CS162
Operating Systems and
Systems Programming

Lecture 14

Caching (Finished),
Demand Paging

October 19th, 2015
Prof. John Kubiatowicz
http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: In Machine Structures (eg. 61C) ...

- Caching is the key to memory system performance

Main
[Processor |&€ >t x)eﬁ?vrg
Access time = 100ns
100ns
Second Main
P Level Memory
rocessor |& > |Cache |&—> (DRAM)
(SRAM)
10ns 100ns

* Average Access time = (Hit Rate x HitTime) + (Miss Rate x MissTime)

 HitRate + MissRate =1

- HitRate = 90% => Average Access Time =19 ns
* HitRate = 99% => Average Access Time = 10.9ns

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015

Memory Hierarchy

- Take advantage of the principle of locality to:

- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Core
RepistiridCac Caghd Secondary
L i Secondary Storage
Core Storage (Disk)
Memory (SSD)
e|L Cac];e (DRAM)
RbbistkigCaghé[Cagh (ghared)
Speed (ns): 0.3 1 3 1030 100 01 m9) o).
Size (bytes): 100Bs 10kBs 100kBs MBs GBs 100GBs TBs

10/19/15

Kubiatowicz €S162 ©UCB Fall 2015

Review: How is a Block found in a Cache?

Block Address Block
Tag Index offset

H_J

Set Select

Data Select

- Index Used to Lookup Candidates in Cache
- Index identifies the set

- Tag used to identify actual copy
- If no candidates match, then declare cache miss

- Block is minimum quantum of caching
- Data select field used to select data within block

- Many caching applications don't have data select field
10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 4

Review: Direct Mapped Cache

- Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Tag
- The lowest M bits are the Byte Select (Block Size = 2M)

- Example: 1 KB Direct Mapped Cache with 32 B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

31 9 4 0
Cache Tag A Cache Index Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
I
Valid Bit Cache Tag Cache Data
.. Byte3L|......|Byte 1. |Byte]0. {0
0x50 Byte 63 Byte 33 |Byte 32 | f +—
.. : 2‘
3
Byte 1023 «+ Byte 992 |31

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 5

Review: Set Associative Cache

- N-way set associative: N entries per Cache Index
- N direct mapped caches operates in parallel

- Example: Two-way set associative cache
- Cache Index selects a “"set” from the cache

- Two tags in the set are compared to input in parallel
- Data is selected based on the tag result

31

r——1

8 4 0
Cache Tag Cache Index Byte Select
J
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
< g
i e i T i e —
I [

10/19/15

Cache Block

Review: Fully Associative Cache

- Fully Associative: Every block can hold any line

- Address does not include a cache index

- Compare Cache Tags of all Cache Entries in Parallel
- Example: Block Size=32B blocks

- We need N 27-bit comparators

- Still have byte select to choose from within block

31 4 0
Cache Tag (27 bits long) I Byte Select
Ex: 0x01
Cache Tag Valid Bit ~ Cache Data |
> @— Byte31| .. [Bytel [Byte0
:@: Byte 63| .. |Byte 33 [Byte 32
€)—
> 6:
> 6: :

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 7

Where does a Block Get Placed in a Cache?

- Example: Block 12 placed in 8 block cache
32-Block Address Space:

Block

1111111111222222222233

no. 01234567890123456789012345678901

Direct mapped:

block 12 can go
only into block 4
(12 mod 8)

Block 01234567
no.

10/19/15

Set associative: Fully associative:
block 12 can go block 12 can go
anywhere in set 0 anywhere
(12 mod 4)

Block 01234567 Block 01234567

no. no.

Set Set Set Set
0 1 2 3

Kubiatowicz €S162 ©UCB Fall 2015

Review: Which block should be replaced on a miss?

- Easy for Direct Mapped: Only one possibility

- Set Associative or Fully Associative:
- Random

- LRU (Least Recently Used)

2-way 4-way 8 -way
Size LRU Random LRU Random LRU Random
16 KB 52% b57% 47% 53% 4.4% 5.0%
64 KB 1.9% 2.0% 1.5% 1.7% 1.4% 1.5%

256 KB 1.15% 1.17% 1.13% 1.13% 1.12% 1.12%

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015

Review: What happens on a write?

- Write through: The information is written to both the block
in the cache and to the block in the lower-level memory

- Write back: The information is written only to the block in
the cache.

- Modified cache block is written to main memory only when it is
replaced

- Question is block clean or dirty?

* Pros and Cons of each?
- WT:
» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered
- WB:
» PRO: repeated writes not sent fo DRAM
processor not held up on writes

» CON: More complex
Read miss may require writeback of dirty data

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 10

Caching Applied to Address Translation

Physical

Physical
Memory

Data Read or Write
(untranslated)

- Question is one of page locality: does it exist?

- Instruction accesses spend a lot of time on the same page
(since accesses sequential)

- Stack accesses have definite locality of reference
- Data accesses have less page locality, but still some...

- Can we have a TLB hierarchy?
1019115 Sure: multiple leyels at different sizes/speeds 11

What Actually Happens on a TLB Miss?

- Hardware traversed page tables:

- On TLB miss, hardware in MMU looks at current page table to fill
TLB (may walk multiple levels)

» If PTE valid, hardware fills TLB and processor never knows

» If PTE marked as invalid, causes Page Fault, after which kernel
decides what to do afterwards

- Software traversed Page tables (like MIPS)
- On TLB miss, processor receives TLB fault

- Kernel traverses page table to find PTE
» If PTE valid, fills TLB and returns from fault

» If PTE marked as invalid, internally calls Page Fault handler
* Most chip sets provide hardware traversal

- Modern operating systems tend to have more TLB faults since they
use translation for many things

- Examples:
» shared segments
» user-level portions of an operating system

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 12

Transparent Exceptions: TLB/Page fault

«—F aulting

«—F aulting

User ‘

»Faulting
Ing+1-
»Faulting
Ingt 2

Inst 1
Inst 2

TLB Faults
‘Softwar‘e ‘Fetch page/
0S5 Load TLB Load TLB
- How to transparently restart faulting instructions?
- (Consider load or store that gets TLB or Page fault)
- Could we just skip faulting instruction?
» No: need to perform load or store after reconnecting physical
page
- Hardware must help out by saving:
- Faulting instruction and partial state
» Need to know which instruction caused fault
- Processor State: sufficient to restart user thread
» Save/restore registers, stack, etfc

- What if an instruction has side-effects?
10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 13

Consider weird things that can happen

- What if an instruction has side effects?
- Options:
» Unwind side-effects (easy to restart)
» Finish off side-effects (messy!)
- Example 1: mov (sp)+,10
» What if page fault occurs when write to stack pointer?
» Did sp get incremented before or after the page fault?
- Example 2: strcpy (rl), (r2)
» Source and destination overlap: can't unwind in principle!

» IBM S/370 and VAX solution: execute twice - once read-
only

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 14

Precise Exceptions

* Precise = state of the machine is preserved as if
program executed up to the offending instruction

- All previous instructions completed

- Offending instruction and all following instructions act as if
they have not even started

- Same system code will work on different implementations

- Difficult in the presence of pipelining, out-of-order
execution, ...

- MIPS takes this position

- Imprecise = system software has to figure out what is
where and put it all back together

- Performance goals often lead designers to forsake precise
interrupts

- system software developers, user, markets etc. usually wish
they had not done this

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 15

What happens on a Context Switch?

- Need to do something, since TLBs map virtual addresses
to physical addresses

- Address Space just changed, so TLB entries no longer
valid!

- Options?
- Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?

- Include ProcessID in TLB
» This is an architectural solution: needs hardware
- What if translation tables change?

- For example, to move page from memory to disk or vice
versa...

- Must invalidate TLB entry!
» Otherwise, might think that page is still in memory!

- Called "TLB Consistency”

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 16

What TLB organization makes sense?

TLB —|Cache [—*{Memory

* Needs to be really fast

- Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

- Seems to argue for Direct Mapped or Low Associativity
- However, needs to have very few conflicts!
- With TLB, the Miss Time extremely high!

- This argues that cost of Conflict (Miss Time) is much higher than
slightly increased cost of access (Hit Time)

- Thrashing: continuous conflicts between accesses

- What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

- What if use high order bits as index?
» TLB mostly unused for small programs

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 17

TLB organization: include protection

- How big does TLB actually have to be?
- Usually small: 128-512 entries

- Not very big, can support higher associativity

* TLB usually organized as fully-associative cache
- Lookup is by Virtual Address

- Returns Physical Address + other info

- What happens when fully-associative is too slow?

- Put a small (4-16 entry) direct-mapped cache in front
- Called a "TLB Slice”

- Example for MIPS R3000:

Virtual Address |Physical Address |Dirty |[Ref |Valid Access ASID
0xFAO00 0x0003 Y N Y R/W 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0

10/19/15

Kubiatowicz €S162 ©UCB Fall 2015

Reducing translation time further

- As described, TLB lookup is in serial with cache lookup:

Virtual Address

10—

offset

TLB Lookup

"IV

Access

Rights \

v A 4

offset |

10—
Physical Address

* Machines with TLBs go one step further: they overlap TLB
lookup with cache access.

- Works because offset available early

10/19/15

Kubiatowicz €S162 ©UCB Fall 2015

19

Overlapping TLB & Cache Access

- Main idea:

- Offset in virtual address exactly covers the “cache index”
and “byte select”

- Thus can select the cached byte(s) in parallel to perform
address translation

virtual address |Virtual Page #_
physical address | tag / page # _

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 20

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
4
T
PageTablePtr Physic dre

Page Table
(1st level)

Page Table
(2nd |evel)

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 21

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
of |
Physic dre
ysica

—

| | |
10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 22

Putting Everything Together: Cache

Physical
Memory:
|
Physic dre
ysica
| | |
10/19/15 Kubiatowicz €S162 © I | I 23

Next Up: What happens when ...

Process virtual address physical address
_/
ins‘rr%’rion —> MMU s ame#
7\ 2 PT
retr exception 496 fault] |-~ offse
ame
Opkraking System offset
; I =Y - update PT entry

ge Fault Handler

oad page from disk

scheduler

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015

Where are all places that caching arises in
Operating Systems?

- Direct use of caching techniques
- paged virtual memory (mem as cache for disk)

- TLB (cache of PTEs)
- file systems (cache disk blocks in memory)
- DNS (cache hostname => IP address translations)
- Web proxies (cache recently accessed pages)
- Which pages to keep in memory?
- All-important "Policy” aspect of virtual memory
- Will spend a bit more time on this in a moment

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 25

Impact of caches on Operating Systems

Indirect - dealing with cache effects

Process scheduling
- which and how many processes are active ?

- large memory footprints versus small ones ?
- priorities ?
- Shared pages mapped into VAS of multiple processes ?

Impact of thread scheduling on cache performance

- rapid interleaving of threads (small quantum) may degrade cache
performance

» increase average memory access time (AMAT) lll
Designing operating system data structures for cache performance

Maintaining the correctness of various caches
- TLB consistency:
» With PT across context switches ?
» Across updates to the PT ?

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 26

Working Set Model

- As a program executes it transitions through a
sequence of “"working sets” consisting of varying
sized subsets of the address space

! -

Address

Time

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015

27

Cache Behavior under WS model

—t
>

Hit Rate

10/19/15

new working set fits -

—

Cache Size

Kubiatowicz €S162 ©UCB Fall 2015

28

Another model of Locality: Zipf

20%

15%

Popularity (% accesses)
@ 8

0%

P access(rank) = 1/rank

— pop a=1
— Hit Rate(cache)

N

1 4 7 1013 16 19 222528 313437 4043 46 49
Rank

- Likelihood of accessing item of rank r is 1/re

- Although rare to access items below the top few, there are so many that it

yields a “heavy tailed” distribution.

- Substantial value from even a tiny cache

- Substantial misses from even a very large one

10/19/15

Kubiatowicz €S162 ©UCB Fall 2015

0.9

0.675

0.45

0.225

Estimated Hit Rate

29

Demand Paging

- Modern programs require a lot of physical memory
- Memory per system growing faster than 25%-30%/year
- But they don't use all their memory all of the time

- 90-10 rule: programs spend 90% of their time in 10%
of their code

- Wasteful to require all of user's code to be in memory
- Solution: use main memory as cache for¢“

Processor

Control

Tertiary
Storage

(Tape)

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 30

Illusion of Infinite Memory

|

— |
oo—| [| &

© A

i B

Page }
= Table ppysica Disk
er'::\m Memory 50068
emory 512 MB

4 GB

- Disk is larger than physical memory =

- In-use virtual memory can be bigger than physical memory

- Combined memory of running processes much larger than
physical memory

» More programs fit into memory, allowing more concurrency

* Principle: Transparent Level of Indirection (page table)
- Supports flexible placement of physical data
» Data could be on disk or somewhere across network

- Variable location of data transparent to user program
10/19/15 LSS Ppr"Fnr'mnnrp i(gHgatqu IC§I1QZI' g%gap(gplL5 31

Demand Paging is Caching

- Since Demand Paging is Caching, must ask:

- What is block size?
» 1 page

- What is organization of this cache (i.e. direct-mapped, set-

associative, fully-associative)?

» Fully associative: arbitrary virtual—physical mapping

- How do we find a page in the cache when look for it?
» First check TLB, then page-table traversal

- What is page replacement policy? (i.e. LRU, Random...)
» This requires more explanation... (kinda LRU)

- What happens on a miss?
» Go to lower level to fill miss (i.e. disk)

- What happens on a write? (write-through, write back)
» Definitely write-back. Need dirty bit!

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 32

Review: What is in a PTE?

- What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”
=
u[we

‘Page Frame Number
' r)

Free

(05)

1,
T EE

P:]I;r'esen'r (same as J‘valld" gn‘ in o'r?\er' arcﬁl‘recpur'es)
w: Writeable

U: User accessible

PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently

L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 33

Demand Paging Mechanisms

* PTE helps us implement demand paging
- Valid = Page in memory, PTE points at physical page
- Not Valid = Page not in memory; use info in PTE to find it on
disk when necessary

- Suppose user references page with invalid PTE?

- Memory Management Unit (MMU) traps to OS
» Resulting trap is a "Page Fault”
- What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified ("D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

- TLB for new page will be loaded when thread continued!

- While pulling pages off disk for one process, OS runs another
process from ready queue

10/19/15 > Suspended progess sits on waif queue.,, 34

Loading an executable into memory

disk (huge) memory

A
-)

exe

S~

- .exe
- lives on disk in the file system
- contains contents of code & data segments, relocation entries and
symbols
- OS loads it info memory, initializes registers (and initial stack pointer)

- program sets up stack and heap upon initialization: CRTO

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 35

Create Virtual Address Space of the Process

disk (huge) process VAS memory
N kernel user page
Lo stack frames
| l | = -
tOdE
exe —sbrk user
{Eap pagetable
dat
w e kernel code
code || & data

- Utilized pages in the VAS are backed by a page block on disk
- called the backing store

- }'ylpically in an optimized block store, but can think of it like a
ile

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 36

Create Virtual Address Space of the Process

M process VAS (6Bs) memory
N kernel
o ook stack user page
| —/——— | [- frames
. tode | heap
= heap user
data
et pagetable
w - kernel code
| code | & data

- User Page table maps entire VAS

- All the utilized regions are backed on disk
- swapped into and out of memory as needed

- For every process

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 37

Create Virtual Address Space of the Process

M VAS - per process PT memory
N kernel
e stack \ user page
e Stack | | Bt - frames
e heap
- heap user
e pagetable

data
code /

- kernel code
& data

- User Page table maps entire VAS
- resident pages to the frame in memory they occupy

- the portion of it that the HW needs to access must be
resident in memory

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 38

Provide Backin_g Store for VAS

disk (huge, TB)
T
_/

stack

A

113

heap .-

CxC

data

VAS - per process

kernel | -
—-stack o
o
:::_:d-é‘tu N :—;:—:-:-:.

code _ ——————

- User Page table maps entire VAS

- Resident pages mapped to memory frames

memory

user page
frames

user
pagetable

kernel code
& data

* For all other pages, OS must record where to find them

on disk

10/19/15

Kubiatowicz €S162 ©UCB Fall 2015

39

Provide Backin_g Store for VAS

disk (huge, TB)

A
S

-m-g

stack

stack | “. heap

cwa

VAS 1 PT

kernel

heap ™ data

10/19/15

e~ -
\ N \
\\ \ N \
Y
+ . code
N
ata . coae .
N N \
\\ N AY
N N3 (5N
\ IR
Oy A \
N \ \
\ \ \
N N3 1

N
N\
N\,

1

memory

—

A

;// user

Y kernel
//
stack
heap -
\ ./
. data
bcode | /

ruovarowrcz< 9102 ©UCB Fa" 2015

46

|
N user pa

frames

pagetabl

kernel ¢
& data

40

On page Fault ...

disk (huge, TB)

1

| ik (uge. T®) VAS1 PT

\\\\\\\ﬁ______’/////// kernel
S stack ! _s_‘l'gc_k_ 1SS
1 sTagk \\\ heap | e ,/j?

heap | | dhta

10/19/15

>1~_
\ N \
\\ \ N\ \
N
. code
N
ata . code)
N
\ \\ \\
N \
N (5N
\ (R
N\
\\ \\ \
Y
N \ \
N3 \

memory

—

|
%‘H user pag

} kernel
&
stack
heap y
. data
code
NUDTUTUWICZ \:DIOﬁ ©UCB Fa" 2015

frames

user
pagetabl

kernel ¢
& data

active process & PT

41

On page Fault ... find & start load

disk (huge, TB)

- stack
i stack | .. heap

10/19/15

>
\
\
\
\
\
\
;
Al

| —— e e = = -

code

NUDTATUWICZ \:Dl (0 F'4

/
/

vas 1 PT 1 memory
kernel
L _stack | ‘\7@ |
/ ‘H user pag
" f
d rames
heap / r / / AAAAARARAARAA
/ user
pagetabl
kernel c
& data

active process & PT

©UCB Fall 2015 42

On page Fault ... schedule other P or T

disk (huge, TB)

PT 1

memory

¥

aaaaaaa
pppppppppp
..........

2\ /

user pac
frames

user

pagetabl

w kernel
SE— stack stack
i stack |\ heap Pt \\\
G ' . - ,{_’_ ~~~~~~~~~~ B B S
heap EEGEEE
LT - VAS 2
data |) code) [T
_// b kernel
L L o
stack
heap y
data
code

kernel ¢
& data

active process & PT

43

On page Fault .. update PTE

disk (huge, TB)

A
S

- stack
stack \\\ heap
heap

10/19/15

>
\
\
\
\
\
\
\
" N
'S
\ o
\ \[*

N Y
Y
\\ \ N \
N
N
ata . code)
N
\ \\ \\
N \
N "
\ (R
R N\
N \\ i
Y
\ \ 1
N3 1

Y kernel
o
stack
heap y
data
code | 9
S

VAS 1

PT

1

2\ /

UCB Fall 2015

memory

%‘H user pag

frames

user
pagetabl

kernel ¢
& data

active process & PT

44

Eventually reschedule faulting thread

disk (huge, TB)

A
S

- stack
stack \\\ heap
heap

10/19/15

>
\
\
\
\
\
\
\
" N
'S
\ o
\ \[*

N Y
N
\\ \ N \
Y
\ 3 \
code -
AY A Y74}
\
L S !
™ N
Y "
\ IR

Oy A \
N \ \
\ \ \
N Y 1

NUDTATUWICZ \:Dl (0 F'4

VAS 1

kernel

PT 1

2\ /

-

\ﬁﬁ§lg“ ta
ernel | code
code
erne .///
stack
heap
4
. data
bcode /
X ©UCB Fall 2015

%‘H user pag

J

memory

—

frames

user
pagetabl

kernel ¢
& data

active process & PT

45

10/19/15

Summary: Steps

in Handling a Page Fault

Lo

&)

page is on
backing stare

L
4
_. g~
- — o — —

operating
system =
121
reference e
- trap
£ Yy
.,
load M —
© (==
restart page table
instruction
free frame p= v —
PN - -— -
(5 (4
reset page bring in
table missing page
physical
memory

Kubiatowicz €S162 ©UCB Fall 2015

46

Summary (1/2)

- The Principle of Locality:

- Program likely to access a relatively small portion of the address
space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
- Three (+1) Major Categories of Cache Misses:

- Compulsory Misses: sad facts of life. Example: cold start
misses.

- Conflict Misses: increase cache size and/or associativity

- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0 devices
- Cache Organizations:

- Direct Mapped: single block per set

- Set associative: more than one block per set

- Fully associative: all entries equivalent

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 47

Summary (2/2)

- A cache of translations called a "Translation Lookaside Buffer”
(TLB)

- Relatively small number of entries (< 512)
- Fully Associative (Since conflict misses expensive)
- TLB entries contain PTE and optional process ID
- On TLB miss, page table must be traversed
- If located PTE is invalid, cause Page Fault
- On context switch/change in page table
- TLB entries must be invalidated somehow
- TLB is logically in front of cache

- Thus, needs to be overlapped with cache access to be really fast

- Precise Exception specifies a single instruction for which:
- All previous instructions have completed (committed state)
- No following instructions nor actual instruction have started

10/19/15 Kubiatowicz €S162 ©UCB Fall 2015 48

