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Recall: Precise Exceptions

• Precise ⇒ state of the machine is preserved as if 
program executed up to the offending instruction 
– All previous instructions completed 
– Offending instruction and all following instructions act as if 
they have not even started 

– Same system code will work on different implementations  
– Difficult in the presence of pipelining, out-of-order 
execution, ... 

– MIPS takes this position 
• Imprecise ⇒ system software has to figure out what is 

where and put it all back together 
• Performance goals often lead designers to forsake precise 

interrupts 
– system software developers, user, markets etc. usually wish 
they had not done this
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• PTE helps us implement demand paging 
– Valid ⇒ Page in memory, PTE points at physical page 
– Not Valid ⇒ Page not in memory; use info in PTE to find it on 
disk when necessary 

• Suppose user references page with invalid PTE? 
– Memory Management Unit (MMU) traps to OS 

» Resulting trap is a “Page Fault” 
– What does OS do on a Page Fault?: 

» Choose an old page to replace  
» If old page modified (“D=1”), write contents back to disk 
» Change its PTE and any cached TLB to be invalid 
» Load new page into memory from disk 
» Update page table entry, invalidate TLB for new entry 
» Continue thread from original faulting location 

– TLB for new page will be loaded when thread continued! 
– While pulling pages off disk for one process, OS runs another 
process from ready queue 

» Suspended process sits on wait queue 3

Cache

Recall: Demand Paging Mechanisms
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Summary: Steps in Handling a Page Fault
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Some following questions

• During a page fault, where does the OS get a free 
frame? 
– Keeps a free list 
– Unix runs a “reaper” if memory gets too full 
– As a last resort, evict a dirty page first 

• How can we organize these mechanisms? 
– Work on the replacement policy 

• How many page frames/process? 
– Like thread scheduling, need to “schedule” memory 
resources: 

» utilization?  fairness? priority? 

– allocation of disk paging bandwidth
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Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access 

time! (“Effective Access Time”) 
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time 
– EAT = Hit Time + Miss Rate x Miss Time 

• Example: 
– Memory access time = 200 nanoseconds 
– Average page-fault service time = 8 milliseconds 
– Suppose p = Probability of miss, 1-p = Probably of hit 
– Then, we can compute EAT as follows: 

  EAT  = 200ns + p x 8 ms 
          = 200ns + p x 8,000,000ns 
• If one access out of 1,000 causes a page fault, then EAT = 

8.2 µs: 
– This is a slowdown by a factor of 40! 

• What if want slowdown by less than 10%? 
– 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6 
– This is about 1 page fault in 400000!
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What Factors Lead to Misses?
• Compulsory Misses:  

– Pages that have never been paged into memory before 
– How might we remove these misses? 

» Prefetching: loading them into memory before needed 
» Need to predict future somehow!  More later. 

• Capacity Misses: 
– Not enough memory. Must somehow increase size. 
– Can we do this? 

» One option: Increase amount of DRAM (not quick fix!) 
» Another option:  If multiple processes in memory: adjust percentage 

of memory allocated to each one! 
• Conflict Misses: 

– Technically, conflict misses don’t exist in virtual memory, since it is 
a “fully-associative” cache 

• Policy Misses: 
– Caused when pages were in memory, but kicked out prematurely 
because of the replacement policy 

– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy?  

– Replacement is an issue with any cache 
– Particularly important with pages 

» The cost of being wrong is high: must go to disk 
» Must keep important pages in memory, not toss them out 

• FIFO (First In, First Out) 
– Throw out oldest page.  Be fair – let every page live in memory 
for same amount of time. 

– Bad, because throws out heavily used pages instead of 
infrequently used pages 

• MIN (Minimum):  
– Replace page that won’t be used for the longest time  
– Great, but can’t really know future… 
– Makes good comparison case, however 

• RANDOM: 
– Pick random page for every replacement 
– Typical solution for TLB’s.  Simple hardware 
– Pretty unpredictable – makes it hard to make real-time 
guarantees
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Replacement Policies (Con’t)
• LRU (Least Recently Used): 

– Replace page that hasn’t been used for the longest time 
– Programs have locality, so if something not used for a while, 
unlikely to be used in the near future. 

– Seems like LRU should be a good approximation to MIN. 
• How to implement LRU? Use a list! 

– On each use, remove page from list and place at head 
– LRU page is at tail 

• Problems with this scheme for paging? 
– Need to know immediately when each page used so that can 
change position in list…  

– Many instructions for each hardware access 
• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream:  
– A B C A B D A D B C B 

• Consider FIFO Page replacement: 

– FIFO: 7 faults.  
– When referencing D, replacing A is bad choice, since 
need A again right away

Example: FIFO

C

B

A

D

C

B

A

BCBDADBACBA

3

2

1

Ref: 
Page:
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• Suppose we have the same reference stream:  
– A B C A B D A D B C B 

• Consider MIN Page replacement: 

– MIN: 5 faults  
– Where will D be brought in? Look for page not referenced 
farthest in future. 

• What will LRU do? 
– Same decisions as MIN here, but won’t always be true!

Example: MIN

C

DC

B

A

BCBDADBACBA

3

2

1

Ref: 
Page:
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• Consider the following: A B C D A B C D A B C D 
• LRU Performs as follows (same as FIFO here): 

– Every reference is a page fault! 
• MIN Does much better:

D

When will LRU perform badly?

C

B

A

D

C

B

A

D

C

B

A

CBADCBADCBA D
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2

1

Ref: 
Page:
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Page:
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Graph of Page Faults Versus The Number of Frames

• One desirable property: When you add memory the miss 
rate goes down 
– Does this always happen? 
– Seems like it should, right? 

• No: BeLady’s anomaly  
– Certain replacement algorithms (FIFO) don’t have this obvious 
property!
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Adding Memory Doesn’t Always Help Fault Rate
• Does adding memory reduce number of page faults? 

– Yes for LRU and MIN 
– Not necessarily for FIFO!  (Called Belady’s anomaly) 

• After adding memory: 
– With FIFO, contents can be completely different 
– In contrast, with LRU or MIN, contents of memory with X pages 
are a subset of contents with X+1 Page
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Implementing LRU
• Perfect: 

– Timestamp page on each reference 
– Keep list of pages ordered by time of reference 
– Too expensive to implement in reality for many reasons 

• Clock Algorithm: Arrange physical pages in circle with 
single clock hand 
– Approximate LRU (approx to approx to MIN) 
– Replace an old page, not the oldest page 

• Details: 
– Hardware “use” bit per physical page: 

» Hardware sets use bit on each reference 
» If use bit isn’t set, means not referenced in a long time 

– On page fault: 
» Advance clock hand (not real time) 
» Check use bit: 1→used recently; clear and leave alone 

 0→selected candidate for replacement 
– Will always find a page or loop forever? 

» Even if all use bits set, will eventually loop around
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Clock Algorithm: Not Recently Used

Set of all pages 
in Memory

Single Clock Hand: 
Advances only on page fault! 
Check for pages not used recently 
Mark pages as not used recently

• What if hand moving slowly? 
– Good sign or bad sign? 

» Not many page faults and/or find page quickly 
• What if hand is moving quickly? 

– Lots of page faults and/or lots of reference bits set 
• One way to view clock algorithm:  

– Crude partitioning of pages into two groups: young and old 
– Why not partition into more than 2 groups?
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Nth Chance version of Clock Algorithm
• Nth chance algorithm: Give page N chances 

– OS keeps counter per page: # sweeps 
– On page fault, OS checks use bit: 

» 1⇒clear use and also clear counter (used in last sweep) 
» 0⇒increment counter; if count=N, replace page 

– Means that clock hand has to sweep by N times without page 
being used before page is replaced 

• How do we pick N? 
– Why pick large N? Better approx to LRU 

» If N ~ 1K, really good approximation 
– Why pick small N? More efficient 

» Otherwise might have to look a long way to find free page 
• What about dirty pages? 

– Takes extra overhead to replace a dirty page, so give dirty 
pages an extra chance before replacing? 

– Common approach: 
» Clean pages, use N=1 
» Dirty pages, use N=2 (and write back to disk when N=1)
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Clock Algorithms: Details
• Which bits of a PTE entry are useful to us? 

– Use: Set when page is referenced; cleared by clock 
algorithm 

– Modified: set when page is modified, cleared when page 
written to disk 

– Valid: ok for program to reference this page 
– Read-only: ok for program to read page, but not modify 

» For example for catching modifications to code pages! 

• Do we really need hardware-supported “modified” bit? 
– No.  Can emulate it (BSD Unix) using read-only bit 

» Initially, mark all pages as read-only, even data pages 
» On write, trap to OS. OS sets software “modified” bit, and 

marks page as read-write. 
» Whenever page comes back in from disk, mark read-only
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Clock Algorithms Details (continued)

• Do we really need a hardware-supported “use” bit? 
– No. Can emulate it similar to above: 

» Mark all pages as invalid, even if in memory 
» On read to invalid page, trap to OS 
» OS sets use bit, and marks page read-only 

– Get modified bit in same way as previous: 
» On write, trap to OS (either invalid or read-only) 
» Set use and modified bits, mark page read-write 

– When clock hand passes by, reset use and modified bits and 
mark page as invalid again  

• Remember, however, that clock is just an approximation of 
LRU 
– Can we do a better approximation, given that we have to take 

page faults on some reads and writes to collect use information? 
– Need to identify an old page, not oldest page! 
– Answer: second chance list
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Second-Chance List Algorithm (VAX/VMS)

• Split memory in two: Active list (RW), SC list (Invalid) 
• Access pages in Active list at full speed 
• Otherwise, Page Fault 

– Always move overflow page from end of Active list to front of 
Second-chance list (SC) and mark invalid 

– Desired Page On SC List: move to front of Active list, mark RW 
– Not on SC list: page in to front of Active list, mark RW; page 
out LRU victim at end of SC list

Directly 
Mapped Pages 

Marked: RW 
List: FIFO

Second  
Chance List 

Marked: Invalid 
List: LRU

LRU victim

Page-in 
From disk

New 
Active 
Pages

Ac
ce
ss

New 
SC 
Victims

Overflow
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Second-Chance List Algorithm (con’t)
• How many pages for second chance list? 

– If 0 ⇒ FIFO 
– If all ⇒ LRU, but page fault on every page reference 

• Pick intermediate value.  Result is: 
– Pro: Few disk accesses (page only goes to disk if unused 
for a long time)  

– Con: Increased overhead trapping to OS (software / 
hardware tradeoff) 

• Question: why didn’t VAX include “use” bit? 
– Strecker (architect) asked OS people, they said they 
didn’t need it, so didn’t implement it 

– He later got blamed, but VAX did OK anyway
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Free List

• Keep set of free pages ready for use in demand paging 
– Freelist filled in background by Clock algorithm or other technique 
(“Pageout demon”) 

– Dirty pages start copying back to disk when enter list 
• Like VAX second-chance list 

– If page needed before reused, just return to active set 
• Advantage: Faster for page fault 

– Can always use page (or pages) immediately on fault

Set of all pages 
in Memory

Single Clock Hand: 
Advances as needed to keep 
freelist full (“background”) 

D

D

Free Pages 
For Processes
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Demand Paging (more details) 

• Core Map 
– Page tables map virtual page → physical page  
– Do we need a reverse mapping (i.e. physical page → 
virtual page)? 

» Yes. Clock algorithm runs through page frames. If sharing, 
then multiple virtual-pages per physical page 

» Can’t push page out to disk without invalidating all PTEs
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Allocation of Page Frames (Memory Pages)
• How do we allocate memory among different processes? 

– Does every process get the same fraction of memory?  
Different fractions? 

– Should we completely swap some processes out of memory? 
• Each process needs minimum number of pages 

– Want to make sure that all processes that are loaded into 
memory can make forward progress 

– Example:  IBM 370 – 6 pages to handle SS MOVE instruction: 
» instruction is 6 bytes, might span 2 pages 
» 2 pages to handle from 
» 2 pages to handle to 

• Possible Replacement Scopes: 
– Global replacement – process selects replacement frame from 
set of all frames; one process can take a frame from another 

– Local replacement – each process selects from only its own set 
of allocated frames
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Fixed/Priority Allocation
• Equal allocation (Fixed Scheme):  

– Every process gets same amount of memory 
– Example: 100 frames, 5 processes⇒process gets 20 frames 

• Proportional allocation (Fixed Scheme) 
– Allocate according to the size of process 
– Computation proceeds as follows: 
  si = size of process pi and S = Σsi  
  m = total number of frames 

  ai = allocation for pi =  

• Priority Allocation: 
– Proportional scheme using priorities rather than size 

» Same type of computation as previous scheme 
– Possible behavior: If process pi generates a page fault, select for 
replacement a frame from a process with lower priority number 

• Perhaps we should use an adaptive scheme instead??? 
– What if some application just needs more memory?

m
S
si ×
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Page-Fault Frequency Allocation

• Can we reduce Capacity misses by dynamically changing the 
number of pages/application? 

• Establish “acceptable” page-fault rate 
– If actual rate too low, process loses frame 
– If actual rate too high, process gains frame 

• Question: What if we just don’t have enough memory?
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Thrashing

• If a process does not have “enough” pages, the page-
fault rate is very high.  This leads to: 
– low CPU utilization 
– operating system spends most of its time swapping to disk 

• Thrashing ≡ a process is busy swapping pages in and out 
• Questions: 

– How do we detect Thrashing? 
– What is best response to Thrashing?
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• Program Memory Access 
Patterns have temporal 
and spatial locality 
– Group of Pages accessed 
along a given time slice 
called the “Working Set” 

– Working Set defines 
minimum number of pages 
needed for process to 
behave well 

• Not enough memory for 
Working Set⇒Thrashing 
– Better to swap out 
process?

Locality In A Memory-Reference Pattern
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Working-Set Model

• Δ ≡ working-set window ≡ fixed number of page references  
– Example:  10,000 instructions 

• WSi (working set of Process Pi) = total set of pages 
referenced in the most recent Δ (varies in time) 
– if Δ too small will not encompass entire locality 
– if Δ too large will encompass several localities 
– if Δ = ∞ ⇒ will encompass entire program 

• D = Σ|WSi| ≡ total demand frames  
• if D > m ⇒ Thrashing 

– Policy: if D > m, then suspend/swap out processes 
– This can improve overall system behavior by a lot!
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What about Compulsory Misses?

• Recall that compulsory misses are misses that occur the first 
time that a page is seen  
– Pages that are touched for the first time 
– Pages that are touched after process is swapped out/swapped 

back in 

• Clustering: 
– On a page-fault, bring in multiple pages “around” the faulting 

page 
– Since efficiency of disk reads increases with sequential reads, 

makes sense to read several sequential pages 
• Working Set Tracking: 

– Use algorithm to try to track working set of application 
– When swapping process back in, swap in working set
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Next Objective
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OS Basics: I/O
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In a picture

• I/O devices you recognize are supported by I/O Controllers 
• Processors accesses them by reading and writing IO registers as if 

they were memory 
– Write commands and arguments, read status and results
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The Requirements of I/O

• So far in this course: 
– We have learned how to manage CPU, memory 

• What about I/O? 
– Without I/O, computers are useless (disembodied 
brains?) 

– But… thousands of devices, each slightly different 
» How can we standardize the interfaces to these 

devices? 
– Devices unreliable: media failures and transmission 
errors 

» How can we make them reliable??? 
– Devices unpredictable and/or slow 

» How can we manage them if we don’t know what they will 
do or how they will perform?
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Operational Parameters for I/O

• Data granularity: Byte vs. Block 
– Some devices provide single byte at a time (e.g., 

keyboard) 
– Others provide whole blocks (e.g., disks, networks, etc.) 

• Access pattern: Sequential vs. Random 
– Some devices must be accessed sequentially (e.g., tape) 
– Others can be accessed “randomly” (e.g., disk, cd, etc.) 

» Fixed overhead to start sequential transfer (more later) 

• Transfer Notification: Polling vs. Interrupts 
– Some devices require continual monitoring 
– Others generate interrupts when they need service 

• Transfer Mechanism: Programmed IO and DMA
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Kernel Device Structure

The System Call Interface
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Summary
• Replacement policies 

– FIFO: Place pages on queue, replace page at end 
– MIN: Replace page that will be used farthest in future 
– LRU: Replace page used farthest in past  

• Clock Algorithm: Approximation to LRU 
– Arrange all pages in circular list 
– Sweep through them, marking as not “in use” 
– If page not “in use” for one pass, than can replace 

• Nth-chance clock algorithm: Another approx LRU 
– Give pages multiple passes of clock hand before replacing 

• Second-Chance List algorithm: Yet another approx LRU 
– Divide pages into two groups, one of which is truly LRU and 
managed on page faults. 

• Working Set: 
– Set of pages touched by a process recently 

• Thrashing: a process is busy swapping pages in and out 
– Process will thrash if working set doesn’t fit in memory 
– Need to swap out a process


