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Recall: Simple Segmentation (16 bit addresses)

-Offset

15 14 13

Virtual Address Format

Seg ID # Base Limit
0 (code) 0x4000 |0x0800
1 (data) 0x4800 |0x1400
2 (shared) |0xF000 (0x1000

3 1stack) 0x0000 |0x3000

SegiD =0
0x0000
0x4000 SegID =1 I
0x8000
0xC000
Virtual
Address Space

0x4000 Miaht
> 0x4800 begshared
> 0x5C00
Space for
Other Apps
0xF000 Shared with
_ Other Apps
Physical

Address Space

10/12/15 Kubiatowicz €S162 ©UCB Fall 2015 2



Recall: Paging
Offset

Virtual Address:

v

PageTablePtr I
e pase 0 T ), [E0Sres
é page #2__|V.RW Physical Address
[PageTableSize [~ : page #3__|V,RW Check Perm
\4
page #4 N v
é\ccess page #5 _|V,R,W Access
fror Error

- Page Table (One per process)
- Resides in physical memory
- Contains physical page and Eermission for each virtual page
» Permissions include: Valid bits, Read, Write, etc
- Virtual address mapping

- Offset from Virtual address coIied to Physical Address
» Example: 10 bit offset = 1024-byte pages

- Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, i.e. 4 million entries
» Physical page # copied from table into physical address

- Check Page Table bounds and permissions
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Recall: Simple Page Table Discussion

- What needs to be switched on a context switch?
- Page table pointer and limit
- Analysis
- Pros
» Simple memory allocation
» Easy to Share
- Con: What if address space is sparse?
» E.g. on UNIX, code starts at O, stack starts at (231-1).
» With 1K pages, need 2 million page table entries!

- Con: What if table really big?

» Not all pages used all the time = would be nice to have
working set of page table in memory

- How about combining paging and segmentation?
- Segments with pages inside them?
- Need some sort of multi-level translation
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Memory Layout for Linux 32-bit
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Fix for sparse address space: The two-level page table

Physical
ddress:

10 bits 10 bits 12 bits
Virtual

Address:

|PageTablePir

—> 4 bytes <+—

* Tree of Page Tables
- Tables fixed size (1024 entries)
- On context-switch: save single
PageTablePtr register
- Valid bits on Page Table Entries
- Don't need every 2nd-level table
- Even when exist, 2nd-level tables cam™ 4 bytes +—
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What is in a Page Table Entry?

* What is in a Page Table Entry (or PTE)?
- Pointer to next-level page table or to actual page
- Permission bits: valid, read-only, read-write, write-only
- Example: Intel x86 architecture PTE:
- Address same format previous slide (10, 10, 12-bit offset)
- Intermediate page tables called "Directories”

Page Frame Number Free ‘ ‘ ‘ ‘g""" ‘Wi ‘
‘[EI ical Page Number’ (03) olL [D[A[SIF|VWMP
31-12 11-9 876543210
P: Present (same as "valid” bit in other architectures)
W: Weriteable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
A Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently

L: L=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

10/12/15 Kubiatowicz €S162 ©UCB Fall 2015 7



Examples of how to use a PTE

- How do we use the PTE?

- Invalid PTE can imply different things:
» Region of address space is actually invalid or
» Page/directory is just somewhere else than memory

- Validity checked first
» OS can use other (say) 31 bits for location info
- Usage Example: Demand Paging
- Keep only active pages in memory
- Place others on disk and mark their PTEs invalid
- Usage Example: Copy on Write

- UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created

- How to do this cheaply?
» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies
- Usage Example: Zero Fill On Demand
- New data pages must carry no information (say be zeroed)
- Mark PTEs as invalid; page fault on use gets zeroed page
- Often, OS creates zeroed pages in background
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Summary: Two-Level Paging

Virtual memory view Page Tables Physical memory view
1111 1111 (level 2)
stack 10 [0 110 0000
10 11100
1111 0000 o1 110111
00 (10110
1100 0000 Page Table
(level 1)
11| o 11 | null
I 110 | null 10 | 10000
101 | null 01 (01111
,100 00 (01110
1000 0000 TEED 011 | null
10
001 | nol———o__ 0111 000
00| & 11 {01101
10 |01100
- o1 |o1011 0101 000
00 (01010
0100 0000
11 |00101
5 4 10 |00100 code
age 01 (00011 | ——
bag ———— b0 Eerd O — 0001 0000
oadt')"booo _0000 0000
-

pagel # offset
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Summary: Two-Level Paging

Virtual memory view

1001 0000
(0x90)

10/12/15

stack

110 | null
101 | null
ean #
1 nu

9)
o
Q
4]

Page Table
(level 1)

111 | @

010 | o
001 | null
000| ®

Page Tables

(level 2)

11 (11101
10 {11100
01 |10111
00 |10110

11 | null

01 |01111
00 |01110

11 (01101
10 |{01100
01 |01011
00 |01010

11 {00101
10 (00100
01 | 00011
00 | 00010

I
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Physical memory view

%110 0000

1000 0000
(0x80)

0001 0000
0000 0000
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Recall: Segments + Pages

- What about a tree of tables?
- Lowest level page table=memory still allocated with bitmap
- Higher levels often segmented

- Could have any number of levels. Example (top segment):

Virtual Offset I
Address:

of page #0 |V.R \4

page #1 |[V.R V-)ffset
page #2

page #3 V:R:vd Physical Address

Based ::'""I 4 N page #4 [N

ase imi R

Baseb |Limit5 page #5 |V.RW iCheck Perfn

Baseb |Limit6 [N|% ¥ v

Base7 [Limit7 V| ((y —Access Access
Error Error

* What must be saved/restored on context switch?
- Contents of top-level segment registers (for this example)

- Pointer to top-level table éga{ge table
10/12/15 Kubiatowicz €5162 ©UCB Fall 2015 11



Recall Sharing (Complete Segment)

Shared Segment

LimitO

Limit1

Process
A
LimitO
—— v
imit2 |V
Base3 |[Limit3 |N
Base4 |[Limit4 |V
Baseb |[Limith |N
Baseb6 [Limit6 |N
Base7 |Limit7 |V
Process
B
10/12/15

Limit2

Limit3

Limit4

Limith

Limité

Limit7

Z2Z<ZISI<I<
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Multi-level Translation Analysis

* Pros:

- Only need to allocate as many page table entries as we
need for application

» In other wards, sparse address spaces are easy
- Easy memory allocation
- Easy Sharing
» Share at segment or page level
- Cons:
- One pointer per page (typically 4K - 16K pages today)
- Page tables need to be contiguous

» However, previous example keeps tables to exactly one page
in size
- Two (or more, if >2 levels) lookups per reference
» Seems very expensive!

10/12/15 Kubiatowicz €S162 ©UCB Fall 2015 13



X86 Memory model with segmentation (16/32-bit)

Making it real:

Logical Address

(or Far Pointer)

Segment l

Linear Address

—» Dir | Table | Offset |

Page Directory

Page Table

Entry

I

Entry

Selector Offset Linear Address
| | | Space
Global Descriptor
Table (GDT)
Segment
Segment
| | DeSCriptor
{’ Lin. Addr.
A -
Segment '\\
Base Address
[ Page
Segmentation |

Y

Physical
Address
Space

Phy. Addr.

Paging
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X86_64: Four-level page table!

48-bit Virtual 9 bits 9 bits 9 bits 9 bits 12 bits

Address:

|PageTabIePtr

—> 8 bytes +—

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Physical

(40-50 bits)

10/12/15 Kubiatowicz €S162 ©UCB Fall 2015

15



|IA64: 64bit addresses: Six-level page table?!?

64bit Virtual 7 bits 9 bits 9bits 9bits 9bits 9bits 12 bits
Address:

No!

Too slow
Too many almost-empty tables
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Inverted Page Table

- With all previous examples ("Forward Page Tables")

- Size of page table is at least as large as amount of virtual
memory allocated to processes

- Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

Table

- Answer: use a hash table
- Called an "Inverted Page Table”
- Size is independent of virtual address space
- Directly related to amount of physical memory
- Very attractive option for 64-bit address spaces

- Cons: Complexity of managing hash changes

- Often in hardware!
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IPT address translation

* Need an associative map from VM page to IPT address:

- Use a hash map

Process 0 virtual address /

pid 0 | VMpageO

pid 1

pid 0 | VMpage1

»
Hash VM page #

pid 0 | VMpage2

XX

free

pid 2

pid 1

pid 0 | VMpage3

Physical address \‘

A

Ox0
OxA1

0x2 /

0x3
Ox4

0x5

Ox6
Ox7

Inverse Page Table

10/12/15

0x0000

0x1000
0x2000

0x3000
0x4000
0x5000
0x6000
0x7000
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Summary: Inverted Table

Virtual memory view Physical memory view
AL — Inverted Table
oldLR ash(prociID & virt. page #) = atoplk
1110 0000 phys. page # =2 11110 0000
1100 0000
1011 0000
(11111) =
I (11110) =
(11101) =
1000 0000
(10000 0111 0000
h(01011)=
;h(01010)=
'h(01001)- 0101 0000
’h(01000)=
0100 0000 (00011)=
h(00010)=
%(00001)= §
"h(00000)=
ode / T 0001 0000
CUUUC
0000 0000 _0000 0000
page # O‘H:et
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104

Address Translation Comparison

Advantages Disadvantages
Simple Fast context External fragmentation
Segmentation |switching: Segment

mapping maintained

by CPU
Paging No external Large table size ~ virtual
(single-level |fragmentation, fast |memory
page) easy allocation Internal fragmentation
Paged Table size ~ # of Multiple memory
segmentation |pages in virtual references per page
Two-level memory, fast easy |access
pages allocation

Inverted Table

Table size ~ # of
pages in physical
memory

Hash function more
complex




How is the translation accomplished:

Physical
Addresses

- What, exactly happens inside MMU?

- One possibility: Hardware Tree Traversal

- For each virtual address, takes page table base pointer and
traverses the page table in hardware

- Generates a "Page Fault” if it encounters invalid PTE
» Fault handler will decide what to do
» More on this next lecture

- Pros: Relatively fast (but still many memory accesses!)

- Cons: Inflexible, Complex hardware
- Another possibility: Software

- Each traversal done in software

- Pros: Very flexible

- Cons: Every translation must invoke Fault!
- In fact, need way to cache translations for either case!
10/12/15 Kubiatowicz €5162 ©®UCB Fall 2015 21



Recall: Dual-Mode Operation

- Can a process modify its own translation tables?
- NO!

- If it could, could get access to all of physical memory
- Has to be restricted somehow

- Recall: To Assist with Protection, Hardware provides at
least two modes (Dual-Mode Operation):
- “"Kernel” mode (or “supervisor” or “protected”)
- "User” mode (Normal program mode)

- Mode set with bits in special control register only
accessible in kernel-mode

- Certain operations restricted to Kernel mode:

- Including modifying the page table (CR3 in x86), and
segment registers

- Have to transition into Kernel mode before you can
change them
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How to get from Kernel—User

- What does the kernel do to create a new user process?
- Allocate and initialize address-space control block
- Read program off disk and store in memory

- Allocate and initialize translation table
» Point at code in memory so program can execute
» Possibly point at statically initialized data
- Run Program:
» Set machine registers
» Set hardware pointer to translation table
» Set processor status word for user mode
» Jump to start of program

- How does kernel switch between processes?
- Same saving/restoring of registers as before

- Save/restore PSL (hardware pointer to translation table)
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Recall: User—Kernel (System Call)

- Can't let inmate (user) get out of padded cell on own
- Would defeat purpose of protection!
- So, how does the user program get back into kernel?

Ls&r pl’OCQSS
user mode
. mode bil = 1)
user process execuling I—- calls system call return from system call (
l; 'l
trap return
2y = . .
kernel moxde bil =0 mode bil = 1
% / kernel mode
aexacute system call (made bit = 0 "|

- System call: Voluntary procedure call into kernel
- Hardware for controlled User—Kernel transition

- Can any kernel routine be called?
» No! Only specific ones.

- System call ID encoded into system call instruction
» Index forces well-defined interface with kernel
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User—Kernel (Exceptions: Traps and Interrupts)

- A system call instruction causes a synchronous exception (or
\\?r‘apll)
- In fact, often called a software “trap” instruction
- Other sources of Synchronous Exceptions ("Trap”):

- Divide by zero, Illegal instruction, Bus error (bad address, e.g.
unaligned access)

- Segmentation Fault (address out of range)
- Page Fault (for illusion of infinite-sized memory)
- Interrupts are Asynchronous Exceptions
- Examples: timer, disk ready, network, etc....
- Interrupts can be disabled, traps cannot!
- On system call, exception, or interrupt:
- Hardware enters kernel mode with interrupts disabled
- Saves PC, then jumps to appropriate handler in kernel

- For some processors (x86), processor also saves registers,
changes stack, etc.

- Actual handler typically saves registers, other CPU state, and

switches to kernel stack
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Closing thought: Protection without Hardware

- Does protection require hardware support for translation and
dual-mode behavior?
- No: Normally use hardware, but anything you can do in
hardware can also do in software (possibly expensive)
- Protection via Strong Typing

- Restrict programming language so that you can't express program
that would trash another program

- Loader needs to make sure that program produced by valid
compiler or all bets are off

- Example languages: LISP, Ada, Modula-3 and Java

- Protection via software fault isolation:

- Language independent approach: have compiler generate object
code that provably can't step out of bounds

» Compiler puts in checks for every “"dangerous” operation (loads,
stores, etc). Again, need special loader.

» Alternative, compiler generates “proof” that code cannot do
certain things (Proof Carrying Code)

- Or: use virtual machine to guarantee safe behavior (loads and
stores recompiled on fly to check bounds)
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Caching Concept

S SR e
- ) |
e @‘“”5\

- Cache: a repository for copies that can be accessed more quickly
than the original

- Make frequent case fast and infrequent case less dominant

- Caching underlies many of the techniques that are used today to
make computers fast

- Can cache: memory locations, address translations, pages, file
blocks, file names, network routes, eftc...

- Only good if:
- Frequent case frequent enough and
- Infrequent case not too expensive
- Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Why Bother with Caching?

1000

=t
o
o

=t
o

Performance

10/12/15

Processor-DRAM Memory Gap (latency)

.................................................................... CP’U/-/_/Pr'oc
"Moore's Law" 60%/yr.
(really Joy's Law (2X/1.5yr)

......................................................... Processor- Memory

Performance Gap:

........................................................ (graws 50% / year‘)
“Less Law?" | _ . .~ DRAM

o 9°/o/yr‘.
PP PR P PR R I PR N (ZX/IO

yrs)
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Another Major Reason to Deal with Caching

Virtual Offset I
Address:
of page #0 |V.R \4
page #1 |V.R V-)ffset
page #2 VR, :
Base page #3 |V.R.W Physical Address
Base3 [Limit3\N page #4 N
Base4 [Limit4 R
Base5 |Limits page #5 [V.R.W Check Per
Base6 |Limit6 [N/ Y v
Base7 |Limit7 |V > —Access Access
Error Error

- Cannot afford to translate on every access

- At least three DRAM accesses per actual DRAM access

- Or: perhaps I/0 if page table partially on disk!

- Even worse: What if we are using caching to make memory
access faster than DRAM access???

- Solution? Cache translations!

- Translation Cache: TLB ("Translation Lookaside Buffer”)
Kubiatowicz €S162 ©UCB Fall 2015
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Why Does Caching Help? Locality!

Probability
of reference

0 Address Space 2n -1

- Temporal Locality (Locality in Time):

- Keep recently accessed data items closer to processor
- Spatial Locality (Locality in Space):

- Move contiguous blocks to the upper levels

Lower Level
To Processor Upper Level Memory
Memory

A

Blk X

From Processor - BIk Y

v
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Memory Hierarchy of a Modern Computer System

- Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor

Control

Datapath

Speed (ns): 1s 10s-100s 100s 10,000,000s 10,000,000,000s
(10s ms) (10s sec)
Size (bytes): 100s Ks-Ms Ms Gs Ts

10/12/15 Kubiatowicz €S162 ©UCB Fall 2015 31



A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first
reference): first access to a block

- "Cold” fact of life: not a whole lot you can do about it

- Note: If you are going to run “billions” of instruction,
Compulsory Misses are insignificant

Capacity:
- Cache cannot contain all blocks access by the program
- Solution: increase cache size

Conflict (collision):

- Multiple memory locations mapped
to the same cache location

- Solution 1: increase cache size
- Solution 2: increase associativity

Coherence (Invalidation): other process (e.g., I/0O) updates
memory
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How is a Block found in a Cache?

Block Address Block
Tag Index offset

H_J

Set Select

Data Select

- Index Used to Lookup Candidates in Cache
- Index identifies the set

- Tag used to identify actual copy
- If no candidates match, then declare cache miss

- Block is minimum quantum of caching
- Data select field used to select data within block

- Many caching applications don't have data select field
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Review: Direct Mapped Cache

- Direct Mapped 2N byte cache:
- The uppermost (32 - N) bits are always the Cache Tag
- The lowest M bits are the Byte Select (Block Size = 2M)
- Example: 1 KB Direct Mapped Cache with 32 B Blocks
- Index chooses potential block
- Tag checked to verify block
- Byte select chooses byte within block

31 9 4 0
Cache Tag A Cache Index Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
I
Valid Bit Cache Tag Cache Data
............................................... Byte3l]......|Byte 1l  |Bytel0 |0
0x50 Byte 63 Byte 33 [Byte 32 | § «—
.............................................................................. 5
3
Byte 1023 .+ Byte 992 |31
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Summary (1/2)

- Page Tables
- Memory divided into fixed-sized chunks of memory

- Virtual page number from virtual address mapped
through page table to physical page number

- Offset of virtual address same as physical address

- Large page tables can be placed into virtual memory
- Multi-Level Tables

- Virtual address mapped to series of tables

- Permit sparse population of address space
- Inverted page table

- Size of page table related to physical memory size
- PTE: Page Table Entries

- Includes physical page number

- Control info (valid bit, writeable, dirty, user, etc)
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Summary (2/2)

- The Principle of Locality:

- Program likely to access a relatively small portion of the
address space at any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space
* Three (+1) Major Categories of Cache Misses:

- Compulsory Misses: sad facts of life. Example: cold start
misses.

- Conflict Misses: increase cache size and/or associativity
- Capacity Misses: increase cache size

- Coherence Misses: Caused by external processors or I/0
devices
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