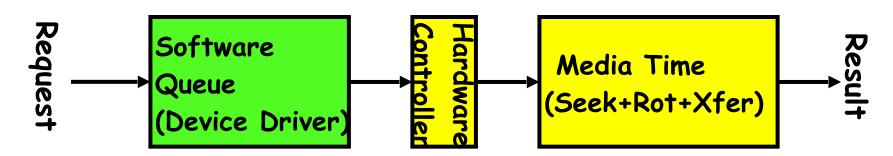


IBM/Hitachi Microdrive

10/28/15

The Amazing Magnetic Disk

- Unit of Transfer: Sector
 - Ring of sectors form a track
 - Stack of tracks form a cylinder
 - Heads position on cylinders
- Disk Tracks ~ 1μ m (micron) wide
 - Wavelength of light is ~ $0.5\mu m$
 - Resolution of human eye: 50μ m
 - 100K on a typical 2.5" disk
- Separated by unused guard regions
 - Reduces likelihood neighboring tracks are corrupted during writes
 - Track length varies across disk
 - Outside: More sectors per track, higher bandwidth
 - Disk is organized into regions of tracks with same # of sectors/track
 - Only outer half of radius is used
 - » Most of the disk area in the outer regions of the disk
- New: Shingled Magnetic Recording (SMR)
 - Overlapping tracks \Rightarrow greater density, restrictions on writing
- Seagate (8TB), Hitachi (10TB) 10/28/15 Kubiatowi



Magnetic Disk Characteristic

Cylinder: all the tracks under the head at a given point on all surfaces
Read/write: three-stage process:

Seek time: position the head/arm over the proper track (into proper cylinder)
Rotational latency: wait for the desired sector to rotate under the read/write head
Transfer time: transfer a block of bits (sector) under the read-write head

Disk Latency = Queuing Time + Controller time + Seek Time + Rotation Time + Xfer Time

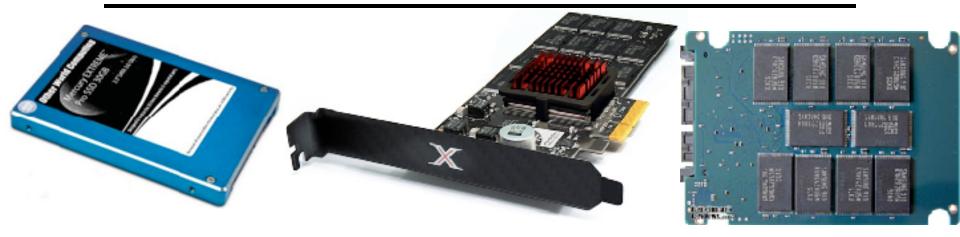
- Highest Bandwidth:
 - Transfer large group of blocks sequentially from one track

10/28/15

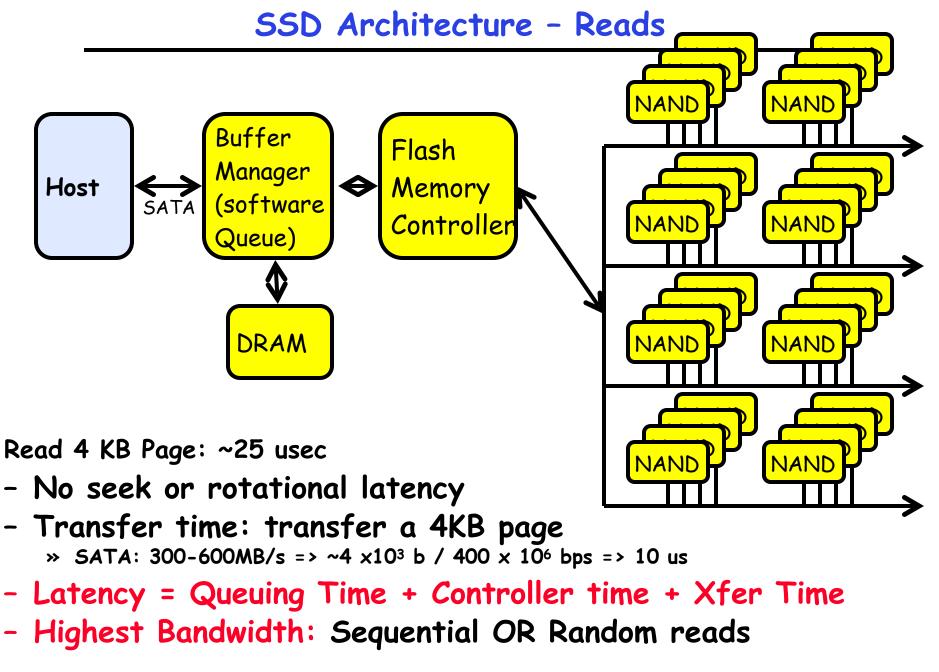
Typical Numbers for Magnetic Disk

Parameter	Info / Range	
Space/Density	Space: 8TB (Seagate), 10TB (Hitachi) in 3½ inch form factor! (Introduced in Fall of 2014) Areal Density: ≥ 1Terabit/square inch! (SMR, Helium,)	
Average seek time	Typically 5-10 milliseconds. Depending on reference locality, actual cost may be 25-33% of this number.	
Average rotational latency	Most laptop/desktop disks rotate at 3600-7200 RPM (16-8 ms/rotation). Server disks up to 15,000 RPM. Average latency is halfway around disk yielding corresponding times of 8-4 milliseconds	
Controller time	Depends on controller hardware	
Transfer time	Typically 50 to 100 MB/s. Depends on: • Transfer size (usually a sector): 512B – 1KB per sector • Rotation speed: 3600 RPM to 15000 RPM • Recording density: bits per inch on a track • Diameter: ranges from 1 in to 5.25 in	
Cost	Drops by a factor of two every 1.5 years (or even faster). \$0.03-0.07/GB in 2013	
/28/15	Kubiatowicz CS162 ©UCB Fall 2015 14	

Disk Performance Example

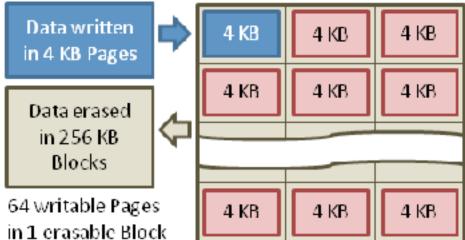

• Assumptions:

- Ignoring queuing and controller times for now
- Avg seek time of 5ms,
- 7200RPM \Rightarrow Time for rotation: 60000(ms/M)/7200(rev/M) ~= 8ms
- Transfer rate of 4MByte/s, sector size of 1 Kbyte ⇒
 1024 bytes/4×10⁶ (bytes/s) = 256 × 10⁻⁶ sec ≅ .26 ms
- Read sector from random place on disk:
 - Seek (5ms) + Rot. Delay (4ms) + Transfer (0.26ms)
 - Approx 10ms to fetch/put data: 100 KByte/sec
- Read sector from random place in same cylinder:
 - Rot. Delay (4ms) + Transfer (0.26ms)
 - Approx 5ms to fetch/put data: 200 KByte/sec
- Read next sector on same track:
 - Transfer (0.26ms): 4 MByte/sec
- Key to using disk effectively (especially for file systems) is to minimize seek and rotational delays


Intelligence in the controller

- Sectors contain sophisticated error correcting codes
 - Disk head magnet has a field wider than track
 - Hide corruptions due to neighboring track writes
- Sector sparing
 - Remap bad sectors transparently to spare sectors on the same surface
- Slip sparing
 - Remap all sectors (when there is a bad sector) to preserve sequential behavior
- Track skewing
 - Sector numbers offset from one track to the next, to allow for disk head movement for sequential ops

Solid State Disks (SSDs)


- 1995 Replace rotating magnetic media with non-volatile memory (battery backed DRAM)
- 2009 Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
 - Sector (4 KB page) addressable, but stores 4-64 "pages" per memory block
 - Trapped electrons distinguish between 1 and 0
- No moving parts (no rotate/seek motors)
 - Eliminates seek and rotational delay (0.1-0.2ms access time)
 - Very low power and lightweight
 - Limited "write cycles"
- Rapid advance in capacity and cost ever since

10/28/15

SSD Architecture - Writes (I)

- Writing data is complex! (~200µs 1.7ms)
 - Can only write empty pages in a block
 - Erasing a block takes ~1.5ms
 - Controller maintains pool of empty blocks by coalescing used pages (read, erase, write), also reserves some % of capacity
- Rule of thumb: writes 10x reads, erasure 10x writes

Typical NAND Flash Pages and Blocks

https://en.wikipedia.org/wiki/Solid-state_drive

10/28/15

- Actually, "Yes", but not by much
- Flash works by trapping electrons:
 - So, erased state lower energy than written state
- Assuming that:
 - Kindle has 4GB flash
 - $\frac{1}{2}$ of all bits in full Kindle are in high-energy state
 - High-energy state about 10⁻¹⁵ joules higher
 - Then: Full Kindle is 1 attogram (10⁻¹⁸gram) heavier (Using E = mc²)
- Of course, this is less than most sensitive scale (which can measure 10⁻⁹grams)
- Of course, this weight difference overwhelmed by battery discharge, weight from getting warm,
- According to John Kubiatowicz, New York Times, Oct 24, 2011

10/28/15

Storage Performance & Price (jan 13)

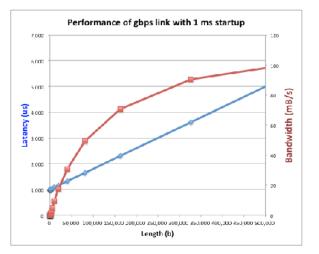
	Bandwidth (Sequential R/W)	Cost/GB	Size
HDD ²	50-100 MB/s	\$0.03-0.07/GB	2-4 TB
SSD ^{1,2}	200-550 MB/s (SATA) 6 GB/s (read PCI) 4.4 GB/s (write PCI)	\$0.87-1.13/GB	200GB-1TB
DRAM ²	10-16 GB/s	\$4-14*/GB	64GB-256GB
		*SK Hynix 9/4/13 fire	

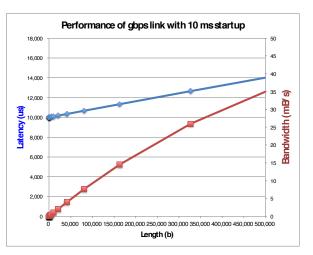
<u>http://www.fastestssd.com/featured/ssd-rankings-the-fastest-solid-state-drives/</u>

²http://www.extremetech.com/computing/164677-storage-pricewatch-hard-drive-and-ssd-prices-drop-making-for-a-good-time-to-buy

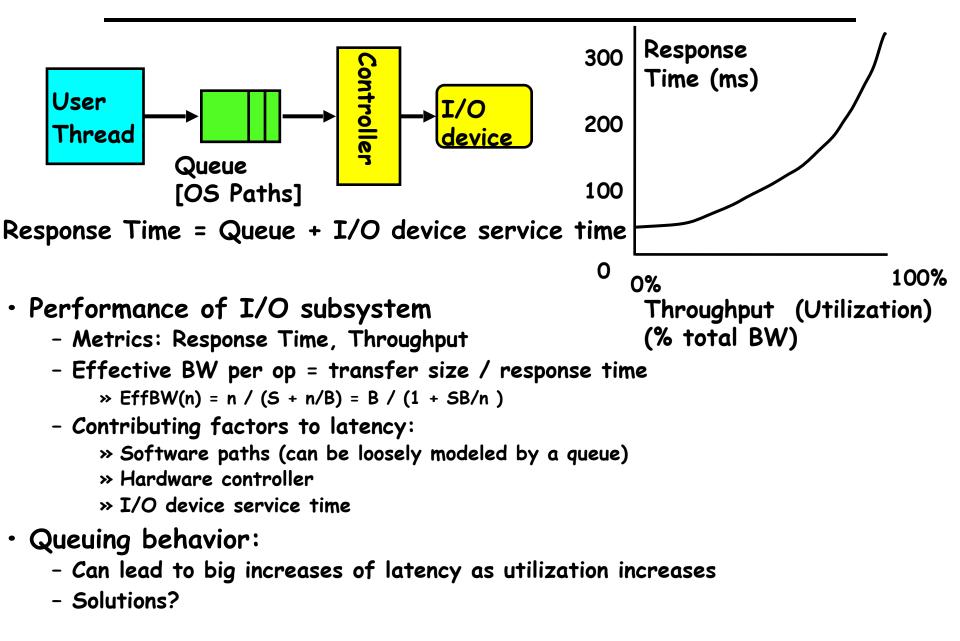
BW: SSD up to x10 than HDD, DRAM > x10 than SSD Price: HDD x20 less than SSD, SSD x5 less than DRAM

- Pros (vs. hard disk drives):
 - Low latency, high throughput (eliminate seek/rotational delay)
 - No moving parts:

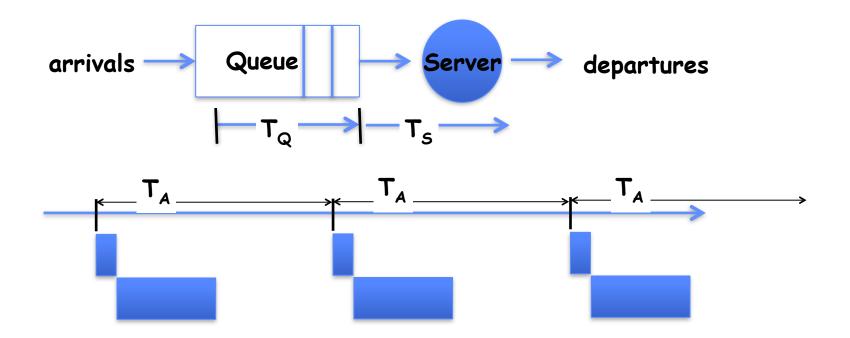

» Very light weight, low power, silent, very shock insensitive


- Read at memory speeds (limited by controller and I/O bus)
- Cons
 - Small storage (0.1-0.5× disk), expensive (20× disk ???)
 - » Hybrid alternative: combine small SSD with large HDD
 - Asymmetric block write performance: read pg/erase/write pg
 » Controller garbage collection (GC) algorithms have major effect on performance
 - Limited drive lifetime
 - » 1-10K writes/page for MLC NAND
 - » Avg failure rate is 6 years, life expectancy is 9–11 years
- These are changing rapidly

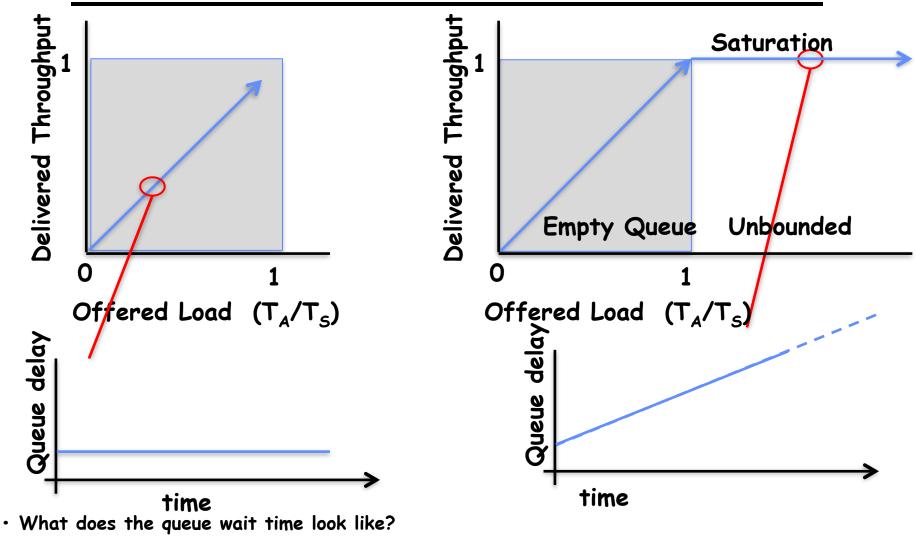
10/28/15


What goes into startup cost for I/O?

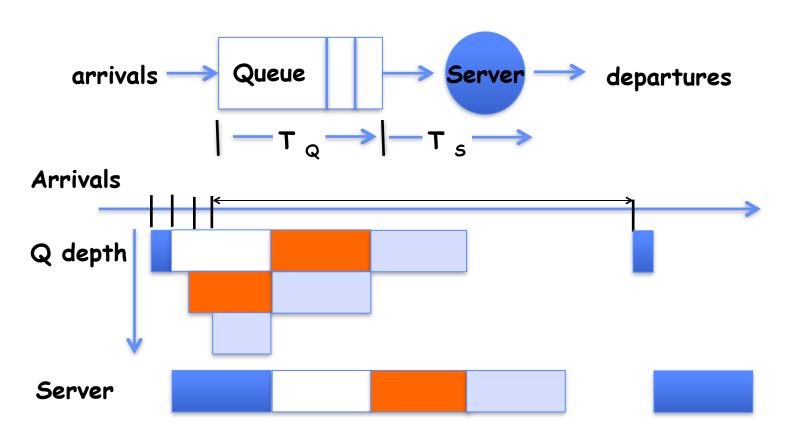
- Syscall overhead
- Operating system processing
- Controller Overhead
- Device Startup
 - Mechanical latency for a disk
 - Media Access + Speed of light + Routing for network
- · Queuing (next topic)



I/O Performance

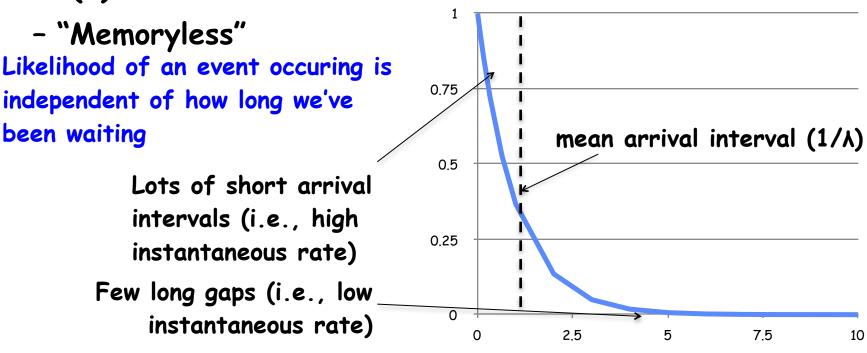

A Simple Deterministic World

- Assume requests arrive at regular intervals, take a fixed time to process, with plenty of time between ...
- Service rate ($\mu = 1/T_s$) operations per sec
- Arrival rate: $(\Lambda = 1/T_A)$ requests per second
- Utilization: U = λ/μ , where $\lambda < \mu$


10/28/15

A Ideal Linear World

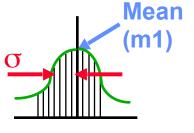
– Grows unbounded at a rate ~ (T_s/T_A) till request rate subsides


A Bursty World

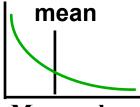
- Requests arrive in a burst, must queue up till served
- Same average arrival time, but almost all of the requests experience large queue delays
- Even though average utilization is low

So how do we model the burstiness of arrival?

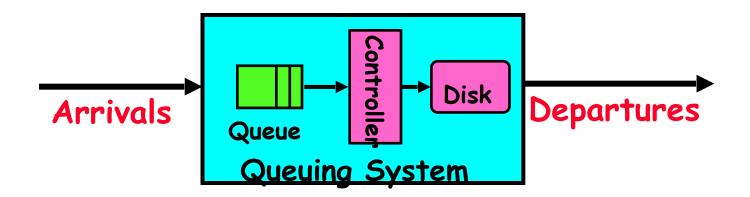
- Elegant mathematical framework if you start with exponential distribution
 - Probability density function of a continuous random variable with a mean of $1/\lambda$


10/28/15

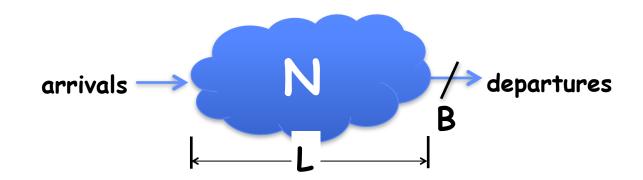
Kubiatowicz CS162 ©UCB Fall 2015


× (λ)

Background: General Use of random distributions


- Server spends variable time with customers
 - Mean (Average) m1 = $\Sigma p(T) \times T$
 - Variance $\sigma^2 = \Sigma p(T) \times (T-m1)^2 = \Sigma p(T) \times T^2 m1^2$
 - Squared coefficient of variance: $C = \sigma^2/m1^2$ ⁽ Aggregate description of the distribution.
- Important values of C:
 - No variance or deterministic \Rightarrow C=0
 - "memoryless" or exponential $\Rightarrow C=1$
 - » Past tells nothing about future
 - » Many complex systems (or aggregates) well described as memoryless
 - Disk response times $C \approx 1.5$ (majority seeks < avg)

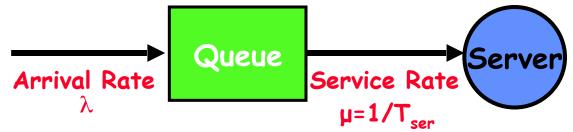
Distribution of service times



Memoryless

- What about queuing time??
 - Let's apply some queuing theory
 - Queuing Theory applies to long term, steady state behavior ⇒ Arrival rate = Departure rate
- Arrivals characterized by some probabilistic distribution
- Departures characterized by some probabilistic distribution

Little's Law



- In any stable system
 - Average arrival rate = Average departure rate
- the average number of tasks in the system (N) is equal to the throughput (B) times the response time (L)
- N (ops) = B (ops/s) × L (s)
- Regardless of structure, bursts of requests, variation in service
 - instantaneous variations, but it washes out in the average
 - Overall requests match departures

10/28/15

A Little Queuing Theory: Some Results

- Assumptions:
 - System in equilibrium; No limit to the queue
 - Time between successive arrivals is random and memoryless

• Parameters that describe our system:

 $\begin{array}{ll} -\lambda: & \text{mean number of arriving customers/second} \\ -T_{ser}: & \text{mean time to service a customer ("m1")} \end{array}$

- C: squared coefficient of variance = $\sigma^2/m1^2$

- u: server utilization (
$$0 \le u \le 1$$
): $u = \lambda / \mu = \lambda \times T_{ser}$

- Parameters we wish to compute:
 - Time spent in queue

Length of queue =
$$\lambda \times T_q$$
 (by Little's law)

• Results

- T_a:

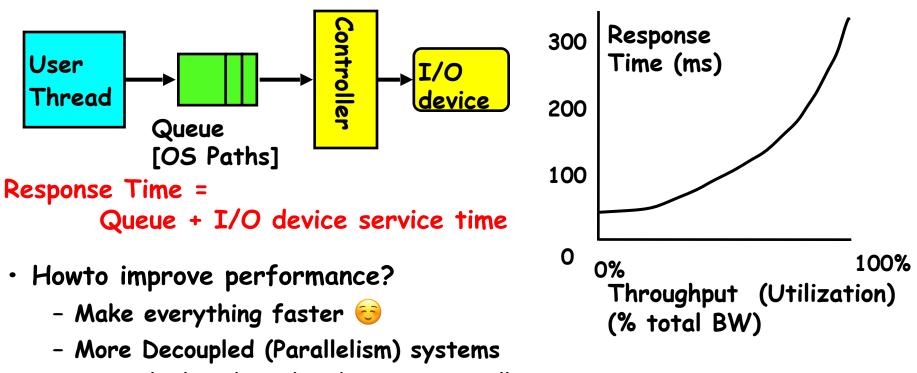
- 6:

- Memoryless service distribution (C = 1):
 » Called M/M/1 queue: T_a = T_{ser} × u/(1 u)
- General service distribution (no restrictions), 1 server: » Called M/G/1 queue: $T_q = T_{ser} \times \frac{1}{2}(1+C) \times u/(1-u)$)

Kubiatowicz CS162 ©UCB Fall 2015

10/28/15

A Little Queuing Theory: An Example


- Example Usage Statistics:
 - User requests 10 x 8KB disk I/Os per second
 - Requests & service exponentially distributed (C=1.0)
 - Avg. service = 20 ms (From controller+seek+rot+trans)
- Questions:
 - How utilized is the disk?

```
» Ans: server utilization, \mathbf{u} = \lambda \mathbf{T}_{ser}
```

- What is the average time spent in the queue?
 » Ans: T_a
- What is the number of requests in the queue? » Ans: L_a
- What is the avg response time for disk request? » Ans: $T_{sys} = T_q + T_{ser}$
- Computation:

 $\lambda \quad (avg \ \# \ arriving \ customers/s) = 10/s$ $T_{ser} \quad (avg \ time \ to \ service \ customer) = 20 \ ms \ (0.02s)$ $u \quad (server \ utilization) = \lambda \times T_{ser} = 10/s \times .02s = 0.2$ $T_{q} \quad (avg \ time/customer \ in \ queue) = T_{ser} \times u/(1 - u)$ $= 20 \times 0.2/(1 - 0.2) = 20 \times 0.25 = 5 \ ms \ (0 \ .005s)$ $L_{q} \quad (avg \ length \ of \ queue) = \lambda \times T_{q} = 10/s \times .005s = 0.05$ $T_{sys} \quad (avg \ time/customer \ in \ system) = T_{q} + T_{ser} = 25 \ ms$ $10/28/15 \qquad Kubiatowicz \ CS162 \ @UCB \ Fall \ 2015$

Optimize I/O Performance

» multiple independent buses or controllers

- Optimize the bottleneck to increase service rate

» Use the queue to optimize the service

- Do other useful work while waiting
- Queues absorb bursts and smooth the flow
- Admissions control (finite queues)

- Limits delays, but may introduce unfairness and livelock 10/28/15 Kubiatowicz CS162 ©UCB Fall 2015

When is the disk performance highest

- When there are big sequential reads, or
- When there is so much work to do that they can be piggy backed (c-scan)
- OK, to be inefficient when things are mostly idle
- Bursts are both a threat and an opportunity

Summary

- Devices have complex protocols for interaction and performance characteristics
 - Response time (Latency) = Queue + Overhead + Transfer
 » Effective BW = BW * T/(S+T)
 - HDD: controller + seek + rotation + transfer
 - SDD: controller + transfer (erasure & wear)
- Bursts & High Utilization introduce queuing delays
- Systems (e.g., file system) designed to optimize performance and reliability
 - Relative to performance characteristics of underlying device
- Disk Performance:
 - Queuing time + Controller + Seek + Rotational + Transfer
 - Rotational latency: on average $\frac{1}{2}$ rotation
 - Transfer time: spec of disk depends on rotation speed and bit storage density
- Queuing Latency:
 - M/M/1 and M/G/1 queues: simplest to analyze
 - As utilization approaches 100%, latency $\rightarrow\infty$

$$T_q = T_{ser} \times \frac{1}{2}(1+C) \times u/(1-u))$$

10/28/15