
CS162 
Operating Systems and  
Systems Programming  

Lecture 14  
  

Caching (Finished), 
Demand Paging

October 19th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: In Machine Structures (eg. 61C) …

• Caching is the key to memory system performance

• Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)
• HitRate + MissRate = 1
• HitRate = 90% => Average Access Time = 19 ns
• HitRate = 99% => Average Access Time = 10.9ns

Processor
Main
Memory
(DRAM)

100ns10ns

Second
Level
Cache
(SRAM)

Processor
Main
Memory
(DRAM)

100ns

Access time = 100ns

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Memory Hierarchy

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

L3 Cache 
(shared)Registers

Core

Core

Secondary  
 Storage  

(Disk)

Processor

Main
Memory
(DRAM)

1 10,000,000
 (10 ms)Speed (ns): 10-30 100

100BsSize (bytes): MBs GBs TBs

RegistersL1 Cache

L1 CacheL2 Cache

L2 Cache

0.3 3

10kBs 100kBs

Secondary  
 Storage  

(SSD)

100,000  
(0.1 ms)

100GBs

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 4

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

Review: How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 5

:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache

• N-way set associative: N entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 7

Review: Fully Associative Cache

• Fully Associative: Every block can hold any line
– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

 Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 8

•Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block
no.

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Set associative:
block 12 can go
anywhere in set 0
(12 mod 4)

0 1 2 3 4 5 6 7Block
no.

Set
0

Set
1

Set
2

Set
3

Fully associative:
block 12 can go
anywhere

0 1 2 3 4 5 6 7Block
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block
no.

Where does a Block Get Placed in a Cache?

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 9

• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

 2-way 4-way 8-way  
Size LRU Random LRU Random LRU Random

 16 KB 5.2% 5.7% 4.7% 5.3% 4.4% 5.0%
 64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%
 256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 10

• Write through: The information is written to both the block
in the cache and to the block in the lower-level memory

• Write back: The information is written only to the block in
the cache.
– Modified cache block is written to main memory only when it is
replaced

– Question is block clean or dirty?
• Pros and Cons of each?

– WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB:
» PRO: repeated writes not sent to DRAM 

 processor not held up on writes
» CON: More complex  

 Read miss may require writeback of dirty data

Review: What happens on a write?

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 11

Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page
(since accesses sequential)

– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
AddressYes

Cached?

Sa
ve

Re
sul

t

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 12

What Actually Happens on a TLB Miss?

• Hardware traversed page tables:
– On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows
» If PTE marked as invalid, causes Page Fault, after which kernel

decides what to do afterwards
• Software traversed Page tables (like MIPS)

– On TLB miss, processor receives TLB fault
– Kernel traverses page table to find PTE

» If PTE valid, fills TLB and returns from fault
» If PTE marked as invalid, internally calls Page Fault handler

• Most chip sets provide hardware traversal
– Modern operating systems tend to have more TLB faults since they
use translation for many things

– Examples:
» shared segments
» user-level portions of an operating system

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Transparent Exceptions: TLB/Page fault

• How to transparently restart faulting instructions?
– (Consider load or store that gets TLB or Page fault)
– Could we just skip faulting instruction?

» No: need to perform load or store after reconnecting physical
page

• Hardware must help out by saving:
– Faulting instruction and partial state

» Need to know which instruction caused fault
– Processor State: sufficient to restart user thread

» Save/restore registers, stack, etc
• What if an instruction has side-effects?

Software
Load TLB

Fa
ul
ti
ng

In

st
 1

Fa
ul
ti
ng

In

st
 1

Fa
ul
ti
ng

In

st
 2

Fa
ul
ti
ng

In

st
 2

Fetch page/
Load TLB

User

OS

TLB Faults

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Consider weird things that can happen
• What if an instruction has side effects?

– Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)

– Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?

– Example 2: strcpy (r1), (r2)
» Source and destination overlap: can’t unwind in principle!
» IBM S/370 and VAX solution: execute twice – once read-

only

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Precise Exceptions

• Precise ⇒ state of the machine is preserved as if
program executed up to the offending instruction
– All previous instructions completed
– Offending instruction and all following instructions act as if
they have not even started

– Same system code will work on different implementations
– Difficult in the presence of pipelining, out-of-order
execution, ...

– MIPS takes this position
• Imprecise ⇒ system software has to figure out what is

where and put it all back together
• Performance goals often lead designers to forsake precise

interrupts
– system software developers, user, markets etc. usually wish
they had not done this

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 16

What happens on a Context Switch?

• Need to do something, since TLBs map virtual addresses
to physical addresses
– Address Space just changed, so TLB entries no longer
valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or vice
versa…

– Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

– Called “TLB Consistency”

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 17

What TLB organization makes sense?

• Needs to be really fast
– Critical path of memory access

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high!
– This argues that cost of Conflict (Miss Time) is much higher than
slightly increased cost of access (Hit Time)

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 18

TLB organization: include protection

•How big does TLB actually have to be?
– Usually small: 128-512 entries
– Not very big, can support higher associativity

•TLB usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

•What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

•Example for MIPS R3000:

 0xFA00 0x0003 Y N Y R/W 34 
 0x0040 0x0010 N Y Y R 0  
 0x0041 0x0011 N Y Y R 0

Virtual Address Physical Address Dirty Ref Valid Access ASID

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 19

• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further: they overlap TLB
lookup with cache access.
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Overlapping TLB & Cache Access

• Main idea:
– Offset in virtual address exactly covers the “cache index”
and “byte select”

– Thus can select the cached byte(s) in parallel to perform
address translation

OffsetVirtual Page #

indextag / page # byte

virtual address

physical address

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 21

Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical

Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table
(1st level)

Page Table
(2nd level)

Physical
Memory:

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical
Memory:

Physical Address:

…

TLB:

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 23

Page Table
(2nd level)

PageTablePtr

Page Table
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Next Up: What happens when …

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 25

Where are all places that caching arises in 
Operating Systems?

• Direct use of caching techniques
– paged virtual memory (mem as cache for disk)
– TLB (cache of PTEs)
– file systems (cache disk blocks in memory)
– DNS (cache hostname => IP address translations)
– Web proxies (cache recently accessed pages)

• Which pages to keep in memory?
– All-important “Policy” aspect of virtual memory
– Will spend a bit more time on this in a moment

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Impact of caches on Operating Systems

• Indirect - dealing with cache effects
• Process scheduling

– which and how many processes are active ?
– large memory footprints versus small ones ?
– priorities ?
– Shared pages mapped into VAS of multiple processes ?

• Impact of thread scheduling on cache performance
– rapid interleaving of threads (small quantum) may degrade cache

performance
» increase average memory access time (AMAT) !!!

• Designing operating system data structures for cache performance
• Maintaining the correctness of various caches

– TLB consistency:
» With PT across context switches ?
» Across updates to the PT ?

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Working Set Model

• As a program executes it transitions through a
sequence of “working sets” consisting of varying
sized subsets of the address space

Time

A
dd

re
ss

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 28

Cache Behavior under WS model

H
it
 R

at
e

Cache Size

new working set fits

0

1

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 29

Another model of Locality: Zipf

• Likelihood of accessing item of rank r is 1/ra

• Although rare to access items below the top few, there are so many that it
yields a “heavy tailed” distribution.

• Substantial value from even a tiny cache
• Substantial misses from even a very large one

P access(rank) = 1/rank

Es
ti
m
at

ed
 H

it
 R

at
e

0

0.225

0.45

0.675

0.9

Po
pu

la
ri
ty

 (
%
 a

cc
es

se
s)

0%

5%

10%

15%

20%

Rank

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

pop a=1
Hit Rate(cache)

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Demand Paging

• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10%
of their code

– Wasteful to require all of user’s code to be in memory
• Solution: use main memory as cache for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

Caching

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Page
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency
• Principle: Transparent Level of Indirection (page table)

– Supports flexible placement of physical data
» Data could be on disk or somewhere across network

– Variable location of data transparent to user program
» Performance issue, not correctness issue

Physical
Memory
512 MB

Disk
500GB

∞

Virtual
Memory
4 GB

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 32

Demand Paging is Caching

• Since Demand Paging is Caching, must ask:
– What is block size?

» 1 page
– What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)?

» Fully associative: arbitrary virtual→physical mapping
– How do we find a page in the cache when look for it?

» First check TLB, then page-table traversal
– What is page replacement policy? (i.e. LRU, Random…)

» This requires more explanation… (kinda LRU)

– What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

– What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 33

Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

 P: Present (same as “valid” bit in other architectures)
 W: Writeable
 U: User accessible
 PWT: Page write transparent: external cache write-through
 PCD: Page cache disabled (page cannot be cached)
 A: Accessed: page has been accessed recently
 D: Dirty (PTE only): page has been modified recently
 L: L=1⇒4MB page (directory only).  

 Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015

• PTE helps us implement demand paging
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find it on
disk when necessary

• Suppose user references page with invalid PTE?
– Memory Management Unit (MMU) traps to OS

» Resulting trap is a “Page Fault”
– What does OS do on a Page Fault?:

» Choose an old page to replace
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another
process from ready queue

» Suspended process sits on wait queue 34

Cache

Demand Paging Mechanisms

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 35

Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and

symbols
– OS loads it into memory, initializes registers (and initial stack pointer)
– program sets up stack and heap upon initialization: CRT0

disk (huge) memory

code

data

info

exe

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk
– called the backing store
– typically in an optimized block store, but can think of it like a

file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel code
& data

user page
frames

user
pagetable

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 37

Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 38

Create Virtual Address Space of the Process

• User Page table maps entire VAS
– resident pages to the frame in memory they occupy
– the portion of it that the HW needs to access must be
resident in memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS – per process

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

PT

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 39

Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to memory frames
• For all other pages, OS must record where to find them

on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

VAS – per process

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 40

Provide Backing Store for VAS

46

disk (huge, TB)
memory

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 41

On page Fault …

disk (huge, TB)
memory

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 42

On page Fault … find & start load

disk (huge, TB)
memory

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 43

On page Fault … schedule other P or T

disk (huge, TB)
memory

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 44

On page Fault … update PTE

disk (huge, TB)
memory

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 45

Eventually reschedule faulting thread

disk (huge, TB)
memory

kernel code
& data

user page
frames

user
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 46

Summary: Steps in Handling a Page Fault

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 47

Summary (1/2)

• The Principle of Locality:
– Program likely to access a relatively small portion of the address
space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start
misses.

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent

10/19/15 Kubiatowicz CS162 ©UCB Fall 2015 48

Summary (2/2)

• A cache of translations called a “Translation Lookaside Buffer”
(TLB)
– Relatively small number of entries (< 512)
– Fully Associative (Since conflict misses expensive)
– TLB entries contain PTE and optional process ID

• On TLB miss, page table must be traversed
– If located PTE is invalid, cause Page Fault

• On context switch/change in page table
– TLB entries must be invalidated somehow

• TLB is logically in front of cache
– Thus, needs to be overlapped with cache access to be really fast

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started

