
CS162 
Operating Systems and  
Systems Programming  

Lecture 13  
  

Address Translation (Finished),  
Caching

October 12th, 2015
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 2

Recall: Simple Segmentation (16 bit addresses)
Seg ID # Base Limit

0 (code) 0x4000 0x0800
1 (data) 0x4800 0x1400
2 (shared) 0xF000 0x1000
3 (stack) 0x0000 0x3000

OffsetSeg
014 1315

0x4000

0x0000

0x8000

0xC000

Virtual
Address Space

Virtual Address Format

0x0000

0x4800
0x5C00

0x4000

0xF000

Physical
Address Space

Space for
Other Apps

Shared with
Other Apps

Might
be shared

SegID = 0

SegID = 1

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 3

Physical Address
Offset

Recall: Paging

• Page Table (One per process)
– Resides in physical memory
– Contains physical page and permission for each virtual page

» Permissions include: Valid bits, Read, Write, etc
• Virtual address mapping

– Offset from Virtual address copied to Physical Address
» Example: 10 bit offset ⇒ 1024-byte pages

– Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

– Check Page Table bounds and permissions

OffsetVirtual
Page #Virtual Address:

Access
Error

>PageTableSize

PageTablePtr page #0

page #2
page #3
page #4
page #5

V,R
page #1 V,R

V,R,W
V,R,W
N
V,R,W

page #1 V,R

Check Perm

Access
Error

Physical
Page #

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 4

Recall: Simple Page Table Discussion

• What needs to be switched on a context switch?
– Page table pointer and limit

• Analysis
– Pros

» Simple memory allocation
» Easy to Share

– Con: What if address space is sparse?
» E.g. on UNIX, code starts at 0, stack starts at (231-1).
» With 1K pages, need 2 million page table entries!

– Con: What if table really big?
» Not all pages used all the time ⇒ would be nice to have

working set of page table in memory
• How about combining paging and segmentation?

– Segments with pages inside them?
– Need some sort of multi-level translation

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 5

Memory Layout for Linux 32-bit

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpaceLayout.png

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 6

Physical
Address:

OffsetPhysical
Page #

4KB

Fix for sparse address space: The two-level page table

10 bits 10 bits 12 bits
Virtual
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
• Tables fixed size (1024 entries)

– On context-switch: save single
PageTablePtr register

• Valid bits on Page Table Entries
– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can
reside on disk if not in use

4 bytes

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 7

What is in a Page Table Entry?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– Address same format previous slide (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures)

 W: Writeable
 U: User accessible
 PWT: Page write transparent: external cache write-through
 PCD: Page cache disabled (page cannot be cached)
 A: Accessed: page has been accessed recently
 D: Dirty (PTE only): page has been modified recently
 L: L=1⇒4MB page (directory only).  

 Bottom 22 bits of virtual address serve as offset

Page Frame Number
(Physical Page Number)

Free
(OS) 0 L D A

PCD
PW

T U WP

01234567811-931-12

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 8

Examples of how to use a PTE
• How do we use the PTE?

– Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

– Validity checked first
» OS can use other (say) 31 bits for location info

• Usage Example: Demand Paging
– Keep only active pages in memory
– Place others on disk and mark their PTEs invalid

• Usage Example: Copy on Write
– UNIX fork gives copy of parent address space to child

» Address spaces disconnected after child created
– How to do this cheaply?

» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

• Usage Example: Zero Fill On Demand
– New data pages must carry no information (say be zeroed)
– Mark PTEs as invalid; page fault on use gets zeroed page
– Often, OS creates zeroed pages in background

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 9

stack

Summary: Two-Level Paging

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page1 # offset

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 000

0111 000

1110 0000

page2 #

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

1111 0000

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 10

stack

Summary: Two-Level Paging

stack

heap

code

data

Virtual memory view

1001 0000
(0x90)

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

1000 0000
(0x80)

1110 0000

111
110 null
101 null
100
011 null
010
001 null
000

11 11101
10 11100
01 10111
00 10110

11 01101
10 01100
01 01011
00 01010

11 00101
10 00100
01 00011
00 00010

11 null
10 10000
01 01111
00 01110

Page Tables
(level 2)

Page Table
(level 1)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 11

• What about a tree of tables?
– Lowest level page table⇒memory still allocated with bitmap
– Higher levels often segmented

• Could have any number of levels. Example (top segment):

• What must be saved/restored on context switch?
– Contents of top-level segment registers (for this example)
– Pointer to top-level table (page table)

Recall: Segments + Pages

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

Access
Error>

page #2 V,R,W
Physical
Page #

Check Perm

Access
Error

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 12

Recall Sharing (Complete Segment)
Process
A

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

page #0
page #1
page #2
page #3
page #4
page #5

V,R
V,R
V,R,W
V,R,W
N
V,R,W

Shared Segment

Process
B

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V

Base2 Limit2 V

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 13

Multi-level Translation Analysis

• Pros:
– Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy
– Easy memory allocation
– Easy Sharing

» Share at segment or page level
• Cons:

– One pointer per page (typically 4K – 16K pages today)
– Page tables need to be contiguous

» However, previous example keeps tables to exactly one page
in size

– Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 14

Making it real:  
X86 Memory model with segmentation (16/32-bit)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Physical
Address:
(40-50 bits)

12bit OffsetPhysical Page #

X86_64: Four-level page table!

9 bits 9 bits 12 bits48-bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

8 bytes

PageTablePtr

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits

4096-byte pages (12 bit offset) 
Page tables also 4k bytes (pageable)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 16

7 bits 9 bits 12 bits64bit Virtual
Address: OffsetVirtual

P2 index
Virtual
P1 index

Virtual
P3 index

Virtual
P4 index

9 bits 9 bits
Virtual
P5 index

Virtual
P6 index

9 bits 9 bits

No!

Too slow
Too many almost-empty tables

IA64: 64bit addresses: Six-level page table?!?

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 17

• With all previous examples (“Forward Page Tables”)
– Size of page table is at least as large as amount of virtual
memory allocated to processes

– Physical memory may be much less
» Much of process space may be out on disk or not in use

• Answer: use a hash table
– Called an “Inverted Page Table”
– Size is independent of virtual address space
– Directly related to amount of physical memory
– Very attractive option for 64-bit address spaces

• Cons: Complexity of managing hash changes
– Often in hardware!

Inverted Page Table

OffsetVirtual
Page #

Hash
Table

OffsetPhysical
Page #

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 18

IPT address translation

• Need an associative map from VM page to IPT address:
– Use a hash map

pid 0 VMpage0

pid 1

pid 0 VMpage1
pid 0 VMpage2

xx free

pid 2

pid 1

pid 0 VMpage3

Inverse Page Table

VMpage2 (52b) Offset (12b)

0x0
0x1

0x2
0x3
0x4

0x5

0x6
0x7

Process 0 virtual address
0x3 Offset (12b)

Hash VM page #

VMpage0, pid 0

VMpage2, pid 0

VMpage1, pid 0

VMpage3, pid 0

0x0000

0x1000

0x2000

0x3000

0x4000

0x5000

0x6000

0x7000

Physical address

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 19

Summary: Inverted Table

1111 1111
stack

heap

code

data

Virtual memory view

0000 0000

0100 0000

1000 0000

1100 0000

page # offset

Inverted Table
Hash(procID & virt. page #) =

phys. page #1110 0000

h(11111) =
h(11110) =
h(11101) =
h(11100) =
h(10010)=
h(10001)=
h(10000)=
h(01011)=
h(01010)=
h(01001)=
h(01000)=
h(00011)=
h(00010)=
h(00001)=
h(00000)=

stack

Physical memory view

data

code

heap

stack

0000 0000
0001 0000

0101 0000

0111 0000

1110 0000

11101
11100
10111
10110
10000
01111
01110
01101
01100
01011
01010
00101
00100
00011
00010

1011 0000

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 20

Address Translation Comparison

Advantages Disadvantages
Simple  
Segmentation

Fast context
switching: Segment
mapping maintained
by CPU

External fragmentation

Paging
(single-level
page)

No external
fragmentation, fast
easy allocation

Large table size ~ virtual
memory
Internal fragmentation

Paged
segmentation

Table size ~ # of
pages in virtual
memory, fast easy
allocation

Multiple memory
references per page
access Two-level

pages
Inverted Table Table size ~ # of

pages in physical
memory

Hash function more
complex

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 21

How is the translation accomplished?

• What, exactly happens inside MMU?
• One possibility: Hardware Tree Traversal

– For each virtual address, takes page table base pointer and
traverses the page table in hardware

– Generates a “Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

– Pros: Relatively fast (but still many memory accesses!)
– Cons: Inflexible, Complex hardware

• Another possibility: Software
– Each traversal done in software
– Pros: Very flexible
– Cons: Every translation must invoke Fault!

• In fact, need way to cache translations for either case!

CPU MMU
Virtual
Addresses

Physical
Addresses

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 22

Recall: Dual-Mode Operation
• Can a process modify its own translation tables?

– NO!
– If it could, could get access to all of physical memory
– Has to be restricted somehow

• Recall: To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode (Normal program mode)
– Mode set with bits in special control register only
accessible in kernel-mode

• Certain operations restricted to Kernel mode:
– Including modifying the page table (CR3 in x86), and
segment registers

– Have to transition into Kernel mode before you can
change them

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 23

How to get from Kernel→User
• What does the kernel do to create a new user process?

– Allocate and initialize address-space control block
– Read program off disk and store in memory
– Allocate and initialize translation table

» Point at code in memory so program can execute
» Possibly point at statically initialized data

– Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

• How does kernel switch between processes?
– Same saving/restoring of registers as before
– Save/restore PSL (hardware pointer to translation table)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 24

Recall: User→Kernel (System Call)
• Can’t let inmate (user) get out of padded cell on own

– Would defeat purpose of protection!
– So, how does the user program get back into kernel?

• System call: Voluntary procedure call into kernel
– Hardware for controlled User→Kernel transition
– Can any kernel routine be called?

» No! Only specific ones.
– System call ID encoded into system call instruction

» Index forces well-defined interface with kernel

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 25

User→Kernel (Exceptions: Traps and Interrupts)
• A system call instruction causes a synchronous exception (or

“trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions (“Trap”):
– Divide by zero, Illegal instruction, Bus error (bad address, e.g.
unaligned access)

– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– For some processors (x86), processor also saves registers,
changes stack, etc.

• Actual handler typically saves registers, other CPU state, and
switches to kernel stack

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 26

Closing thought: Protection without Hardware
• Does protection require hardware support for translation and

dual-mode behavior?
– No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)

• Protection via Strong Typing
– Restrict programming language so that you can’t express program
that would trash another program

– Loader needs to make sure that program produced by valid
compiler or all bets are off

– Example languages: LISP, Ada, Modula-3 and Java
• Protection via software fault isolation:

– Language independent approach: have compiler generate object
code that provably can’t step out of bounds

» Compiler puts in checks for every “dangerous” operation (loads,
stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot do
certain things (Proof Carrying Code)

– Or: use virtual machine to guarantee safe behavior (loads and
stores recompiled on fly to check bounds)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 27

Caching Concept

• Cache: a repository for copies that can be accessed more quickly
than the original
– Make frequent case fast and infrequent case less dominant

• Caching underlies many of the techniques that are used today to
make computers fast
– Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, etc…

• Only good if:
– Frequent case frequent enough and
– Infrequent case not too expensive

• Important measure: Average Access time =  
 (Hit Rate x Hit Time) + (Miss Rate x Miss Time)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 28

CPU µProc
60%/yr.
(2X/1.5yr)

DRAM
9%/yr.
(2X/10
yrs)

DRAM

1

10

100

1000
19

80
19

81

19
83

19
84

19
85

19
86

19
87

19
88

19
89

19
90

19
91

19
92

19
93

19
94

19
95

19
96

19
97

19
98

19
99

20
00

19
82

Processor-Memory
Performance Gap: 
(grows 50% / year)

Pe
rf

or
m
an

ce

Time

“Moore’s Law”
(really Joy’s Law)

Processor-DRAM Memory Gap (latency)

Why Bother with Caching?

“Less’ Law?”

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 29

• Cannot afford to translate on every access
– At least three DRAM accesses per actual DRAM access
– Or: perhaps I/O if page table partially on disk!

• Even worse: What if we are using caching to make memory
access faster than DRAM access???

• Solution? Cache translations!
– Translation Cache: TLB (“Translation Lookaside Buffer”)

Another Major Reason to Deal with Caching

page #0
page #1

page #3
page #4
page #5

V,R
V,R

page #2 V,R,W
V,R,W
N
V,R,W

Offset

Physical Address

Virtual
Address:

OffsetVirtual
Page #

Virtual
Seg #

Base0 Limit0 V
Base1 Limit1 V
Base2 Limit2 V
Base3 Limit3 N
Base4 Limit4 V
Base5 Limit5 N
Base6 Limit6 N
Base7 Limit7 V Access

Error>

Physical
Page #

Check Perm

Access
Error

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 30

Why Does Caching Help? Locality!

• Temporal Locality (Locality in Time):
– Keep recently accessed data items closer to processor

• Spatial Locality (Locality in Space):
– Move contiguous blocks to the upper levels

Address Space0 2n - 1

Probability
of reference

Lower Level
MemoryUpper Level

Memory
To Processor

From Processor
Blk X

Blk Y

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 31

Memory Hierarchy of a Modern Computer System

• Take advantage of the principle of locality to:
– Present as much memory as in the cheapest technology
– Provide access at speed offered by the fastest technology

O
n-C

hip
C

ache

R
egisters

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

1s 10,000,000s
 (10s ms)

Speed (ns): 10s-100s 100s

100s GsSize (bytes): Ks-Ms Ms

Tertiary
Storage
(Tape,
cloud
storage)

10,000,000,000s
 (10s sec)

Ts

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 32

• Compulsory (cold start or process migration, first
reference): first access to a block
– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

• Capacity:
– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple memory locations mapped  
to the same cache location

– Solution 1: increase cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates
memory

A Summary on Sources of Cache Misses

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 33

• Index Used to Lookup Candidates in Cache
– Index identifies the set

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

• Block is minimum quantum of caching
– Data select field used to select data within block
– Many caching applications don’t have data select field

How is a Block found in a Cache?

Block
offset

Block Address
Tag Index

Set Select

Data Select

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 34

:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 35

Summary (1/2)
• Page Tables

– Memory divided into fixed-sized chunks of memory
– Virtual page number from virtual address mapped
through page table to physical page number

– Offset of virtual address same as physical address
– Large page tables can be placed into virtual memory

• Multi-Level Tables
– Virtual address mapped to series of tables
– Permit sparse population of address space

• Inverted page table
– Size of page table related to physical memory size

• PTE: Page Table Entries
– Includes physical page number
– Control info (valid bit, writeable, dirty, user, etc)

10/12/15 Kubiatowicz CS162 ©UCB Fall 2015 36

Summary (2/2)

• The Principle of Locality:
– Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life. Example: cold start
misses.

– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O
devices

