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Recall: In Machine Structures (eg. 61C) …

• Caching is the key to memory system performance

• Average Access time =  (Hit Rate x HitTime) + (Miss Rate x MissTime)
• HitRate + MissRate = 1
• HitRate = 90% => Average Access Time = 19 ns
• HitRate = 99% => Average Access Time = 10.9ns
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100ns

Access time = 100ns
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Memory Hierarchy

• Take advantage of the principle of locality to: 
– Present as much memory as in the cheapest technology 
– Provide access at speed offered by the fastest technology
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• Index Used to Lookup Candidates in Cache 
– Index identifies the set  

• Tag used to identify actual copy 
– If no candidates match, then declare cache miss 

• Block is minimum quantum of caching 
– Data select field used to select data within block 
– Many caching applications don’t have data select field

Review: How is a Block found in a Cache?

Block 
offset

Block Address
Tag Index

Set Select

Data Select
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:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache: 
– The uppermost (32 - N) bits are always the Cache Tag 
– The lowest M bits are the Byte Select (Block Size = 2M) 

• Example: 1 KB Direct Mapped Cache with 32 B Blocks 
– Index chooses potential block 
– Tag checked to verify block 
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
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Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache

• N-way set associative: N entries per Cache Index 
– N direct mapped caches operates in parallel 

• Example: Two-way set associative cache 
– Cache Index selects a “set” from the cache 
– Two tags in the set are compared to input in parallel 
– Data is selected based on the tag result

Compare Compare

Cache Block
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Review: Fully Associative Cache

• Fully Associative: Every block can hold any line 
– Address does not include a cache index 
– Compare Cache Tags of all Cache Entries in Parallel 

• Example: Block Size=32B blocks 
– We need N 27-bit comparators 
– Still have byte select to choose from within block

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

 Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01
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•Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block 
no.

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8)

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block 
no.

Set 
0

Set 
1

Set 
2

Set 
3

Fully associative: 
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block 
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block 
no.

Where does a Block Get Placed in a Cache?
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• Easy for Direct Mapped: Only one possibility 
• Set Associative or Fully Associative: 

– Random 
– LRU (Least Recently Used) 

             2-way         4-way           8-way  
Size LRU  Random  LRU  Random  LRU  Random 

 16 KB 5.2% 5.7%     4.7% 5.3% 4.4% 5.0% 
 64 KB 1.9% 2.0%     1.5% 1.7% 1.4% 1.5% 
 256 KB 1.15% 1.17%    1.13%  1.13% 1.12% 1.12%

Review: Which block should be replaced on a miss?
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• Write through: The information is written to both the block 
in the cache and to the block in the lower-level memory 

• Write back: The information is written only to the block in 
the cache.  
– Modified cache block is written to main memory only when it is 
replaced 

– Question is block clean or dirty? 
• Pros and Cons of each? 

– WT:  
» PRO: read misses cannot result in writes 
» CON: Processor held up on writes unless writes buffered 

– WB:  
» PRO: repeated writes not sent to DRAM 

  processor not held up on writes 
» CON: More complex  

  Read miss may require writeback of dirty data

Review: What happens on a write?
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Caching Applied to Address Translation

• Question is one of page locality: does it exist? 
– Instruction accesses spend a lot of time on the same page 
(since accesses sequential) 

– Stack accesses have definite locality of reference 
– Data accesses have less page locality, but still some… 

• Can we have a TLB hierarchy? 
– Sure: multiple levels at different sizes/speeds

Data Read or Write 
(untranslated)

CPU Physical 
Memory

TLB

Translate 
(MMU)

No

Virtual 
Address

Physical 
AddressYes

Cached?

Sa
ve 

Re
sul

t
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What Actually Happens on a TLB Miss?

• Hardware traversed page tables: 
– On TLB miss, hardware in MMU looks at current page table to fill 
TLB (may walk multiple levels) 

» If PTE valid, hardware fills TLB and processor never knows 
» If PTE marked as invalid, causes Page Fault, after which kernel 

decides what to do afterwards 
• Software traversed Page tables (like MIPS) 

– On TLB miss, processor receives TLB fault 
– Kernel traverses page table to find PTE 

» If PTE valid, fills TLB and returns from fault 
» If PTE marked as invalid, internally calls Page Fault handler 

• Most chip sets provide hardware traversal 
– Modern operating systems tend to have more TLB faults since they 
use translation for many things 

– Examples:  
» shared segments 
» user-level portions of an operating system
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Transparent Exceptions: TLB/Page fault

• How to transparently restart faulting instructions? 
– (Consider load or store that gets TLB or Page fault) 
– Could we just skip faulting instruction?  

» No: need to perform load or store after reconnecting physical 
page 

• Hardware must help out by saving: 
– Faulting instruction and partial state  

» Need to know which instruction caused fault  
– Processor State: sufficient to restart user thread 

» Save/restore registers, stack, etc 
• What if an instruction has side-effects?

Software 
Load TLB

Fa
ul
ti
ng

 
In

st
 1

Fa
ul
ti
ng

 
In

st
 1

Fa
ul
ti
ng

 
In

st
 2

Fa
ul
ti
ng

 
In

st
 2

Fetch page/ 
Load TLB

User

OS

TLB Faults
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Consider weird things that can happen
• What if an instruction has side effects? 

– Options: 
» Unwind side-effects (easy to restart) 
» Finish off side-effects (messy!) 

– Example 1: mov (sp)+,10 
» What if page fault occurs when write to stack pointer? 
» Did sp get incremented before or after the page fault? 

– Example 2: strcpy (r1), (r2) 
» Source and destination overlap: can’t unwind in principle! 
» IBM S/370 and VAX solution: execute twice – once read-

only
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Precise Exceptions

• Precise ⇒ state of the machine is preserved as if 
program executed up to the offending instruction 
– All previous instructions completed 
– Offending instruction and all following instructions act as if 
they have not even started 

– Same system code will work on different implementations  
– Difficult in the presence of pipelining, out-of-order 
execution, ... 

– MIPS takes this position 
• Imprecise ⇒ system software has to figure out what is 

where and put it all back together 
• Performance goals often lead designers to forsake precise 

interrupts 
– system software developers, user, markets etc. usually wish 
they had not done this
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What happens on a Context Switch?

• Need to do something, since TLBs map virtual addresses 
to physical addresses 
– Address Space just changed, so TLB entries no longer 
valid! 

• Options? 
– Invalidate TLB: simple but might be expensive 

» What if switching frequently between processes? 
– Include ProcessID in TLB 

» This is an architectural solution: needs hardware 
• What if translation tables change? 

– For example, to move page from memory to disk or vice 
versa… 

– Must invalidate TLB entry! 
» Otherwise, might think that page is still in memory! 

– Called “TLB Consistency”
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What TLB organization makes sense?

• Needs to be really fast 
– Critical path of memory access  

» In simplest view: before the cache 
» Thus, this adds to access time (reducing cache speed) 

– Seems to argue for Direct Mapped or Low Associativity 
• However, needs to have very few conflicts! 

– With TLB, the Miss Time extremely high! 
– This argues that cost of Conflict (Miss Time) is much higher than 
slightly increased cost of access (Hit Time) 

• Thrashing: continuous conflicts between accesses 
– What if use low order bits of page as index into TLB? 

» First page of code, data, stack may map to same entry 
» Need 3-way associativity at least? 

– What if use high order bits as index? 
» TLB mostly unused for small programs

CPU TLB Cache Memory
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TLB organization: include protection

•How big does TLB actually have to be? 
– Usually small: 128-512 entries 
– Not very big, can support higher associativity 

•TLB usually organized as fully-associative cache 
– Lookup is by Virtual Address 
– Returns Physical Address + other info 

•What happens when fully-associative is too slow? 
– Put a small (4-16 entry) direct-mapped cache in front 
– Called a “TLB Slice” 

•Example for MIPS R3000:

 0xFA00 0x0003 Y N Y R/W 34 
 0x0040 0x0010 N Y Y R 0  
 0x0041 0x0011 N Y Y R 0

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID
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• As described, TLB lookup is in serial with cache lookup: 

• Machines with TLBs go one step further: they overlap TLB 
lookup with cache access. 
– Works because offset available early

Reducing translation time further

Virtual Address

TLB Lookup

V Access 
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address
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Overlapping TLB & Cache Access

• Main idea:  
– Offset in virtual address exactly covers the “cache index” 
and “byte select” 

– Thus can select the cached byte(s) in parallel to perform 
address translation  

OffsetVirtual Page # 

indextag / page # byte

virtual address 

physical address 
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Putting Everything Together: Address Translation

Physical Address:
OffsetPhysical 

Page #

Virtual Address:
OffsetVirtual 

P2 index
Virtual 
P1 index

PageTablePtr

Page Table  
(1st level)

Page Table  
(2nd level)

Physical  
Memory:
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Page Table  
(2nd level)

PageTablePtr

Page Table  
(1st level)

Putting Everything Together: TLB

OffsetPhysical 
Page #

Virtual Address:
OffsetVirtual 

P2 index
Virtual 
P1 index

Physical  
Memory:

Physical Address:

…

TLB:
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Page Table  
(2nd level)

PageTablePtr

Page Table  
(1st level)

Virtual Address:
OffsetVirtual 

P2 index
Virtual 
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical  
Memory:

Physical Address:
Physical 
Page #

…

tag: block:
cache:

index bytetag
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Next Up: What happens when …

virtual address

MMU
PT

instruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry
frame#

offset
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Where are all places that caching arises in 
Operating Systems?

• Direct use of caching techniques 
– paged virtual memory (mem as cache for disk) 
– TLB (cache of PTEs) 
– file systems (cache disk blocks in memory) 
– DNS (cache hostname => IP address translations) 
– Web proxies (cache recently accessed pages) 

• Which pages to keep in memory? 
– All-important “Policy” aspect of virtual memory 
– Will spend a bit more time on this in a moment
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Impact of caches on Operating Systems

• Indirect - dealing with cache effects 
• Process scheduling 

– which and how many processes are active ? 
– large memory footprints versus small ones ? 
– priorities ? 
– Shared pages mapped into VAS of multiple processes ? 

• Impact of thread scheduling on cache performance 
– rapid interleaving of threads (small quantum) may degrade cache 

performance 
» increase average memory access time (AMAT) !!! 

• Designing operating system data structures for cache performance 
• Maintaining the correctness of various caches 

– TLB consistency: 
» With PT across context switches ? 
» Across updates to the PT ?
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Working Set Model

• As a program executes it transitions through a 
sequence of “working sets” consisting of varying 
sized subsets of the address space

Time

A
dd

re
ss
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Cache Behavior under WS model

H
it
 R

at
e

Cache Size

new working set fits

0

1
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Another model of Locality: Zipf

• Likelihood of accessing item of rank r is 1/ra 

• Although rare to access items below the top few, there are so many that it 
yields a “heavy tailed” distribution. 

• Substantial value from even a tiny cache 
• Substantial misses from even a very large one

P access(rank) = 1/rank

Es
ti
m
at

ed
 H

it
 R

at
e

0

0.225

0.45

0.675

0.9

Po
pu
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 (
%
 a
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s)
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5%

10%

15%

20%

Rank

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49

pop a=1
Hit Rate(cache)
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Demand Paging

• Modern programs require a lot of physical memory 
– Memory per system growing faster than 25%-30%/year 

• But they don’t use all their memory all of the time 
– 90-10 rule: programs spend 90% of their time in 10% 
of their code 

– Wasteful to require all of user’s code to be in memory 
• Solution: use main memory as cache for disk

O
n-C

hip 
C

ache

Control

Datapath

Secondary 
Storage 
(Disk)

Processor

Main 
Memory 
(DRAM)

Second 
Level 
Cache 
(SRAM)

Tertiary 
Storage 
(Tape)

Caching
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Page 
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory 
– Combined memory of running processes much larger than 
physical memory 

» More programs fit into memory, allowing more concurrency  
• Principle: Transparent Level of Indirection (page table)  

– Supports flexible placement of physical data 
» Data could be on disk or somewhere across network 

– Variable location of data transparent to user program 
» Performance issue, not correctness issue

Physical 
Memory 
512 MB

Disk 
500GB

∞

Virtual 
Memory 
4 GB
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Demand Paging is Caching

• Since Demand Paging is Caching, must ask: 
– What is block size? 

» 1 page 
– What is organization of this cache (i.e. direct-mapped, set-
associative, fully-associative)? 

» Fully associative: arbitrary virtual→physical mapping 
– How do we find a page in the cache when look for it? 

» First check TLB, then page-table traversal 
– What is page replacement policy? (i.e. LRU, Random…) 

» This requires more explanation… (kinda LRU) 

– What happens on a miss? 
» Go to lower level to fill miss (i.e. disk) 

– What happens on a write? (write-through, write back) 
» Definitely write-back.  Need dirty bit!
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Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)? 

– Pointer to next-level page table or to actual page 
– Permission bits: valid, read-only, read-write, write-only 

• Example: Intel x86 architecture PTE: 
– Address same format previous slide (10, 10, 12-bit offset) 
– Intermediate page tables called “Directories” 

  P:  Present (same as “valid” bit in other architectures)  
  W:  Writeable 
  U:  User accessible 
  PWT: Page write transparent: external cache write-through 
  PCD: Page cache disabled (page cannot be cached) 
  A:  Accessed: page has been accessed recently 
  D:  Dirty (PTE only): page has been modified recently 
  L:  L=1⇒4MB page (directory only).  

  Bottom 22 bits of virtual address serve as offset

Page Frame Number 
(Physical Page Number)

Free 
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12
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• PTE helps us implement demand paging 
– Valid ⇒ Page in memory, PTE points at physical page 
– Not Valid ⇒ Page not in memory; use info in PTE to find it on 
disk when necessary 

• Suppose user references page with invalid PTE? 
– Memory Management Unit (MMU) traps to OS 

» Resulting trap is a “Page Fault” 
– What does OS do on a Page Fault?: 

» Choose an old page to replace  
» If old page modified (“D=1”), write contents back to disk 
» Change its PTE and any cached TLB to be invalid 
» Load new page into memory from disk 
» Update page table entry, invalidate TLB for new entry 
» Continue thread from original faulting location 

– TLB for new page will be loaded when thread continued! 
– While pulling pages off disk for one process, OS runs another 
process from ready queue 

» Suspended process sits on wait queue 34

Cache

Demand Paging Mechanisms
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Loading an executable into memory

• .exe 
– lives on disk in the file system 
– contains contents of code & data segments, relocation entries and 

symbols 
– OS loads it into memory, initializes registers (and initial stack pointer) 
– program  sets up stack and heap upon initialization: CRT0

disk (huge) memory

code

data

info

exe
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Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk 
– called the backing store 
– typically in an optimized block store, but can think of it like a 

file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel code 
& data

user page 
frames

user 
pagetable
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Create Virtual Address Space of the Process

• User Page table maps entire VAS 
• All the utilized regions are backed on disk 

– swapped into and out of memory as needed 
• For every process

disk (huge, TB) memory

code

data

heap

stack

kernel

process VAS (GBs)

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack
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Create Virtual Address Space of the Process

• User Page table maps entire VAS 
– resident pages to the frame in memory they occupy 
– the portion of it that the HW needs to access must be 
resident in memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS – per process

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

PT
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Provide Backing Store for VAS

• User Page table maps entire VAS 
• Resident pages mapped to memory frames 
• For all other pages, OS must record where to find them 

on disk

disk (huge, TB) memory

code

data

heap

stack

kernel

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

VAS – per process
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Provide Backing Store for VAS

46

disk (huge, TB)
memory

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data
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On page Fault …

disk (huge, TB)
memory

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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On page Fault … find & start load

disk (huge, TB)
memory

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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On page Fault … schedule other P or T

disk (huge, TB)
memory

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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On page Fault … update PTE

disk (huge, TB)
memory

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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Eventually reschedule faulting thread

disk (huge, TB)
memory

kernel code 
& data

user page 
frames

user 
pagetable

code

data

heap

stack

code

data

heap

stack

kernel

VAS 1 PT 1

code

data

heap

stack

kernel

VAS 2 PT 2
heap

stack

data

active process & PT
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Summary: Steps in Handling a Page Fault
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Summary (1/2)

• The Principle of Locality: 
– Program likely to access a relatively small portion of the address 
space at any instant of time. 

» Temporal Locality: Locality in Time 
» Spatial Locality: Locality in Space 

• Three (+1) Major Categories of Cache Misses: 
– Compulsory Misses: sad facts of life.  Example: cold start 
misses. 

– Conflict Misses: increase cache size and/or associativity 
– Capacity Misses: increase cache size 
– Coherence Misses: Caused by external processors or I/O devices 

• Cache Organizations: 
– Direct Mapped: single block per set 
– Set associative: more than one block per set 
– Fully associative: all entries equivalent
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Summary (2/2)

• A cache of translations called a “Translation Lookaside Buffer” 
(TLB) 
– Relatively small number of entries (< 512) 
– Fully Associative (Since conflict misses expensive) 
– TLB entries contain PTE and optional process ID 

• On TLB miss, page table must be traversed 
– If located PTE is invalid, cause Page Fault  

• On context switch/change in page table 
– TLB entries must be invalidated somehow  

• TLB is logically in front of cache 
– Thus, needs to be overlapped with cache access to be really fast 

• Precise Exception specifies a single instruction for which: 
– All previous instructions have completed (committed state) 
– No following instructions nor actual instruction have started 


