
CS162 
Operating Systems and  
Systems Programming  

Lecture 15  
  

Demand Paging (Finished)

October 21st, 2015 
Prof. John Kubiatowicz 

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course 
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.  
When slides are obtained from other sources, a  a reference will be noted on 
the bottom of that slide, in which case a full list of references is provided on the 
last slide.



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: Precise Exceptions

• Precise ⇒ state of the machine is preserved as if 
program executed up to the offending instruction 
– All previous instructions completed 
– Offending instruction and all following instructions act as if 
they have not even started 

– Same system code will work on different implementations  
– Difficult in the presence of pipelining, out-of-order 
execution, ... 

– MIPS takes this position 
• Imprecise ⇒ system software has to figure out what is 

where and put it all back together 
• Performance goals often lead designers to forsake precise 

interrupts 
– system software developers, user, markets etc. usually wish 
they had not done this



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015

• PTE helps us implement demand paging 
– Valid ⇒ Page in memory, PTE points at physical page 
– Not Valid ⇒ Page not in memory; use info in PTE to find it on 
disk when necessary 

• Suppose user references page with invalid PTE? 
– Memory Management Unit (MMU) traps to OS 

» Resulting trap is a “Page Fault” 
– What does OS do on a Page Fault?: 

» Choose an old page to replace  
» If old page modified (“D=1”), write contents back to disk 
» Change its PTE and any cached TLB to be invalid 
» Load new page into memory from disk 
» Update page table entry, invalidate TLB for new entry 
» Continue thread from original faulting location 

– TLB for new page will be loaded when thread continued! 
– While pulling pages off disk for one process, OS runs another 
process from ready queue 

» Suspended process sits on wait queue 3

Cache

Recall: Demand Paging Mechanisms



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Summary: Steps in Handling a Page Fault



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Management & Access to the Memory Hierarchy

L3 Cache 
(shared)Registers

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000 
   (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

RegistersL1 Cache

L1 CacheL2 Cache

L2 Cache

0.3 3

10kBs 100kBs

Secondary  
 Storage  

(SSD)

100,000  
(0.1 ms)
100GBs

Managed in  
Hardware

Managed in Software - OS

PT

PT
PTPT

Accessed in Hardware

TLB

TLB

?



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Some following questions

• During a page fault, where does the OS get a free 
frame? 
– Keeps a free list 
– Unix runs a “reaper” if memory gets too full 
– As a last resort, evict a dirty page first 

• How can we organize these mechanisms? 
– Work on the replacement policy 

• How many page frames/process? 
– Like thread scheduling, need to “schedule” memory 
resources: 

» utilization?  fairness? priority? 

– allocation of disk paging bandwidth



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access 

time! (“Effective Access Time”) 
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time 
– EAT = Hit Time + Miss Rate x Miss Time 

• Example: 
– Memory access time = 200 nanoseconds 
– Average page-fault service time = 8 milliseconds 
– Suppose p = Probability of miss, 1-p = Probably of hit 
– Then, we can compute EAT as follows: 

  EAT  = 200ns + p x 8 ms 
          = 200ns + p x 8,000,000ns 
• If one access out of 1,000 causes a page fault, then EAT = 

8.2 µs: 
– This is a slowdown by a factor of 40! 

• What if want slowdown by less than 10%? 
– 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6 
– This is about 1 page fault in 400000!



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 8

What Factors Lead to Misses?
• Compulsory Misses:  

– Pages that have never been paged into memory before 
– How might we remove these misses? 

» Prefetching: loading them into memory before needed 
» Need to predict future somehow!  More later. 

• Capacity Misses: 
– Not enough memory. Must somehow increase size. 
– Can we do this? 

» One option: Increase amount of DRAM (not quick fix!) 
» Another option:  If multiple processes in memory: adjust percentage 

of memory allocated to each one! 
• Conflict Misses: 

– Technically, conflict misses don’t exist in virtual memory, since it is 
a “fully-associative” cache 

• Policy Misses: 
– Caused when pages were in memory, but kicked out prematurely 
because of the replacement policy 

– How to fix? Better replacement policy



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 9

Page Replacement Policies
• Why do we care about Replacement Policy?  

– Replacement is an issue with any cache 
– Particularly important with pages 

» The cost of being wrong is high: must go to disk 
» Must keep important pages in memory, not toss them out 

• FIFO (First In, First Out) 
– Throw out oldest page.  Be fair – let every page live in memory 
for same amount of time. 

– Bad, because throws out heavily used pages instead of 
infrequently used pages 

• MIN (Minimum):  
– Replace page that won’t be used for the longest time  
– Great, but can’t really know future… 
– Makes good comparison case, however 

• RANDOM: 
– Pick random page for every replacement 
– Typical solution for TLB’s.  Simple hardware 
– Pretty unpredictable – makes it hard to make real-time 
guarantees



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 10

Replacement Policies (Con’t)
• LRU (Least Recently Used): 

– Replace page that hasn’t been used for the longest time 
– Programs have locality, so if something not used for a while, 
unlikely to be used in the near future. 

– Seems like LRU should be a good approximation to MIN. 
• How to implement LRU? Use a list! 

– On each use, remove page from list and place at head 
– LRU page is at tail 

• Problems with this scheme for paging? 
– Need to know immediately when each page used so that can 
change position in list…  

– Many instructions for each hardware access 
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 11

• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream:  
– A B C A B D A D B C B 

• Consider FIFO Page replacement: 

– FIFO: 7 faults.  
– When referencing D, replacing A is bad choice, since 
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref: 
Page:



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 12

• Suppose we have the same reference stream:  
– A B C A B D A D B C B 

• Consider MIN Page replacement: 

– MIN: 5 faults  
– Where will D be brought in? Look for page not referenced 
farthest in future. 

• What will LRU do? 
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref: 
Page:



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 13

• Consider the following: A B C D A B C D A B C D 
• LRU Performs as follows (same as FIFO here): 

– Every reference is a page fault! 
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D

3

2

1

Ref: 
Page:

B

C

DC

B

A

CBADCBADCBA D

3

2

1

Ref: 
Page:



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the miss 
rate goes down 
– Does this always happen? 
– Seems like it should, right? 

• No: BeLady’s anomaly  
– Certain replacement algorithms (FIFO) don’t have this obvious 
property!



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults? 

– Yes for LRU and MIN 
– Not necessarily for FIFO!  (Called Belady’s anomaly) 

• After adding memory: 
– With FIFO, contents can be completely different 
– In contrast, with LRU or MIN, contents of memory with X pages 
are a subset of contents with X+1 Page

D
C

E

B
A

D

C
B

A

DCBA EBADCBA E

3
2
1

Ref: 
Page:

CD4

E
D

B
A

E

C
B

A

DCBAEBADCBA E

3
2
1

Ref: 
Page:



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 16

Implementing LRU
• Perfect: 

– Timestamp page on each reference 
– Keep list of pages ordered by time of reference 
– Too expensive to implement in reality for many reasons 

• Clock Algorithm: Arrange physical pages in circle with 
single clock hand 
– Approximate LRU (approx to approx to MIN) 
– Replace an old page, not the oldest page 

• Details: 
– Hardware “use” bit per physical page: 

» Hardware sets use bit on each reference 
» If use bit isn’t set, means not referenced in a long time 

– On page fault: 
» Advance clock hand (not real time) 
» Check use bit: 1→used recently; clear and leave alone 

 0→selected candidate for replacement 
– Will always find a page or loop forever? 

» Even if all use bits set, will eventually loop around



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 17

Clock Algorithm: Not Recently Used

Set of all pages 
in Memory

Single Clock Hand: 
Advances only on page fault! 
Check for pages not used recently 
Mark pages as not used recently

• What if hand moving slowly? 
– Good sign or bad sign? 

» Not many page faults and/or find page quickly 
• What if hand is moving quickly? 

– Lots of page faults and/or lots of reference bits set 
• One way to view clock algorithm:  

– Crude partitioning of pages into two groups: young and old 
– Why not partition into more than 2 groups?



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 18

Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances 

– OS keeps counter per page: # sweeps 
– On page fault, OS checks use bit: 

» 1⇒clear use and also clear counter (used in last sweep) 
» 0⇒increment counter; if count=N, replace page 

– Means that clock hand has to sweep by N times without page 
being used before page is replaced 

• How do we pick N? 
– Why pick large N? Better approx to LRU 

» If N ~ 1K, really good approximation 
– Why pick small N? More efficient 

» Otherwise might have to look a long way to find free page 
• What about dirty pages? 

– Takes extra overhead to replace a dirty page, so give dirty 
pages an extra chance before replacing? 

– Common approach: 
» Clean pages, use N=1 
» Dirty pages, use N=2 (and write back to disk when N=1)



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Clock Algorithms: Details
• Which bits of a PTE entry are useful to us? 

– Use: Set when page is referenced; cleared by clock 
algorithm 

– Modified: set when page is modified, cleared when page 
written to disk 

– Valid: ok for program to reference this page 
– Read-only: ok for program to read page, but not modify 

» For example for catching modifications to code pages! 

• Do we really need hardware-supported “modified” bit? 
– No.  Can emulate it (BSD Unix) using read-only bit 

» Initially, mark all pages as read-only, even data pages 
» On write, trap to OS. OS sets software “modified” bit, and 

marks page as read-write. 
» Whenever page comes back in from disk, mark read-only



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Clock Algorithms Details (continued)

• Do we really need a hardware-supported “use” bit? 
– No. Can emulate it similar to above: 

» Mark all pages as invalid, even if in memory 
» On read to invalid page, trap to OS 
» OS sets use bit, and marks page read-only 

– Get modified bit in same way as previous: 
» On write, trap to OS (either invalid or read-only) 
» Set use and modified bits, mark page read-write 

– When clock hand passes by, reset use and modified bits and 
mark page as invalid again  

• Remember, however, that clock is just an approximation of 
LRU 
– Can we do a better approximation, given that we have to take 

page faults on some reads and writes to collect use information? 
– Need to identify an old page, not oldest page! 
– Answer: second chance list



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid) 
• Access pages in Active list at full speed 
• Otherwise, Page Fault 

– Always move overflow page from end of Active list to front of 
Second-chance list (SC) and mark invalid 

– Desired Page On SC List: move to front of Active list, mark RW 
– Not on SC list: page in to front of Active list, mark RW; page 
out LRU victim at end of SC list

Directly 
Mapped Pages 

Marked: RW 
List: FIFO

Second  
Chance List 

Marked: Invalid 
List: LRU

LRU victim

Page-in 
From disk

New 
Active 
Pages

Ac
ce
ss

New 
SC 
Victims

Overflow



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Second-Chance List Algorithm (con’t)
• How many pages for second chance list? 

– If 0 ⇒ FIFO 
– If all ⇒ LRU, but page fault on every page reference 

• Pick intermediate value.  Result is: 
– Pro: Few disk accesses (page only goes to disk if unused 
for a long time)  

– Con: Increased overhead trapping to OS (software / 
hardware tradeoff) 

• Question: why didn’t VAX include “use” bit? 
– Strecker (architect) asked OS people, they said they 
didn’t need it, so didn’t implement it 

– He later got blamed, but VAX did OK anyway



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Free List

• Keep set of free pages ready for use in demand paging 
– Freelist filled in background by Clock algorithm or other technique 
(“Pageout demon”) 

– Dirty pages start copying back to disk when enter list 
• Like VAX second-chance list 

– If page needed before reused, just return to active set 
• Advantage: Faster for page fault 

– Can always use page (or pages) immediately on fault

Set of all pages 
in Memory

Single Clock Hand: 
Advances as needed to keep 
freelist full (“background”) 

D

D

Free Pages 
For Processes



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Demand Paging (more details) 

• Core Map 
– Page tables map virtual page → physical page  
– Do we need a reverse mapping (i.e. physical page → 
virtual page)? 

» Yes. Clock algorithm runs through page frames. If sharing, 
then multiple virtual-pages per physical page 

» Can’t push page out to disk without invalidating all PTEs



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes? 

– Does every process get the same fraction of memory?  
Different fractions? 

– Should we completely swap some processes out of memory? 
• Each process needs minimum number of pages 

– Want to make sure that all processes that are loaded into 
memory can make forward progress 

– Example:  IBM 370 – 6 pages to handle SS MOVE instruction: 
» instruction is 6 bytes, might span 2 pages 
» 2 pages to handle from 
» 2 pages to handle to 

• Possible Replacement Scopes: 
– Global replacement – process selects replacement frame from 
set of all frames; one process can take a frame from another 

– Local replacement – each process selects from only its own set 
of allocated frames



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):  

– Every process gets same amount of memory 
– Example: 100 frames, 5 processes⇒process gets 20 frames 

• Proportional allocation (Fixed Scheme) 
– Allocate according to the size of process 
– Computation proceeds as follows: 
  si = size of process pi and S = Σsi  
  m = total number of frames 

  ai = allocation for pi =  

• Priority Allocation: 
– Proportional scheme using priorities rather than size 

» Same type of computation as previous scheme 
– Possible behavior: If process pi generates a page fault, select for 
replacement a frame from a process with lower priority number 

• Perhaps we should use an adaptive scheme instead??? 
– What if some application just needs more memory?

m
S
si ×



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Page-Fault Frequency Allocation

• Can we reduce Capacity misses by dynamically changing the 
number of pages/application? 

• Establish “acceptable” page-fault rate 
– If actual rate too low, process loses frame 
– If actual rate too high, process gains frame 

• Question: What if we just don’t have enough memory?



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to: 
– low CPU utilization 
– operating system spends most of its time swapping to disk 

• Thrashing ≡ a process is busy swapping pages in and out 
• Questions: 

– How do we detect Thrashing? 
– What is best response to Thrashing?



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 29

• Program Memory Access 
Patterns have temporal 
and spatial locality 
– Group of Pages accessed 
along a given time slice 
called the “Working Set” 

– Working Set defines 
minimum number of pages 
needed for process to 
behave well 

• Not enough memory for 
Working Set⇒Thrashing 
– Better to swap out 
process?

Locality In A Memory-Reference Pattern



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page references  
– Example:  10,000 instructions 

• WSi (working set of Process Pi) = total set of pages 
referenced in the most recent Δ (varies in time) 
– if Δ too small will not encompass entire locality 
– if Δ too large will encompass several localities 
– if Δ = ∞ ⇒ will encompass entire program 

• D = Σ|WSi| ≡ total demand frames  
• if D > m ⇒ Thrashing 

– Policy: if D > m, then suspend/swap out processes 
– This can improve overall system behavior by a lot!



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 31

What about Compulsory Misses?

• Recall that compulsory misses are misses that occur the first 
time that a page is seen  
– Pages that are touched for the first time 
– Pages that are touched after process is swapped out/swapped 

back in 

• Clustering: 
– On a page-fault, bring in multiple pages “around” the faulting 

page 
– Since efficiency of disk reads increases with sequential reads, 

makes sense to read several sequential pages 
• Working Set Tracking: 

– Use algorithm to try to track working set of application 
– When swapping process back in, swap in working set



10/5/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Next Objective



10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 33

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware
Software

Memory

Networks

DisplaysInputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection 
Boundary

Ctrlr



10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 34

In a picture

• I/O devices you recognize are supported by I/O Controllers 
• Processors accesses them by reading and writing IO registers as if 

they were memory 
– Write commands and arguments, read status and results

L3 Cache 
(shared)Registers

Core

Core

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

Registers
L1 Cache

L1 Cache
L2 Cache

L2 Cache

Secondary  
 Storage  

(SSD)

I/O 
Controllers

Read / 
Write

Read / 
Write wires

interrupts

DMA transfer



10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 35

The Requirements of I/O

• So far in this course: 
– We have learned how to manage CPU, memory 

• What about I/O? 
– Without I/O, computers are useless (disembodied 
brains?) 

– But… thousands of devices, each slightly different 
» How can we standardize the interfaces to these 

devices? 
– Devices unreliable: media failures and transmission 
errors 

» How can we make them reliable??? 
– Devices unpredictable and/or slow 

» How can we manage them if we don’t know what they will 
do or how they will perform?



10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Operational Parameters for I/O

• Data granularity: Byte vs. Block 
– Some devices provide single byte at a time (e.g., 

keyboard) 
– Others provide whole blocks (e.g., disks, networks, etc.) 

• Access pattern: Sequential vs. Random 
– Some devices must be accessed sequentially (e.g., tape) 
– Others can be accessed “randomly” (e.g., disk, cd, etc.) 

» Fixed overhead to start sequential transfer (more later) 

• Transfer Notification: Polling vs. Interrupts 
– Some devices require continual monitoring 
– Others generate interrupts when they need service 

• Transfer Mechanism: Programmed IO and DMA



10/26/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Kernel Device Structure

The System Call Interface

Process 
Management

Memory 
Management Filesystems

Device 
Control Networking

Architecture 
Dependent 

Code

Memory 
Manager

Device 
Control

Network 
Subsystem

File System 
Types

Block  
Devices

IF drivers

Concurrency, 
multitasking

Virtual 
memory

Files and dirs: 
the VFS

TTYs and 
device access Connectivity



10/21/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Summary
• Replacement policies 

– FIFO: Place pages on queue, replace page at end 
– MIN: Replace page that will be used farthest in future 
– LRU: Replace page used farthest in past  

• Clock Algorithm: Approximation to LRU 
– Arrange all pages in circular list 
– Sweep through them, marking as not “in use” 
– If page not “in use” for one pass, than can replace 

• Nth-chance clock algorithm: Another approx LRU 
– Give pages multiple passes of clock hand before replacing 

• Second-Chance List algorithm: Yet another approx LRU 
– Divide pages into two groups, one of which is truly LRU and 
managed on page faults. 

• Working Set: 
– Set of pages touched by a process recently 

• Thrashing: a process is busy swapping pages in and out 
– Process will thrash if working set doesn’t fit in memory 
– Need to swap out a process


