
CS162 
Operating Systems and  
Systems Programming  

Lecture 16  
  

Demand Paging (Finished), 
General I/O

October 26th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: Clock Algorithm (Not Recently Used)

Set of all pages
in Memory

Single Clock Hand:
Advances only on page fault!
Check for pages not used recently
Mark pages as not used recently

• Which bits of a PTE entry are useful to us?
– Use: Set when page is referenced; cleared by clock algorithm
– Modified: set when page is modified, cleared when page written to disk
– Valid: ok for program to reference this page
– Read-only: ok for program to read page, but not modify

» For example for catching modifications to code pages!
• Clock Algorithm: pages arranged in a ring

– On page fault:
» Advance clock hand (not real time)
» Check use bit: 1→used recently; clear and leave alone 

 0→selected candidate for replacement
– Crude partitioning of pages into two groups: young and old

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid)
• Access pages in Active list at full speed
• Otherwise, Page Fault

– Always move overflow page from end of Active list to front of
Second-chance list (SC) and mark invalid

– Desired Page On SC List: move to front of Active list, mark RW
– Not on SC list: page in to front of Active list, mark RW; page
out LRU victim at end of SC list

Directly
Mapped Pages

Marked: RW
List: FIFO

Second
Chance List

Marked: Invalid
List: LRU

LRU victim

Page-in
From disk

New
Active
Pages

Ac
ce
ss

New
SC
Victims

Overflow

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Reverse Page Mapping (Sometimes called “Coremap”)

• Physical page frames often shared by many different
address spaces/page tables
– All children forked from given process
– Shared memory pages between processes

• Whatever reverse mapping mechanism that is in place
must be very fast
– Must hunt down all page tables pointing at given page frame
when freeing a page

• Implementation options:
– For every page descriptor, keep linked list of page table
entries that point to it

» Management nightmare – expensive
– Linux 2.6: Object-based reverse mapping

» Link together memory region descriptors instead (much coarser
granularity)

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Linux Memory Details?

• Memory management in Linux considerably more complex
that the previous indications

• Memory Zones: physical memory categories
– ZONE_DMA: < 16MB memory, DMAable on ISA bus
– ZONE_NORMAL: 16MB ⇒ 896MB (mapped at 0xC0000000)
– ZONE_HIGHMEM: Everything else (> 896MB)

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive)
• Many different types of allocation

– SLAB allocators, per-page allocators, mapped/unmapped
• Many different types of allocated memory:

– Anonymous memory (not backed by a file, heap/stack)
– Mapped memory (backed by a file)

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Recall: Linux Virtual memory map

Kernel 
Addresses

Empty
Space

User  
Addresses

User
Addresses

Kernel 
Addresses

0x00000000

0xC0000000

0xFFFFFFFF

0x0000000000000000

0x00007FFFFFFFFFFF

0xFFFF800000000000

0xFFFFFFFFFFFFFFFF

3G
B

To
ta

l

12
8T

iB

1G
B

12
8T

iB

896MB  
Physical 64 TiB  

Physical

32-Bit Virtual Address Space 64-Bit Virtual Address Space

“Canonical Hole”

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Virtual Map (Details)

• Kernel memory not generally visible to user
– Exception: special VDSO facility that maps kernel code into user space

to aid in system calls (and to provide certain actual system calls such as
gettimeofday().

• Every physical page described by a “page” structure
– Collected together in lower physical memory
– Can be accessed in kernel virtual space
– Linked together in various “LRU” lists

• For 32-bit virtual memory architectures:
– When physical memory < 896MB

» All physical memory mapped at 0xC0000000
– When physical memory >= 896MB

» Not all physical memory mapped in kernel space all the time
» Can be temporarily mapped with addresses > 0xCC000000

• For 64-bit virtual memory architectures:
– All physical memory mapped above 0xFFFF800000000000

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Page Frame Reclaiming Algorithm (PFRA)
• Several entrypoints:

– Low on Memory Reclaiming: The kernel detects a “low on memory”
condition

– Hibernation reclaiming: The kernel must free memory because it is
entering in the suspend-to-disk state

– Periodic reclaiming: A kernel thread is activated periodically to
perform memory reclaiming, if necessary

• Low on Memory reclaiming:
– Start flushing out dirty pages to disk
– Start looping over all memory nodes in the system

» try_to_free_pages()
» shrink_slab()
» pdflush kernel thread writing out dirty pages

• Periodic reclaiming:
– Kswapd kernel threads: checks if number of free page frames in some

zone has fallen below pages_high watermark
– Each zone keeps two LRU lists: Active and Inactive

» Each page has a last-chance algorithm with 2 count
» Active page lists moved to inactive list when they have been idle for two

cycles through the list
» Pages reclaimed from Inactive list

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 9

SLAB Allocator

• Replacement for free-lists that are hand-coded by users
– Consolidation of all of this code under kernel control
– Efficient when objects allocated and freed frequently

• Objects segregated into “caches”
– Each cache stores different type of object
– Data inside cache divided into “slabs”, which are continuous groups

of pages (often only 1 page)
– Key idea: avoid memory fragmentation

Cache

SLAB

SLAB

Obj 1

Obj 2

Obj 3

Obj 5

Obj 4

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 10

SLAB Allocator Details

• Based on algorithm first introduced for SunOS
– Observation: amount of time required to initialize a
regular object in the kernel exceeds the amount of time
required to allocate and deallocate it

– Resolves around object caching
» Allocate once, keep reusing objects

• Avoids memory fragmentation:
– Caching of similarly sized objects, avoid fragmentation
– Similar to custom freelist per object

• Reuse of allocation
– When new object first allocated, constructor runs
– On subsequent free/reallocation, constructor does not
need to be re-executed

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Administrivia

• Unfortunately no HW3 judge!
• Sample test cases were emailed out

• Group Issues

10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Next Objective

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 13

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 14

In a picture

• I/O devices you recognize are supported by I/O Controllers
• Processors accesses them by reading and writing IO registers as if

they were memory
– Write commands and arguments, read status and results

L3 Cache 
(shared)Registers

Core

Core

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

Registers
L1 Cache

L1 Cache
L2 Cache

L2 Cache

Secondary  
 Storage  

(SSD)

I/O
Controllers

Read /
Write

Read /
Write wires

interrupts

DMA transfer

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 15

The Requirements of I/O

• So far in this course:
– We have learned how to manage CPU, memory

• What about I/O?
– Without I/O, computers are useless (disembodied
brains?)

– But… thousands of devices, each slightly different
» How can we standardize the interfaces to these

devices?
– Devices unreliable: media failures and transmission
errors

» How can we make them reliable???
– Devices unpredictable and/or slow

» How can we manage them if we don’t know what they will
do or how they will perform?

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Operational Parameters for I/O

• Data granularity: Byte vs. Block
– Some devices provide single byte at a time (e.g.,

keyboard)
– Others provide whole blocks (e.g., disks, networks, etc.)

• Access pattern: Sequential vs. Random
– Some devices must be accessed sequentially (e.g., tape)
– Others can be accessed “randomly” (e.g., disk, cd, etc.)

» Fixed overhead to start sequential transfer (more later)

• Transfer Notification: Polling vs. Interrupts
– Some devices require continual monitoring
– Others generate interrupts when they need service

• Transfer Mechanism: Programmed IO and DMA

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Kernel Device Structure

The System Call Interface

Process
Management

Memory 
Management Filesystems

Device 
Control Networking

Architecture
Dependent

Code

Memory 
Manager

Device 
Control

Network 
Subsystem

File System
Types

Block  
Devices

IF drivers

Concurrency, 
multitasking

Virtual 
memory

Files and dirs: 
the VFS

TTYs and 
device access Connectivity

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 18

The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of
Different Devices
– This code works on many different devices:
 FILE fd = fopen(“/dev/something”,”rw”);  
 for (int i = 0; i < 10; i++) {  
 fprintf(fd,”Count %d\n”,i);  
 }  
 close(fd);

– Why? Because code that controls devices (“device driver”)
implements standard interface.

• We will try to get a flavor for what is involved in
actually controlling devices in rest of lecture
– Can only scratch surface!

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Want Standard Interfaces to Devices

• Block Devices: e.g. disk drives, tape drives, DVD-ROM
– Access blocks of data
– Commands include open(), read(), write(), seek()
– Raw I/O or file-system access
– Memory-mapped file access possible

• Character Devices: e.g. keyboards, mice, serial ports,
some USB devices
– Single characters at a time
– Commands include get(), put()
– Libraries layered on top allow line editing

• Network Devices: e.g. Ethernet, Wireless, Bluetooth
– Different enough from block/character to have own interface
– Unix and Windows include socket interface

» Separates network protocol from network operation
» Includes select() functionality

– Usage: pipes, FIFOs, streams, queues, mailboxes

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 20

How Does User Deal with Timing?

• Blocking Interface: “Wait”
– When request data (e.g. read() system call), put process to
sleep until data is ready

– When write data (e.g. write() system call), put process to
sleep until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes
successfully transferred

– Read may return nothing, write may write nothing
• Asynchronous Interface: “Tell Me Later”

– When request data, take pointer to user’s buffer, return
immediately; later kernel fills buffer and notifies user

– When send data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Chip-scale features of Recent x86 (SandyBridge)

• Significant pieces:
– Four OOO cores

» New Advanced Vector eXtensions  
(256-bit FP)

» AES instructions
» Instructions to help with Galois-Field mult
» 4 µ-ops/cycle

– Integrated GPU
– System Agent (Memory and Fast I/O)
– Shared L3 cache divided in 4 banks
– On-chip Ring bus network

» High-BW access to L3 Cache
• Integrated I/O

– Integrated memory controller (IMC)
» Two independent channels of DDR3 DRAM

– High-speed PCI-Express (for Graphics cards)
– DMI Connection to SouthBridge (PCH)

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 22

SandyBridge I/O: PCH

• Platform Controller Hub
– Used to be “SouthBridge,”

but no “NorthBridge” now
– Connected to processor

with proprietary bus
» Direct Media Interface

– Code name “Cougar Point”
for SandyBridge
processors

• Types of I/O on PCH:
– USB
– Ethernet
– Audio
– BIOS support
– More PCI Express (lower

speed than on Processor)
– Sata (for Disks)

SandyBridge
System Configuration

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Modern I/O Systems

network

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Example: PCI Architecture

CPURAM Memory
Bus

USB 
Controller

SCSI  
Controller

Scanner

Hard
DiskCD ROM

Root Hub

Hub Webcam

Mouse Keyboard

PCI #1

PCI #0
PCI Bridge

PCI Slots

Host Bridge

ISA Bridge

ISA  
Controller

Legacy 
Devices

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Example Device-Transfer Rates in Mb/s 
 (Sun Enterprise 6000)

• Device Rates vary over 12 orders of magnitude !!!
– System better be able to handle this wide range
– Better not have high overhead/byte for fast devices!
– Better not waste time waiting for slow devices

10m

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 26

How does the processor actually talk to the device?

Device
Controller

read
write
control
status

Addressable
Memory
and/or
QueuesRegisters

(port 0x20)

Hardware
Controller

Memory Mapped
Region: 0x8f008020

Bus
Interface

• CPU interacts with a Controller
– Contains a set of registers that  
can be read and written

– May contain memory for request  
queues or bit-mapped images

• Regardless of the complexity of the connections and buses,
processor accesses registers in two ways:
– I/O instructions: in/out instructions

» Example from the Intel architecture: out 0x21,AL
– Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» I/O accomplished with load and store instructions

Address+
Data

Interrupt Request

Processor Memory Bus

CPU

Regular
Memory

Interrupt
Controller

Bus
Adaptor

Bus
Adaptor

Other Devices
or Buses

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Example: Memory-Mapped Display Controller

• Memory-Mapped:
– Hardware maps control registers and display

memory into physical address space
» Addresses set by hardware jumpers or

programming at boot time
– Simply writing to display memory (also called

the “frame buffer”) changes image on screen
» Addr: 0x8000F000—0x8000FFFF

– Writing graphics description to command-queue
area

» Say enter a set of triangles that describe
some scene

» Addr: 0x80010000—0x8001FFFF
– Writing to the command register may cause on-

board graphics hardware to do something
» Say render the above scene
» Addr: 0x0007F004

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 28

addr
len

Transferring Data To/From Controller
• Programmed I/O:

– Each byte transferred via processor in/out or load/store
– Pro: Simple hardware, easy to program
– Con: Consumes processor cycles proportional to data size

• Direct Memory Access:
– Give controller access to memory bus
– Ask it to transfer data blocks to/from memory directly

• Sample interaction with DMA controller (from OSC):

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 29

I/O Device Notifying the OS

•The OS needs to know when:
– The I/O device has completed an operation
– The I/O operation has encountered an error

•I/O Interrupt:
– Device generates an interrupt whenever it needs service
– Pro: handles unpredictable events well
– Con: interrupts relatively high overhead

•Polling:
– OS periodically checks a device-specific status register

» I/O device puts completion information in status register
– Pro: low overhead
– Con: may waste many cycles on polling if infrequent or unpredictable
I/O operations

•Actual devices combine both polling and interrupts
– For instance – High-bandwidth network adapter:

» Interrupt for first incoming packet
» Poll for following packets until hardware queues are empty

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Device Drivers
• Device Driver: Device-specific code in the kernel that

interacts directly with the device hardware
– Supports a standard, internal interface
– Same kernel I/O system can interact easily with different
device drivers

– Special device-specific configuration supported with the
ioctl() system call

• Device Drivers typically divided into two pieces:
– Top half: accessed in call path from system calls

» implements a set of standard, cross-device calls like open(),
close(), read(), write(), ioctl(), strategy()

» This is the kernel’s interface to the device driver
» Top half will start I/O to device, may put thread to sleep

until finished
– Bottom half: run as interrupt routine

» Gets input or transfers next block of output
» May wake sleeping threads if I/O now complete

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Life Cycle of An I/O Request

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

Kernel I/O
Subsystem

User
Program

10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Summary
• I/O Devices Types:

– Many different speeds (0.1 bytes/sec to GBytes/sec)
– Different Access Patterns:

» Block Devices, Character Devices, Network Devices
– Different Access Timing:

» Blocking, Non-blocking, Asynchronous
• I/O Controllers: Hardware that controls actual device

– Processor Accesses through I/O instructions, load/store to special
physical memory

– Report their results through either interrupts or a status register
that processor looks at occasionally (polling)

• Notification mechanisms
– Interrupts
– Polling: Report results through status register that processor looks

at periodically
• Drivers interface to I/O devices

– Provide clean Read/Write interface to OS above
– Manipulate devices through PIO, DMA & interrupt handling
– 2 types: block, character, and network

