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Recall: Simple Segmentation (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might 
be shared

SegID = 0

SegID = 1
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Physical Address
Offset

Recall: Paging

• Page Table (One per process) 
– Resides in physical memory 
– Contains physical page and permission for each virtual page 

» Permissions include: Valid bits, Read, Write, etc 
• Virtual address mapping 

– Offset from Virtual address copied to Physical Address 
» Example: 10 bit offset ⇒ 1024-byte pages 

– Virtual page # is all remaining bits 
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries 
» Physical page # copied from table into physical address 

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #
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Recall: Simple Page Table Discussion

• What needs to be switched on a context switch?  
– Page table pointer and limit 

• Analysis 
– Pros 

» Simple memory allocation 
» Easy to Share 

– Con: What if address space is sparse? 
» E.g. on UNIX, code starts at 0, stack starts at (231-1). 
» With 1K pages, need 2 million page table entries! 

– Con: What if table really big? 
» Not all pages used all the time ⇒ would be nice to have 

working set of page table in memory 
• How about combining paging and segmentation? 

– Segments with pages inside them? 
– Need some sort of multi-level translation
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Memory Layout for Linux 32-bit

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png
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Physical 
Address:

OffsetPhysical 
Page #

4KB

Fix for sparse address space: The two-level page table

10 bits 10 bits 12 bits
Virtual  
Address:

OffsetVirtual 
P2 index

Virtual 
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables 
• Tables fixed size (1024 entries) 

– On context-switch: save single 
PageTablePtr register 

• Valid bits on Page Table Entries  
– Don’t need every 2nd-level table 
– Even when exist, 2nd-level tables can 
reside on disk if not in use

4 bytes
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What is in a Page Table Entry?
• What is in a Page Table Entry (or PTE)? 

– Pointer to next-level page table or to actual page 
– Permission bits: valid, read-only, read-write, write-only 

• Example: Intel x86 architecture PTE: 
– Address same format previous slide (10, 10, 12-bit offset) 
– Intermediate page tables called “Directories” 

   
P:  Present (same as “valid” bit in other architectures)  

  W:  Writeable 
  U:  User accessible 
  PWT: Page write transparent: external cache write-through 
  PCD: Page cache disabled (page cannot be cached) 
  A:  Accessed: page has been accessed recently 
  D:  Dirty (PTE only): page has been modified recently 
  L:  L=1⇒4MB page (directory only).  

  Bottom 22 bits of virtual address serve as offset

Page Frame Number 
(Physical Page Number)

Free 
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12
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Examples of how to use a PTE
• How do we use the PTE? 

– Invalid PTE can imply different things: 
» Region of address space is actually invalid or  
» Page/directory is just somewhere else than memory 

– Validity checked first 
» OS can use other (say) 31 bits for location info 

• Usage Example: Demand Paging 
– Keep only active pages in memory 
– Place others on disk and mark their PTEs invalid 

• Usage Example: Copy on Write 
– UNIX fork gives copy of parent address space to child 

» Address spaces disconnected after child created 
– How to do this cheaply?   

» Make copy of parent’s page tables (point at same memory) 
» Mark entries in both sets of page tables as read-only 
» Page fault on write creates two copies  

• Usage Example: Zero Fill On Demand 
– New data pages must carry no information (say be zeroed) 
– Mark PTEs as invalid; page fault on use gets zeroed page 
– Often, OS creates zeroed pages in background
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stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111       
110   null
101   null
100   
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000
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stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111       
110   null
101   null
100              
011   null
010   
001   null
000   

11   11101    
10   11100
01   10111
00   10110

11   01101    
10   01100
01   01011
00   01010

11   00101    
10   00100
01   00011
00   00010

11     null  
10   10000
01   01111
00   01110

Page Tables
(level 2)

Page Table
(level 1)
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• What about a tree of tables? 
– Lowest level page table⇒memory still allocated with bitmap 
– Higher levels often segmented 

• Could have any number of levels. Example (top segment): 

• What must be saved/restored on context switch? 
– Contents of top-level segment registers (for this example) 
– Pointer to top-level table (page table)

Recall: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual  
Address:

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access 
Error>

page #2 V,R,W
Physical 
Page #

Check Perm

Access 
Error
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Recall Sharing (Complete Segment)
Process 
A

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment

Process 
B

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V
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Multi-level Translation Analysis

• Pros: 
– Only need to allocate as many page table entries as we 
need for application 

» In other wards, sparse address spaces are easy 
– Easy memory allocation 
– Easy Sharing 

» Share at segment or page level 
• Cons: 

– One pointer per page (typically 4K – 16K pages today) 
– Page tables need to be contiguous 

» However, previous example keeps tables to exactly one page 
in size 

– Two (or more, if >2 levels) lookups per reference 
» Seems very expensive!
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Making it real:  
X86 Memory model with segmentation (16/32-bit)
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Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!

9 bits 9 bits 12 bits48-bit Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset) 
Page tables also 4k bytes (pageable)
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7 bits 9 bits 12 bits64bit Virtual 
Address: OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?
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• With all previous examples (“Forward Page Tables”) 
– Size of page table is at least as large as amount of virtual 
memory allocated to processes 

– Physical memory may be much less 
» Much of process space may be out on disk or not in use 

• Answer: use a hash table 
– Called an “Inverted Page Table” 
– Size is independent of virtual address space 
– Directly related to amount of physical memory 
– Very attractive option for 64-bit address spaces 

• Cons: Complexity of managing hash changes 
– Often in hardware!

Inverted Page Table

OffsetVirtual 
Page #

Hash 
Table

OffsetPhysical 
Page #
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IPT address translation

• Need an associative map from VM page to IPT address: 
– Use a hash map

pid 0 VMpage0

pid 1

pid 0 VMpage1
pid 0 VMpage2

xx free

pid 2

pid 1

pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1

0x2
0x3
0x4

0x5

0x6
0x7

Process 0 virtual address
0x3 Offset (12b)

Hash VM page #

VMpage0, pid 0

VMpage2, pid 0

VMpage1, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical address
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Summary: Inverted Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Inverted Table
Hash(procID & virt. page #) = 

phys. page #1110 0000

h(11111) =
h(11110) =
h(11101) =    
h(11100) = 
h(10010)=   
h(10001)=  
h(10000)=
h(01011)= 
h(01010)=  
h(01001)=  
h(01000)=    
h(00011)=    
h(00010)=   
h(00001)=    
h(00000)=    

stack

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

11101
11100
10111   
10110
10000
01111
01110
01101   
01100
01011
01010   
00101   
00100   
00011  
00010

1011 0000
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Address Translation Comparison

Advantages Disadvantages
Simple  
Segmentation

Fast context 
switching: Segment 
mapping maintained 
by CPU 

External fragmentation

Paging 
(single-level 
page)

No external 
fragmentation, fast 
easy allocation

Large table size ~ virtual 
memory
Internal fragmentation

Paged 
segmentation

Table size ~ # of 
pages in virtual 
memory, fast easy 
allocation 

Multiple memory 
references per page 
access Two-level 

pages
Inverted Table Table size ~ # of 

pages in physical 
memory

Hash function more 
complex
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How is the translation accomplished?

• What, exactly happens inside MMU? 
• One possibility: Hardware Tree Traversal 

– For each virtual address, takes page table base pointer and 
traverses the page table in hardware 

– Generates a “Page Fault” if it encounters invalid PTE 
» Fault handler will decide what to do 
» More on this next lecture 

– Pros: Relatively fast (but still many memory accesses!) 
– Cons: Inflexible, Complex hardware 

• Another possibility: Software 
– Each traversal done in software 
– Pros: Very flexible 
– Cons: Every translation must invoke Fault! 

• In fact, need way to cache translations for either case!

CPU MMU
Virtual 
Addresses

Physical 
Addresses
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Recall: Dual-Mode Operation
• Can a process modify its own translation tables? 

– NO! 
– If it could, could get access to all of physical memory 
– Has to be restricted somehow 

• Recall: To Assist with Protection, Hardware provides at 
least two modes (Dual-Mode Operation): 
– “Kernel” mode (or “supervisor” or “protected”) 
– “User” mode (Normal program mode) 
– Mode set with bits in special control register only 
accessible in kernel-mode 

• Certain operations restricted to Kernel mode: 
– Including modifying the page table (CR3 in x86), and 
segment registers 

– Have to transition into Kernel mode before you can 
change them
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How to get from Kernel→User
• What does the kernel do to create a new user process? 

– Allocate and initialize address-space control block 
– Read program off disk and store in memory 
– Allocate and initialize translation table  

» Point at code in memory so program can execute 
» Possibly point at statically initialized data 

– Run Program: 
» Set machine registers 
» Set hardware pointer to translation table 
» Set processor status word for user mode 
» Jump to start of program 

• How does kernel switch between processes? 
– Same saving/restoring of registers as before 
– Save/restore PSL (hardware pointer to translation table)
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Recall: User→Kernel (System Call)
• Can’t let inmate (user) get out of padded cell on own 

– Would defeat purpose of protection! 
– So, how does the user program get back into kernel? 

• System call: Voluntary procedure call into kernel 
– Hardware for controlled User→Kernel transition 
– Can any kernel routine be called? 

» No!  Only specific ones. 
– System call ID encoded into system call instruction 

» Index forces well-defined interface with kernel
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User→Kernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous exception (or 

“trap”) 
– In fact, often called a software “trap” instruction 

• Other sources of Synchronous Exceptions (“Trap”): 
– Divide by zero, Illegal instruction, Bus error (bad address, e.g. 
unaligned access) 

– Segmentation Fault (address out of range) 
– Page Fault (for illusion of infinite-sized memory) 

• Interrupts are Asynchronous Exceptions 
– Examples: timer, disk ready, network, etc…. 
– Interrupts can be disabled, traps cannot! 

• On system call, exception, or interrupt: 
– Hardware enters kernel mode with interrupts disabled 
– Saves PC, then jumps to appropriate handler in kernel 
– For some processors (x86), processor also saves registers, 
changes stack, etc. 

• Actual handler typically saves registers, other CPU state, and 
switches to kernel stack
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Closing thought: Protection without Hardware
• Does protection require hardware support for translation and 

dual-mode behavior? 
– No: Normally use hardware, but anything you can do in 
hardware can also do in software (possibly expensive) 

• Protection via Strong Typing 
– Restrict programming language so that you can’t express program 
that would trash another program 

– Loader needs to make sure that program produced by valid 
compiler or all bets are off 

– Example languages: LISP, Ada, Modula-3 and Java 
• Protection via software fault isolation: 

– Language independent approach: have compiler generate object 
code that provably can’t step out of bounds 

» Compiler puts in checks for every “dangerous” operation (loads, 
stores, etc). Again, need special loader. 

» Alternative, compiler generates “proof” that code cannot do 
certain things (Proof Carrying Code) 

– Or: use virtual machine to guarantee safe behavior (loads and 
stores recompiled on fly to check bounds)
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Caching Concept

• Cache: a repository for copies that can be accessed more quickly 
than the original 
– Make frequent case fast and infrequent case less dominant 

• Caching underlies many of the techniques that are used today to 
make computers fast 
– Can cache: memory locations, address translations, pages, file 
blocks, file names, network routes, etc… 

• Only good if: 
– Frequent case frequent enough and 
– Infrequent case not too expensive 

• Important measure: Average Access time =  
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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CPU µProc 
60%/yr. 
(2X/1.5yr)

DRAM 
9%/yr. 
(2X/10 
yrs)

DRAM
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Processor-Memory 
Performance Gap: 
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law” 
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”
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• Cannot afford to translate on every access 
– At least three DRAM accesses per actual DRAM access 
– Or: perhaps I/O if page table partially on disk! 

• Even worse: What if we are using caching to make memory 
access faster than DRAM access??? 

• Solution? Cache translations! 
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual  
Address:

OffsetVirtual 
Page #

Virtual 
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access 

Error>

Physical 
Page #

Check Perm

Access 
Error
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Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time): 
– Keep recently accessed data items closer to processor 

• Spatial Locality (Locality in Space): 
– Move contiguous blocks to the upper levels 

Address Space0 2n - 1

Probability 
of reference

Lower Level 
MemoryUpper Level 

Memory
To Processor

From Processor
Blk X

Blk Y
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Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to: 
– Present as much memory as in the cheapest technology 
– Provide access at speed offered by the fastest technology

O
n-C

hip 
C

ache

R
egisters

Control

Datapath

Secondary 
Storage 
(Disk)

Processor

Main 
Memory 
(DRAM)

Second 
Level 
Cache 
(SRAM)

1s 10,000,000s   
   (10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary 
Storage 
(Tape, 
cloud 
storage)

10,000,000,000s   
   (10s sec)

Ts
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• Compulsory (cold start or process migration, first 
reference): first access to a block 
– “Cold” fact of life: not a whole lot you can do about it 
– Note: If you are going to run “billions” of instruction, 
Compulsory Misses are insignificant 

• Capacity: 
– Cache cannot contain all blocks access by the program 
– Solution: increase cache size 

• Conflict (collision): 
– Multiple  memory locations  mapped  
to the same cache location 

– Solution 1: increase  cache size 
– Solution 2: increase associativity 

• Coherence (Invalidation): other process (e.g., I/O) updates 
memory 

A Summary on Sources of Cache Misses
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• Index Used to Lookup Candidates in Cache 
– Index identifies the set  

• Tag used to identify actual copy 
– If no candidates match, then declare cache miss 

• Block is minimum quantum of caching 
– Data select field used to select data within block 
– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block 
offset

Block Address
Tag Index

Set Select

Data Select
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:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache: 
– The uppermost (32 - N) bits are always the Cache Tag 
– The lowest M bits are the Byte Select (Block Size = 2M) 

• Example: 1 KB Direct Mapped Cache with 32 B Blocks 
– Index chooses potential block 
– Tag checked to verify block 
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01



10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 35

Summary (1/2)
• Page Tables 

– Memory divided into fixed-sized chunks of memory 
– Virtual page number from virtual address mapped 
through page table to physical page number 

– Offset of virtual address same as physical address 
– Large page tables can be placed into virtual memory 

• Multi-Level Tables 
– Virtual address mapped to series of tables 
– Permit sparse population of address space 

• Inverted page table 
– Size of page table related to physical memory size 

• PTE: Page Table Entries 
– Includes physical page number 
– Control info (valid bit, writeable, dirty, user, etc)
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Summary (2/2)

• The Principle of Locality: 
– Program likely to access a relatively small portion of the 
address space at any instant of time. 

» Temporal Locality: Locality in Time 
» Spatial Locality: Locality in Space 

• Three (+1) Major Categories of Cache Misses: 
– Compulsory Misses: sad facts of life.  Example: cold start 
misses. 

– Conflict Misses: increase cache size and/or associativity 
– Capacity Misses: increase cache size 
– Coherence Misses: Caused by external processors or I/O 
devices


