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Recall: Clock Algorithm (Not Recently Used)

Set of all pages 
in Memory

Single Clock Hand: 
Advances only on page fault! 
Check for pages not used recently 
Mark pages as not used recently

• Which bits of a PTE entry are useful to us? 
– Use: Set when page is referenced; cleared by clock algorithm 
– Modified: set when page is modified, cleared when page written to disk 
– Valid: ok for program to reference this page 
– Read-only: ok for program to read page, but not modify 

» For example for catching modifications to code pages! 
• Clock Algorithm: pages arranged in a ring 

– On page fault: 
» Advance clock hand (not real time) 
» Check use bit: 1→used recently; clear and leave alone 

 0→selected candidate for replacement 
– Crude partitioning of pages into two groups: young and old
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid) 
• Access pages in Active list at full speed 
• Otherwise, Page Fault 

– Always move overflow page from end of Active list to front of 
Second-chance list (SC) and mark invalid 

– Desired Page On SC List: move to front of Active list, mark RW 
– Not on SC list: page in to front of Active list, mark RW; page 
out LRU victim at end of SC list

Directly 
Mapped Pages 
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Reverse Page Mapping (Sometimes called “Coremap”)

• Physical page frames often shared by many different 
address spaces/page tables 
– All children forked from given process 
– Shared memory pages between processes 

• Whatever reverse mapping mechanism that is in place 
must be very fast 
– Must hunt down all page tables pointing at given page frame 
when freeing a page 

• Implementation options: 
– For every page descriptor, keep linked list of page table 
entries that point to it 

» Management nightmare – expensive 
– Linux 2.6: Object-based reverse mapping 

» Link together memory region descriptors instead (much coarser 
granularity)



10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Linux Memory Details?

• Memory management in Linux considerably more complex 
that the previous indications 

• Memory Zones: physical memory categories 
– ZONE_DMA: < 16MB memory, DMAable on ISA bus 
– ZONE_NORMAL: 16MB ⇒ 896MB (mapped at 0xC0000000) 
– ZONE_HIGHMEM: Everything else (> 896MB) 

• Each zone has 1 freelist, 2 LRU lists (Active/Inactive) 
• Many different types of allocation 

– SLAB allocators, per-page allocators, mapped/unmapped 
• Many different types of allocated memory: 

– Anonymous memory (not backed by a file, heap/stack) 
– Mapped memory (backed by a file)
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Recall: Linux Virtual memory map

Kernel 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Virtual Map (Details)

• Kernel memory not generally visible to user 
– Exception: special VDSO facility that maps kernel code into user space 

to aid in system calls (and to provide certain actual system calls such as 
gettimeofday(). 

• Every physical page described by a “page” structure 
– Collected together in lower physical memory 
– Can be accessed in kernel virtual space 
– Linked together in various “LRU” lists 

• For 32-bit virtual memory architectures: 
– When physical memory < 896MB 

» All physical memory mapped at 0xC0000000 
– When physical memory >= 896MB 

» Not all physical memory mapped in kernel space all the time 
» Can be temporarily mapped with addresses > 0xCC000000 

• For 64-bit virtual memory architectures: 
– All physical memory mapped above 0xFFFF800000000000
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Page Frame Reclaiming Algorithm (PFRA)
• Several entrypoints: 

– Low on Memory Reclaiming: The kernel detects a “low on memory” 
condition 

– Hibernation reclaiming: The kernel must free memory because it is 
entering in the suspend-to-disk state 

– Periodic reclaiming: A kernel thread is activated periodically to 
perform memory reclaiming, if necessary 

• Low on Memory reclaiming: 
– Start flushing out dirty pages to disk 
– Start looping over all memory nodes in the system 

» try_to_free_pages() 
» shrink_slab() 
» pdflush kernel thread writing out dirty pages 

• Periodic reclaiming: 
– Kswapd kernel threads: checks if number of free page frames in some 

zone has fallen below pages_high watermark 
– Each zone keeps two LRU lists: Active and Inactive 

» Each page has a last-chance algorithm with 2 count 
» Active page lists moved to inactive list when they have been idle for two 

cycles through the list 
» Pages reclaimed from Inactive list
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SLAB Allocator

• Replacement for free-lists that are hand-coded by users 
– Consolidation of all of this code under kernel control 
– Efficient when objects allocated and freed frequently 

• Objects segregated into “caches” 
– Each cache stores different type of object 
– Data inside cache divided into “slabs”, which are continuous groups 

of pages (often only 1 page) 
– Key idea: avoid memory fragmentation

Cache

SLAB

SLAB

Obj 1

Obj 2

Obj 3

Obj 5

Obj 4
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SLAB Allocator Details

• Based on algorithm first introduced for SunOS 
– Observation: amount of time required to initialize a 
regular object in the kernel exceeds the amount of time 
required to allocate and deallocate it 

– Resolves around object caching 
» Allocate once, keep reusing objects 

• Avoids memory fragmentation: 
– Caching of similarly sized objects, avoid fragmentation  
– Similar to custom freelist per object 

• Reuse of allocation 
– When new object first allocated, constructor runs 
– On subsequent free/reallocation, constructor does not 
need to be re-executed
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Administrivia

• Unfortunately no HW3 judge! 
• Sample test cases were emailed out 

• Group Issues
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Next Objective
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OS Basics: I/O
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In a picture

• I/O devices you recognize are supported by I/O Controllers 
• Processors accesses them by reading and writing IO registers as if 

they were memory 
– Write commands and arguments, read status and results
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The Requirements of I/O

• So far in this course: 
– We have learned how to manage CPU, memory 

• What about I/O? 
– Without I/O, computers are useless (disembodied 
brains?) 

– But… thousands of devices, each slightly different 
» How can we standardize the interfaces to these 

devices? 
– Devices unreliable: media failures and transmission 
errors 

» How can we make them reliable??? 
– Devices unpredictable and/or slow 

» How can we manage them if we don’t know what they will 
do or how they will perform?
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Operational Parameters for I/O

• Data granularity: Byte vs. Block 
– Some devices provide single byte at a time (e.g., 

keyboard) 
– Others provide whole blocks (e.g., disks, networks, etc.) 

• Access pattern: Sequential vs. Random 
– Some devices must be accessed sequentially (e.g., tape) 
– Others can be accessed “randomly” (e.g., disk, cd, etc.) 

» Fixed overhead to start sequential transfer (more later) 

• Transfer Notification: Polling vs. Interrupts 
– Some devices require continual monitoring 
– Others generate interrupts when they need service 

• Transfer Mechanism: Programmed IO and DMA
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Kernel Device Structure

The System Call Interface
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The Goal of the I/O Subsystem

• Provide Uniform Interfaces, Despite Wide Range of 
Different Devices 
– This code works on many different devices: 
  FILE fd = fopen(“/dev/something”,”rw”);  
 for (int i = 0; i < 10; i++) {  
  fprintf(fd,”Count %d\n”,i);  
 }  
 close(fd); 

– Why?  Because code that controls devices (“device driver”) 
implements standard interface. 

• We will try to get a flavor for what is involved in 
actually controlling devices in rest of lecture 
– Can only scratch surface!  
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Want Standard Interfaces to Devices

• Block Devices: e.g. disk drives, tape drives, DVD-ROM 
– Access blocks of data 
– Commands include open(), read(), write(), seek() 
– Raw I/O or file-system access 
– Memory-mapped file access possible 

• Character Devices: e.g. keyboards, mice, serial ports, 
some USB devices 
– Single characters at a time 
– Commands include get(), put() 
– Libraries layered on top allow line editing 

• Network Devices: e.g. Ethernet, Wireless, Bluetooth 
– Different enough from block/character to have own interface 
– Unix and Windows include socket interface 

» Separates network protocol from network operation 
» Includes select() functionality 

– Usage: pipes, FIFOs, streams, queues, mailboxes
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How Does User Deal with Timing?

• Blocking Interface: “Wait” 
– When request data (e.g. read() system call), put process to 
sleep until data is ready 

– When write data (e.g. write() system call), put process to 
sleep until device is ready for data 

• Non-blocking Interface: “Don’t Wait” 
– Returns quickly from read or write request with count of bytes 
successfully transferred 

– Read may return nothing, write may write nothing 
• Asynchronous Interface: “Tell Me Later” 

– When request data, take pointer to user’s buffer, return 
immediately; later kernel fills buffer and notifies user 

– When send data, take pointer to user’s buffer, return 
immediately; later kernel takes data and notifies user 
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Chip-scale features of Recent x86 (SandyBridge)

• Significant pieces: 
– Four OOO cores 

» New Advanced Vector eXtensions  
(256-bit FP) 

» AES instructions 
» Instructions to help with Galois-Field mult 
» 4 µ-ops/cycle 

– Integrated GPU 
– System Agent (Memory and Fast I/O) 
– Shared L3 cache divided in 4 banks 
– On-chip Ring bus network  

» High-BW access to L3 Cache 
• Integrated I/O 

– Integrated memory controller (IMC) 
» Two independent channels of DDR3 DRAM 

– High-speed PCI-Express (for Graphics cards) 
– DMI Connection to SouthBridge (PCH)
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SandyBridge I/O: PCH

• Platform Controller Hub 
– Used to be “SouthBridge,” 

but no “NorthBridge” now 
– Connected to processor 

with proprietary bus 
» Direct Media Interface 

– Code name “Cougar Point” 
for SandyBridge 
processors 

• Types of I/O on PCH: 
– USB 
– Ethernet 
– Audio 
– BIOS support 
– More PCI Express (lower 

speed than on Processor) 
– Sata (for Disks)

SandyBridge  
System Configuration
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Modern I/O Systems

network
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Example: PCI Architecture
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Example Device-Transfer Rates in Mb/s 
 (Sun Enterprise 6000)

• Device Rates vary over 12 orders of magnitude !!! 
– System better be able to handle this wide range 
– Better not have high overhead/byte for fast devices! 
– Better not waste time waiting for slow devices

10m
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How does the processor actually talk to the device?

Device 
Controller

read
write
control
status

Addressable 
Memory 
and/or 
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Hardware 
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• CPU interacts with a Controller 
– Contains a set of registers that  
can be read and written 

– May contain memory for request  
queues or bit-mapped images  

• Regardless of the complexity of the connections and buses, 
processor accesses registers in two ways:  
– I/O instructions: in/out instructions 

» Example from the Intel architecture: out 0x21,AL 
– Memory mapped I/O: load/store instructions 

» Registers/memory appear in physical address space 
» I/O accomplished with load and store instructions
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Interrupt Request
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Example: Memory-Mapped Display Controller

• Memory-Mapped: 
– Hardware maps control registers and display 

memory into physical address space 
» Addresses set by hardware jumpers or 

programming at boot time 
– Simply writing to display memory (also called 

the “frame buffer”) changes image on screen 
» Addr: 0x8000F000—0x8000FFFF 

– Writing graphics description to command-queue 
area  

» Say enter a set of triangles that describe 
some scene 

» Addr: 0x80010000—0x8001FFFF 
– Writing to the command register may cause on-

board graphics hardware to do something 
» Say render the above scene 
» Addr: 0x0007F004 

• Can protect with address translation

Display
Memory

0x8000F000

0x80010000

Physical Address
Space

Status0x0007F000
Command0x0007F004

Graphics
Command
Queue

0x80020000
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addr 
len

Transferring Data To/From Controller
• Programmed I/O: 

– Each byte transferred via processor in/out or load/store 
– Pro: Simple hardware, easy to program 
– Con: Consumes processor cycles proportional to data size 

• Direct Memory Access: 
– Give controller access to memory bus 
– Ask it to transfer data blocks to/from memory directly 

• Sample interaction with DMA controller (from OSC):
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I/O Device Notifying the OS

•The OS needs to know when: 
– The I/O device has completed an operation 
– The I/O operation has encountered an error 

•I/O Interrupt: 
– Device generates an interrupt whenever it needs service 
– Pro: handles unpredictable events well 
– Con: interrupts relatively high overhead  

•Polling: 
– OS periodically checks a device-specific status register 

» I/O device puts completion information in status register 
– Pro: low overhead 
– Con: may waste many cycles on polling if infrequent or unpredictable 
I/O operations 

•Actual devices combine both polling and interrupts 
– For instance – High-bandwidth network adapter:  

» Interrupt for first incoming packet  
» Poll for following packets until hardware queues are empty
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Device Drivers
• Device Driver: Device-specific code in the kernel that 

interacts directly with the device hardware 
– Supports a standard, internal interface 
– Same kernel I/O system can interact easily with different 
device drivers 

– Special device-specific configuration supported with the 
ioctl() system call 

• Device Drivers typically divided into two pieces: 
– Top half: accessed in call path from system calls 

» implements a set of standard, cross-device calls like open(), 
close(), read(), write(), ioctl(), strategy() 

» This is the kernel’s interface to the device driver 
» Top half will start I/O to device, may put thread to sleep 

until finished 
– Bottom half: run as interrupt routine 

» Gets input or transfers next block of output 
» May wake sleeping threads if I/O now complete
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Life Cycle of An I/O Request

Device Driver 
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Summary
• I/O Devices Types: 

– Many different speeds (0.1 bytes/sec to GBytes/sec) 
– Different Access Patterns: 

» Block Devices, Character Devices, Network Devices 
– Different Access Timing: 

» Blocking, Non-blocking, Asynchronous 
• I/O Controllers: Hardware that controls actual device 

– Processor Accesses through I/O instructions, load/store to special 
physical memory 

– Report their results through either interrupts or a status register 
that processor looks at occasionally (polling) 

• Notification mechanisms 
– Interrupts 
– Polling: Report results through status register that processor looks 

at periodically  
• Drivers interface to I/O devices 

– Provide clean Read/Write interface to OS above 
– Manipulate devices through PIO, DMA & interrupt handling 
– 2 types: block, character, and network


