
> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 1

Heterogeneous Architectures for Big Data

Batch Processing in MapReduce Paradigm

Abstract— The amount of digital data produced worldwide

is exponentially growing. While the source of this data,

collectively known as Big Data, varies from among mobile

services to cyber physical systems and beyond, the invariant is

their increasingly rapid growth for the foreseeable future.

Immense incentives exist, from marketing campaigns to

forensics and to research in social sciences, that motivate

processing increasingly bigger data so as to extract information

and knowledge so as to improve processes and benefits.

Consequently, the need for more efficient computing systems

tailored to such big data applications is increasingly intensified.

Such custom architectures would expectedly embrace

heterogeneity to better match each phase of the computation. In

this paper we review state of the art as well as envisioned future

large-scale computing architectures customized for batch

processing of big data applications in the MapReduce

paradigm. We also provide our view of current important trends

relevant to such systems, and their impacts on future

architectures and architectural features expected to address the

needs of tomorrow big data processing in this paradigm.

Index Terms—Big data, hardware accelerator, FPGA,

MapReduce, Hadoop, data center, efficiency.

I. INTRODUCTION

Past few decades have constantly witnessed an increasingly

deeper penetration of computers and various sensors into

virtually all aspect of our daily lives. We collectively produce

large amounts of data such that it is forecast [1] that the volume

of digital data in 2020 will be 300 times that of 2005. Mining

this data helps various entities to better accomplish their

missions. This spans the growing interest in big data by

companies for customer satisfaction to increase the profits, by

health sector for better medicine and various healthcare

services, by social scientists and politicians for predicting

societal needs and trends, and even by police and security

agencies for forensics. Processing this huge amounts of data is

a daunting task that has motivated introduction of new

programming paradigms, such as MapReduce [2], as well as

computing infrastructures, such as Warehouse Scale Computers

(WSC) [3].

Paradigms for big data analysis can be broadly classified into

batch processing and stream processing. As the names imply,

the former is used when the data is already collected, such as

the case of index generation for internet-wide search by Google,

whereas the latter is typically used when the data is produced

online and is meant to be processed on the fly, such as the case

of analyzing the twits posted on Twitter. Here we focus on the

former class and the architectures to improve its performance.

MapReduce [2] introduced by Google is among the most widely

used programming paradigms in this class, and Hadoop [4] is

its open-source implementation that made it available to many

other users outside that company. A number of other surveys

exist on MapReduce [5-7], but their goal is mainly providing a

deeper understanding of the MapReduce paradigm and its

software implementations or a specific use of it [6]; to the best

of our knowledge this is the first survey focusing on various

architectures, spanning GPGPU, hardware-software, and

hardware-only ones, proposed to improve performance and

efficiency of MapReduce computation.

MapReduce programming paradigm is based on concepts

from functional programming and is designed to relieve the

programmer from intricate details of data distribution,

processing, and failure handling on the cluster; this is a major

advantage compared to prior widespread parallel programming

paradigms such as MPI [8]. MapReduce consists of four main

phases (and two optional ones—see Section II.B) in general:

distributing the data among the computing nodes in the cluster,

running the Map function on each node to produce (key, value)

pairs in parallel, shuffling these pairs to gather all pairs with the

same key on a single machine, and finally running the Reduce

function on each machine to combine values of same-key pairs

into a single value. For cost efficiency, MapReduce was

originally developed to run on clusters of commodity

computers in WSCs, but today and future efficiency

requirements necessitated by rapid increase of volumes and

number of big data jobs, require more advanced features and

innovation in the hardware architectures, as well as hardware-

aware software improvements, for efficient processing of big

data.

It is noteworthy that a number of extensions to the basic

MapReduce paradigm or general big data batch processing also

exist that are gaining popularity; this includes Spark [9] and

also Pregel [10]. Spark is famous for its in-memory computing

capability as well as other features such as support for iterative

computations, execution of a flow graph of operations, and even

streaming features. Pregel is specifically designed to parallelize

graph processing algorithms intended to be applied on big

graphs. Spark introduces Resilient Distributed Datasets (RDD)

M. Goudarzi, Senior Member, IEEE

Computer Engineering Department, Sharif University of Technology, Tehran, I.R.Iran

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 2

as its fundamental data structure, and Pregel defines Supersteps

as its unit of computation progress where operations are

performed in and on vertices of the big graph distributed on

worker nodes. Consequently, the execution model, including

computation as well as communication models and patterns, in

such paradigms is different from the original MapReduce, and

hence, they need their own specific architectural analysis and

improvements. In this paper, we focus on the original

MapReduce paradigm, its execution model, and proposed

custom architectures for it.

The factors involved in efficient execution of MapReduce

big data jobs can be broken down into the following elements:

initial data distribution and management over several

computers, network communication required during the shuffle

phase, computation on the processing elements for Map and

Reduce functions, memory footprint and memory access

pattern of Map and Reduce functions on the processing nodes,

and usage as well as access pattern to local storage on each

node. In each, and all, of these factors improvements can be

envisioned, especially when noting that special-purpose

hardware can be designed and used here, even though it incurs

higher costs than commodity hardware; the financial benefit as

well as the demand scale is so high that justifies the higher non-

recurring engineering (NRE) costs and amortizes it over

multiple jobs or runs.

There are many fold other motivations for the use of

hardware accelerators in today and future data centers as well.

The end of Dennard scaling and the dawn of dark silicon era are

serious concerns such that [11] predicts in 8nm processes more

than 50% of chip area will remain unpowered, and hence, more

energy-efficient approaches such as custom-made hardware

accelerators are a must. Moreover, many data centers run a few

dedicated workloads in large scales which consequently well

lend themselves to more efficient (performance- as well as

energy-wise) implementations by adding custom hardware.

We briefly review the basics of MapReduce processing

paradigm in Section II.A and classify the phases of its operation

in Section II.B, of which we also take advantage to identify

open challenges and opportunities available for improvement.

We review architectures and proposed techniques for more

efficient MapReduce computing in Section III for four major

architectural choices in widespread use today: clusters of

computers, multicore and many-core architectures, GPGPU-

accelerated architectures, and FPGA/hardware-accelerated

ones. A few of the proposed techniques are specifically

designed for certain use cases and application domains. These

approaches are briefly reviewed in Section IV.

MapReduce was initially introduced for use on clusters of

commodity computers, but as mentioned above, dark silicon era

and the ever increasing need for higher efficiency has also

necessitated the move toward hardware-software

implementations. As we review in this paper, most proposed

techniques still need manual and labor-intensive coding and

tuning for a hardware-software co-designed MapReduce

processing. This imposes additional burdens to the

user/programmer and distracts her from focusing on her main

job: i.e., developing algorithms for processing the big data. This

clarifies the need for programming frameworks and

compilation/synthesis tools to seamlessly integrate hardware

and software components for MapReduce processing.

Currently proposed such tools and frameworks are discussed in

Section V.

The surveyed custom architectures are classified into four

categories in Section VI based on their scope and major

optimization approaches. This helps to better understand the

state of the art in this area, and more importantly, to identify

gaps for further research and development.

At the end of each section, we briefly mention our view of

open challenges and avenues for further research in that area. In

addition, a number of emerging technologies and industrial

actions are observed on the horizon that can influence the future

of this track of computing paradigm. In Section VI, we provide

our view of these items, along with their effects and the new

opportunities as well as challenges introduced by them

concerning the research community. This section also explains

our view and position in research toward more efficient custom

computing systems for future big data processing in the

MapReduce paradigm.

Finally the paper is summarized and concluded in Section

VIII.

II. BIG DATA BATCH PROCESSING BY MAPREDUCE

Gartner [12] defines: “Big data is high-volume, high-velocity

and/or high-variety information assets that demand cost-

effective, innovative forms of information processing that

enable enhanced insight, decision making, and process

automation.” In a similar definition [13], “IBM data scientists

break big data into four dimensions: volume, variety, velocity

and veracity”, where volume states that the scale of data is big,

variety reflects that data comes in different forms, velocity

corresponds to streaming data which is steadily produced at

high speeds, and veracity represents the uncertainty of data. In

some cases, such as index generation from documents for

internet-scale search by Google or email search by Yahoo, the

big data job involves batch processing of large volumes of data

already collected or stored. In 2004, researchers at Google

introduced MapReduce [2] to address issues of programming at

datacenter-scale and Google proved it successful in practice by

implementing it at scale in its huge data centers. In this section

MapReduce model of computation is briefly reviewed.

A. Introduction to MapReduce

MapReduce borrows ideas from functional programming by

introducing two functions: map and reduce. The map function

is to produce (key, value) pairs from input data, and the reduce

function is to reduce all same-key pairs into a single pair with

that key and a value computed from all values of the pairs. Big

data jobs in principle provide large data-level parallelism since

they typically repeat a given processing on every data item input

to them. Consequently, the map as well as reduce functions

should in principle provide high levels of parallelism that the

MapReduce implementation frameworks, such as Hadoop [4],

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 3

take care of distributing it over available processing nodes, and

also handle all failures automatically. The programmer is only

responsible to provide the map and reduce functions; the rest is

done by the MapReduce runtime.

WordCount is a famous example to show MapReduce model

of computation. The map and reduce functions are [2]:
map(String key, String value):

 // key: document name

 // value: document contents

 for each word w in value:

 EmitIntermediate(w, "1");

reduce(String key, Iterator values):

 // key: a word

 // values: a list of counts

 int result = 0;

 for each v in values:

 result += ParseInt(v);

 Emit(AsString(result));

The map function generates a (w, “1”) pair for each word in

the given document(s), and the reduce function sums up the

values for all pairs with the same word w as key. The

MapReduce runtime distributes data among available compute

nodes already setup in configuration files to participate in the

processing, sends the map and reduce functions to appropriate

nodes (in other words, the code is sent to where the data resides,

instead of the conventional vice versa), transfers (key, value)

intermediate data among the nodes where needed, and collects

the final, possibly merged, output from the compute nodes.

Next subsection describes each phase of a MapReduce

computation.

B. Classification of MapReduce Operation Phases

A MapReduce job typically involves 6 phases, with two of

them being optional:

1. Initial data distribution: In this phase, the data to be

processed is distributed among processing nodes so as to

benefit from data-level parallelism inherently available

in the MapReduce processing paradigm.

2. Map function: The Map function is executed on each

data block stored in each processing node. This is one of

the two major data-parallel tasks involved in

MapReduce paradigm.

3. Data combine: In this optional phase, (key, value) pairs

produced on each processing node during previous

phase are combined (using the same Reduce function as

below) on the same machine so that each node has only

one pair per key.

4. Data shuffle: the (key, value) pairs with the same key,

but residing on different processing nodes, need to be

moved to a single node so as to apply the Reduce

function on them. This is done in the data shuffle phase.

5. Reduce function: all pairs with the same key are now on

a single processing node. The Reduce function is now

applied to each set so as to obtain the final set of (key,

value) pairs with unique keys. Depending on the big data

job in hand, the reduce phase may not be needed and can

be left empty.

6. Merge: This final optional phase sorts the pairs based on

the key, and may apply a Merge function to produce an

output file representing the outcome of the big data

processing without necessarily reflecting the (key,

value) pairs to the user.

III. ARCHITECTURES FOR MAPREDUCE PROCESSING

MapReduce was originally developed for clusters of

commodity computers Google employed in their data centers,

but it has since gained widespread use for other big data

applications and has been ported and customized to other

computing platforms. We categorize and briefly review

MapReduce implementations proposed for these computing

platforms in this section, especially putting more emphasis on

the hardware-software platforms.

A. A Classification of Studied Architectures

We divide the architectures for MapReduce implementation

into four categories as shown in Fig. 1. The conventional case

is the heterogeneous clusters often found in data centers and

computing farms. The second class we study comprises many-

core and multicore processors now common in most desktop

and laptop computers. Availability of physically shared caches

and memories as well as closely coupled cores in such

architectures provides opportunities for innovations that

warrant a separate section to study them. The third class covers

GPGPU that is obviously an appealing choice for MapReduce

implementation due to the vast parallelism visible in this model

of computation. Finally, taking advantage of hardware

accelerators opens up a large class of other possibilities that we

survey in the last class. We break this class further down by

separating the architectures that accelerate solely the map

function, only the reduce function, the operations commonly

used in either functions, and finally full-hardware or hardware-

software implementations of the entire model of computation.

Below subsections provide further details per class.

Fig. 1 A classification of architectures used to implement MapReduce.

B. Processing on Clusters

MapReduce was originally developed for clusters of

computers, and hence, no surprise that its dominant use remains

there. The open source Apache Hadoop [4] implementation of

MapReduce played a significant role in its widespread adoption

by academia and industry. Tuning various parameters

Architectures for MapReduce implementation

Clusters
Multicore/

Many-cores
GPGPUs

Hardware

accelerations

For map

function

For reduce

function

For common

operations

Full-

hardware

HW-SW

co-design

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 4

influential to Hadoop performance, including hardware as well

as software tuning techniques spanning BIOS, OS, JVM, and

Hadoop configuration parameters [14], is a common way of

improving performance on clusters. Hadoop has a large set of

configuration parameters which are typically set manually,

resulting in suboptimal performance. Auto-tuning these

parameters [15] has an important influence on total system

performance. Hadoop file system (HDFS), the distributed file

system used in Hadoop implementation, is implemented in Java

for portability and can be improved by trading off portability

and performance [16]. Other system-level optimizations,

spanning map- and reduce-task binding and scheduling such as

[17], communication-aware load balancing and scheduling of

map-tasks as well as predictive load-balancing of reduce-tasks

on heterogeneous clusters [18], performance estimation

enhancements such as [19], memory optimizations such as [20],

and multi-job scheduling such as [21] are also important

improvement opportunities, but remain out of scope of this

paper.

C. Processing on Multicore and Many-core processors

There are a number of software API and runtime systems that

implement MapReduce for systems other than clusters.

Although these are mainly software API and runtime systems,

we include them here since some of them employ architecture-

specific optimizations as well as some functional characteristics

of MapReduce applications that can be employed in other

implementations as well.

Phoenix [22, 23] implements a runtime system and user API

in C/C++ to allow the user to develop and run MapReduce

computations on symmetric multiprocessors (SMP) as well as

many-core or CMP architectures. The developer provides the

Map and Reduce functions, and in addition, can optionally

provide a splitter and a partitioner function; these functions

respectively split the input data among Map tasks, and partition

the intermediate data among Reduce tasks to potentially take

advantage of the developer’s application-specific knowledge of

the distribution of values. The default splitter function of

Phoenix sets the size of each data block (the unit to be processed

by each Map task) such that it fits in the L1 cache. A number of

further improvements are also proposed in [23] but not

evaluated. This includes a user-specific prefetch engine to bring

data to L2 cache in parallel with processing current ones, hints

on cache replacements, and hardware compression-

decompression of intermediate data. Fig. 2 visualizes the

operations in Phoenix: the key data structure is the Intermediate

Buffer in the middle of the figure where each Map task stores

its produced values in its dedicated row in the column

designated by a hash function applied to the corresponding key;

Reduce tasks then aggregate the values column-wise and write

the outcome to the Final Buffer data structure. This

organization is designed to remove memory address conflicts

among concurrent workers (i.e., cores).

Compared to sequential code, Phoenix demonstrates almost

linear speedup in most cases, and even superlinear speedups in

cases such as MatrixMultiply due to caching effects. The

obtained speedup is comparable to that achievable by manually-

tuned non-MapReduce PThread implementations [23].

Specifically, for the applications that well fit MapReduce

model, e.g. word-count, MatrixMultiply and ReverseIndex,

Phoenix outperforms PThread implementation.

Fig. 2. Conceptual view of Phoenix implementation of MapReduce. Map

tasks save their outputs to rows of Intermediate Buffer, where Reduce tasks

aggregate values stored in columns. [24]

In cluster-based MapReduce implementations, first-order

performance bottlenecks are typically network and storage

traffic. In shared memory multi- and many-core systems, where

none of these conventional bottlenecks exist, application-

specific details such as key-value data storage, memory

conflict, and framework overheads become primary

performance limiters. To eliminate some of these inefficiencies,

Tiled-MapReduce [24] executes a group of Map and Combine

tasks together for lower resource usage and higher locality.

MATE [25] takes a further step by proposing a modification of

the MapReduce paradigm and requiring the user to provide

combined Map+Reduce functions. These modifications result

in up to 3.5x speedup compared to Phoenix.

To eliminate same above inefficiencies, Phoenix++ in [22]

rewrites Phoenix with below major improvements which in

total brings 4.7x performance boost: (i) three classes of user-

selectable data structures are provided to store key-value

pairs—see below, (ii) combiner is run after each Map task, (iii)

final sort is optional, and (iv) calls to the Map and Combine

functions are inlined by C++ tweaks for higher efficiency.

Regarding efficient data structures to store key-value pairs,

an analysis of workloads is presented in [22] that can help other

MapReduce implementations as well: MapReduce workloads

are more deeply analyzed in [22] and are classified based on 3

characteristics as illustrated in Fig. 3:

(i) Map task to intermediate key distribution:

: case: each map task may produce any key where the

number of keys is not known before execution. Word-count is

a good example of such case.

*:k case: each map task may produce a key from only among

k fixed known values. Histogram application represents one

such case.

1:1 case: each map task produces only one unique key.

Matrix multiply, where each map task produces one element of

the product matrix, falls into this category.

(ii) number of values per key.

(iii) computation load per task.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 5

Fig. 3. Workload characteristics in terms of key-value pairs and per task

computation load [22].

The authors in [26] state that the data structure used in

Phoenix, a fix-sized hash table, covered the general case shown

in gray in Fig. 3, but more efficient data structures can reduce

hashing, resizing, and synchronization overheads. They

introduce two workload-tailorable data structures and the user

of the framework can choose and adapt from among these

choices based on her knowledge and insight on the application:

the previously fix-sized hash-table can now be resized per case,

a k element vector is introduce for *:k cases, and a common

array needing no synchronization among reduce tasks is

introduced for 1:1 case of intermediate key distribution. Where

appropriate, the user can also introduce her own storage class

in C++, the language Phoenix++ is developed in. Phoenix++

and its prior versions are available online as open source

software at [27].

D. Acceleration by GPGPU

Although GPGPU can also be viewed as a many-core

architecture, its specific properties in terms of architecture as

well as programming warrants a separate subsection to review

as another platform for MapReduce processing.

MapReduce inherently provides lots of data-parallel tasks,

and hence at the first glance, it seems to well fit the massive

number of cores available in GPUs. The major barrier to benefit

from this parallelism is the synchronization required among

Reduce tasks as well as the data movements required between

CPU and GPU memories.

Mars [28] flow of operations to implement MapReduce on

GPU is shown in Fig. 4 where upper parts are run on CPU and

lower parts on the GPU. In the input data preparation step, the

CPU first reads the input data—since GPU has no access to disk

files—and splits it into equally sized chunks, and copies them

to GPU memory to be processed in parallel by GPU threads

implementing Map tasks. The intermediate (key, value) pairs

are optionally sorted on GPU and then splitting decisions are

made on CPU—see below—for Reduce tasks. Reduce and

Merge phases are then run on GPU cores, and finally output

results are copied back to CPU memory. Since GPU memory

allows only static allocation and non-atomic writes, the Map

function is implemented in two stages to avoid access conflicts

among Map tasks: in the first stage, only sizes of outputs are

counted by a prefix-sum operation (Map count box in Fig. 4)

but actual outputs are only produced in the second stage after

Mars scheduler uses information of the first stage to allocate

memory for intermediate data and to assign non-overlapping

memories to Map tasks to be run as GPU threads. Reduce tasks

are similarly run in two stages for the same reason. Although in

the worst case, computations are doubled by this scheme, the

overhead is actually application-dependent; e.g. in the Matrix-

Multiply case, the counting stage simply returns the size

needing no computation [29].

Fig. 4. Workflow of MapReduce processing in Mars [29] project.

A number of other optimizations are also applied in Mars:

Different threads in a group process consecutive items of the

input data at each step so that memory accesses are coalesced,

and hence, memory bandwidth is better utilized. Built-in vector

data types are also used instead of singular data types when

accessing device memory for the same above goal. The number

of threads per group is decided by iteratively using the CUDA

offline calculator [30] for various numbers of threads, and is set

such that GPU occupancy and registers utilization is

sufficiently high. Index directories are also used so as to avoid

moving (key, value) pairs around when sorting or performing

other relevant operations. Specially designed string

manipulation library for GPU, and hashing the keys while using

a two-stage comparison technique to reduce the comparison

overhead are among other optimizations reported in Mars [28].

Experimental evaluation shows up to 16x speedup for G80 GPU

with 16 multiprocessors compared to Phoenix running on Intel

Core2 Quad processor.

There are a number of other ports or APIs to incorporate

GPUs in MapReduce [4, 31, 32]; some of them restrict the

general MapReduce framework to special cases for more

efficient implementation [32], or deal mainly with multi-

GPU/CPU implementations rather than GPU-specific

architectures which is of interest in this paper. The proposals

dealing with programming frameworks for heterogeneous

CPU operations

GPU operations

Input Data

Preparation

Map count

Actual

map (+sort)

computations

Grouping

(Shuffle phase)

Intermediate

Data

splitting

Reduce count

Actual

reduce (+merge)

computations

Final

result

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 6

systems spanning CPUs, GPUs, and Hardware are discussed in

Section V.

Challenges and opportunities: The two-stage tactic

employed by Mars, for memory allocation and computation, is

too general; ideas similar to the application classes as in

Phoenix++ can be employed for more efficient data structures

and allocation. Other ideas, such as combined Map+Reduce

function, described in multicore/many-core MapReduce section

above, can also be customized to the GPU case. Storage and

network, which have traditionally been the bottlenecks of

MapReduce on clusters, are not involved in MapReduce on

GPU. Major bottlenecks here are memory structure and

allocation, and conflicts on accessing memory by parallel tasks

especially when the model of computation necessitates it, such

as in the reduce and merge tasks. Efficient mechanisms to tackle

above bottlenecks, in software as well as in hardware, are

needed to take the best advantage from GPU massively parallel

cores for MapReduce computation.

E. Acceleration by Custom Hardware

A survey of hardware acceleration methods for data centers

is provided in [33]. The survey spans instruction-set extensions

such as SSE and AVX, to GPUs, FPGAs, and custom-

accelerators for various applications in data centers including

database engines, MapReduce processing, and graph

applications. More specifically, [33] classifies current major

open problems for integration of accelerators to existing

systems as below: (i) host-accelerator and accelerator-

accelerator interconnection, (ii) memory hierarchy for the

accelerator, and (iii) programming models and management of

the accelerator. Automatic accelerator design from higher level

languages (i.e., HLS: High Level Synthesis) is also considered

important in [33] since RTL (Register Transfer Level) design is

time-consuming and hard, especially for domain experts. Thus,

HLS is becoming important again when many custom

accelerators must be designed for a reconfigurable fabric to be

used at large scale in data center. The above factors are equally

important for MapReduce hardware-software implementations

as well, but to further explore current practice and shed light on

gaps for co-design of MapReduce model of computation, in this

section we focus on the internal architectures designed for such

MapReduce implementations.

Accelerating the Map function: A study on the performance

bottlenecks of Hadoop implementation of MapReduce is

performed in [34] on TeraSort and Grep benchmarks. The

authors state that an implicit assumption in original MapReduce

was the use of commodity hardware (such as hard disk and

routers), and hence, their performance bottleneck was

overcome by adding commodity servers in higher volumes.

They continue by showing that current high speed solid-state

disks and network devices are not fully utilized by today

Hadoop benchmarks, and conclude that CPU has once again

become the performance bottleneck and the need for

accelerators is evident again. They identify and categorize the

following three bottlenecks to accelerate in hardware: (i) key-

value pair generation and sort by key in the Map tasks,

(ii) merging sorted files in Map and Reduce tasks, and

(iii) numerical calculations in Map and Reduce tasks. Their

solution for the first category above, as shown in Fig. 5, is the

use of a multi-core board connected to the Xeon-based host over

PCIe bus; the board on the lower part of the figure receives data

from the host computer by DMA over PCIe bus, dispatches

them among the cores, and returns the result back to the host

where final combine is done. The 36-core board achieves much

better performance than the standalone host which according to

the authors, its lower performance is mainly due to Java

overhead since the multicore board and the host have almost the

same SPECint benchmark score. In terms of energy efficiency,

however, the multicore board is much better: it consumes only

35W compared to 130W by the host.

Fig. 5. Overview of the multicore-hardware accelerated system in [34].

Accelerating commonly used computations: An interesting

point from [34] is that building accelerators for common

application-independent operations involved in Hadoop, such

as sort and merge operations, is an effective way that benefits

all MapReduce jobs. Similarly, [35] implements simple Reduce

functions—merely accumulation or averaging—in hardware to

contribute to all jobs that use such Reduce functions.

Intel QuickAssist technology can also be used [36] to

accelerate compression and decompression parts which are

optional parts in Hadoop computation mainly used to reduce

network and data storage overheads. QuickAssist software API

redirects the compress/decompress calls to the hardware-

accelerated units embedded in recent Intel processors. FPGA-

based compression accelerators can also be connected over

PCIe slot to Hadoop nodes for the same purpose above: to

compress data before network transmissions so as to reduce

network traffic, and hence, enhance performance [37]. It is

noteworthy that general compression/decompression is a

common solution applicable to most network-based paradigms,

and not MapReduce-specific.

Accelerating the Reduce function: An accelerator for

Reducers is proposed in [38] and implemented in logic blocks

of Xilinx Zynq FPSoC to relieve the main processors (i.e., the

ARM processors embedded in the FPGA chip) from Reduce

CPU operations

Operations on multicore accelerator board

Data read and DMA transfer

Input

DMA

buffer

Mapper subtask on small core

combine + write to disk

Mapper subtask on small core

Mapper subtask on small core

Output

DMA

buffer

Map task

DMA on PCIe bus

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 7

tasks. A simplified view of the proposed structure is shown in

Fig. 6; the upper part of the figure shows processor cores that

perform the map functions and send the (key, value) pairs to the

lower part where the reduce function is implemented in

hardware on the FPGA logic blocks. A memory structure for

efficient key-value storage and key-search is proposed [35] and

simple Reduce functions (i.e. accumulation and averaging) are

implemented in hardware—see the small gray boxes in the

figure. As the figure shows, current value for each processed

key is stored in the internal data structure. Two hardware-

implemented hash chains are used to find the corresponding

row for each key. Then, the stored key is compared to the new

key to see if there is a hit; if neither of the hash chains results in

a hit, the new key is stored in a queue (not shown in the figure).

In case of a hit, the newly received value is combined with the

previous one by the gray adder boxes (i.e. the hardware-

implemented reduce function) and are stored back in the data

structure. The number and the size of keys storage can be

configured based on the application needs. Speedups up to 2.3x

are reported [38]. In another work [39] on the same thread,

hardware implementation of map tasks is also generated using

HLS [40] and thus the whole system is implemented in

hardware, reporting 2 orders of magnitude energy reduction

compared to CPU-only implementation. Note that [39] belongs

to next category below (all-hardware) and is mentioned here to

illustrate the evolution of the authors’ works.

Fig. 6. A simplified view of the accelerator block diagram for simple

Reduce functions proposed in [38].

All-hardware MapReduce: FPMR [41] provides a general

architecture on FPGA that realizes an almost complete

MapReduce system in hardware: the architecture contains

mapper and reducer modules as well as on-chip scheduler to

assign tasks to the mappers and reducers, and also a data

controller module to manage host-FPGA data transmission as

well as passing initial data to the mappers, and storing final data

from reducers (or possibly the merger whenever required).

FPGA board is connected over a PCIe bus to the host that

implements less time consuming tasks. Their implementation

of RankBoost data mining algorithm achieves above 31x

speedup against a software implementation. A major goal of the

design is generality and reusability for other algorithms, and

this is reflected in the application-independent design of FPMR

architecture shown in Fig. 7. Replicated hardware modules are

added for mapper and reducer tasks, shown in the middle lower

part of the FPGA box in the figure. The Data Controller and

Processor Scheduler boxes manage proper data dispatching and

module activation of mapper and reducer modules. Local

memory on the FPGA is used for storing intermediate key-value

pairs. The user must design the mapper and reducer hardware

internals, and may need to improve memory structure per

application needs (in case of RankBoost implementation in

[41], this includes: dual global memory banks, double

buffering, and also a mechanism to reduce bandwidth pressure

by avoiding redundant data transmission). Parallel mappers and

reducers contribute to the decrease in execution time, but

pipelining is not employed.

Fig. 7. FPMR architecture to implement on FPGA [41]

The work in [39] is another work in this category that we

discussed in previous section along with other works of the

authors—see Fig. 6 and its corresponding text.

A more recent all-hardware MapReduce implementation is

Melia [42] where OpenCL is used as a vehicle to implement

user-provided map and reduce functions directly on FPGA.

This relieves the end-user from intricate details of FPGA

hardware design and hardware description languages, and

consequently, increases her productivity by allowing her to

focus on describing the target computation in the familiar

MapReduce paradigm. Furthermore, [42] demonstrates nearly

4 times higher energy efficiency (performance per Watt) for

FPGA implementation of MapReduce over CPU and GPU

implementations.

Zynq FPSoC chip

FPGA Logic Blocks

ARM

Cores

Keys Addr

 1

 2

3

...

Values

+

Keys Values Addr

 1

 2

3

...

Hash 1 Hash 2

+ =

Hit1

=

Hit2

Key

Value

(key,value)

buffer

ARM

Cores

Map function

Reduce function

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 8

Melia is provided as a software library that the designer uses,

along with her map and reduce functions in C, to describe her

desired functionality. Then, implementation parameters such as

local (on-FPGA) memory usage, loop unrolling, and

map/reduce pipeline replications are determined by a number

of guidelines and calculations. Finally, the design is compiled

and executed on the FPGA using OpenCL toolkit. The map and

reduce phases are non-overlapping, which suggests either

partial reconfiguration to occupy less FPGA space, or multi-job

MapReduce computation to increase the utilization of FPGA

resources, although none of them are implemented in [42].

Raising the abstraction level of system model usually results

in lower performance of the system implementation. To

mitigate this, [42] applies a number of FPGA-specific

optimizations: Memory optimizations include memory

coalescing and use of private memories, while computation

optimizations include loop unrolling and pipeline replication.

As described above, Melia framework helps the designer to

tune above parameters, and [42] reports up to nearly 44x

performance boost over the non-optimized baseline FPGA

design obtained by these tunings and optimizations.

Hardware-software co-designed MapReduce: A co-design

approach is proposed in [43] for acceleration as well as for

energy efficiency of MapReduce jobs by implementing only the

time-consuming parts of the application in hardware. As Fig. 8

shows, a number of accelerators (Xilinx Zynq field-

programmable system-on-chip, or FPSoC, boards) are

connected as slaves over a PCIe bus to an x86 processor (Xeon

and Atom processors) as the master node. Four data mining

benchmarks, namely K-means, KNN, SVM, and Naïve Bayes,

are profiled to identify time-consuming functions which are

then synthesized into hardware by Xilinx Vivado HLS tool (we

are confused whether the profiled applications were originally

merely core functions or fully implemented MapReduce

applications in C, since the paper mentions C-based source

codes [43]). The system is assumed to send the big data from

the master node to the slave boards over PCIe and collect the

results back; slave nodes are to process time-consuming

functions of the algorithm in hardware on FPGA blocks.

Analytical models are then developed based on Amdahl’s law

as well as the overheads corresponding to all the

communication links in Fig. 8 so as to estimate potential

speedups if the co-designed system were implemented in

practice. Estimated end-to-end speedups up to 2.7x, total power

ratios of above 2x, and EDP ratios of above 15x, are reported

[43]. Changing the master node from Xeon to Atom processor

obviously affects power and EDP ratios but not the achievable

speedup. Although the case studies are all data mining

benchmarks, but the framework is general enough to be fairly

easily adapted to other applications as well. The HLS tool

provides some pipelining as well but its effect, and possible

improvements of it, are not analyzed in depth and are potential

paths for enhancement. The speedup is mainly obtained by

hardware implementation of software functions, and replicating

it as multiple workers.

Fig. 8. HW-SW co-design architecture in [43] based on FPSoC boards.

Axel [44] is another heterogeneous platform encompassing

CPU, GPU, and FPGA. Authors in [44] demonstrate the use of

this platform to accelerate MapReduce processing. The Axel

cluster is a Non-uniform-Node Uniform-System (NNUS)

heterogeneous system as shown in Fig. 9; each node consists of

a processor, a GPU and an FPGA along with their

corresponding memories (not shown in the figure) and a shared

PCIe bus and a network I/O system for conventional inter-node

communication over Gigabit Ethernet. Intra-node

communication is provided by the PCIe bus, whereas two inter-

node communication media are provided: general Gigabit

Ethernet for conventional networking, as well as Infiniband

high-speed links through FPGAs for direct higher speed FPGA-

to-FPGA communication.

Fig. 9. NNUS architecture of Axel [44] heterogeneous cluster.

For MapReduce processing, two implementation paradigms

are envisioned as shown in Fig. 10 and Fig. 11. The former uses

FPGAs for the Reduce functions where high-speed low-latency

direct link among FPGAs are used, whereas the latter employs

lower-speed CPUs and the Ethernet channels among them. The

framework provides a general flow for employing the

heterogeneous cluster, but details of GPU and FPGA

implementations are left to the user to provide. The authors use

Master CPU

Slave

Accelerator

Zedboard

ARM

core

PCIe switch network

FPGA

Slave

Accelerator

Zedboard

ARM

core

FPGA

Slave

Accelerator

Zedboard

ARM

core

FPGA

…

CPU

FPGA

Gigabit Ethernet conventional network

PCIe

Heterogeneous Computing

Node (HCN)

HCN

Infiniband inter-FPGA network

Network

I/O

GPU

…

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 9

the latter above approach for an N-body simulation and report

22.7x down to 4.4x speedups respectively for 1-node and 16-

node clusters; they put the non-linear speedup and its

degradation to the all-to-all communication needed due to the

nature of the N-body simulation application.

Fig. 10. Reduce-by-FPGA paradigm in Axel [44].

Fig. 11. Reduce-by-CPU paradigm in Axel [44].

Authors in [45] provide MapReduce API in C and use the

architecture in Fig. 12 to distribute data among worker nodes

implemented in FPGA, GPU, or even conventional CPU. This

architecture is viewed as a custom computing machine for the

MapReduce paradigm. The scheduler distributes data among

worker nodes which can be FPGA, GPU, or even multicore

boards. For each worker node, e.g. for the FPGA one, a data

distributor distributes its assigned data among instances of the

Map function on the FPGA, and returns the Reduce function

outputs back to the system, all in a pipelined manner. For the

FPGA part of this hardware-software MapReduce system, the

authors manually (claimed to be easily automatable) convert the

code to pipelined Handle-C code which is then synthesized into

FPGA bitstream. Speedups up to 30x are reported for simple

benchmarks and 16 pipeline instances implemented in the

FPGA.

Fig. 12. Architecture of the co-designed MapReduce custom computing

machine in [45].

A number of other proposals also exist for co-designed

MapReduce with goals other than sole performance and power.

Authors in [46] integrate FPGA with commodity hardware

(processor) and reconfigure the FPGA upon failures for fault-

tolerance while the data is redirected to commodity hardware

during FPGA unavailability. Advantages of using OpenCL

framework is demonstrated in design showcases in [47] where

OpenCL is used to describe a variety of computation structures,

including static as well as streaming pipeline of MapReduce

computation, which is then implemented on FPGA boards

connected to a host micro-server with Atom processor. Large

power savings, in addition to performance gains, are key

achievements demonstrated in practice in this work [47].

Challenges and opportunities: Although pipelining has been

used in a few of researches we reviewed above, there is still

room to better utilize its advantages especially since the

massive identical computations in the map and reduce functions

well lend themselves to pipelined execution and the high

throughput it can provide. Data distribution and intermediate-

data shuffle phases are the other parts that need better hardware

support and application-specific architectures. Reconfiguration

capabilities of FPGAs is also not well taken advantage of up to

now. For example, imagine an architecture with multiple

pipelines for map and reduce functions where the input data and

the intermediate ones are respectively streamed to each map and

reduce pipeline; the number of map and reduce pipelines can be

dynamically adjusted, by FPGA (partial) reconfiguration, upon

production of intermediate data where the number of pairs per

key is partially known. Recent move toward closely coupled

FPGA-CPU chips—see Section VII.A—can make room for

novel co-designed proposals with higher communication

efficiency and easier computation migration, both online as

well as offline, between the CPU and the FPGA.

Master CPU

FPGA board

m
ap

re
d

u
ce

Scheduler

Data distributor

thread

m
ap

m
ap

p
ip

el
in

ed

GPU board

m
ap

re
d

u
ce

Data distributor

thread

m
ap

m
ap

Other (e.g.

multicore) boards

m
ap

re
d

u
ce

Data distributor

thread

m
ap

m
ap

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 10

F. Summary of Custom Architectures

TABLE 1 summarizes major features of the custom

architectures surveyed above. The stages of MapReduce that

are the main focus of each work for acceleration, are given in

the second column of the table. Third column gives the target

platform of the work, and the fourth column gives more details

of it in terms of number and type of the considered nodes. The

interface employed between the accelerator and the CPU is

given in the next column, and finally the last column describes

the language(s) used to model the function implemented in the

accelerator. Where important, the high level language (e.g. C)

used by the programmer, as well as the hardware description

language (e.g. Handle-C) used for FPGA design are both

mentioned for emphasis.

Lack of a commonly approved benchmark suit and

comparison environment is a major obstacle to quantitatively

compare the approaches and their outcomes, and hence, one has

to suffice to subjective descriptions and comparisons. Major

conclusions from the above survey and the summary provided

in below table are discussed in Challenges and Opportunities

subsections above. A further classification of our envisioned

approaches are given in Section VI; it provides a big picture of

current state of the art, and helps identify missing parts for

further work.

TABLE 1- A Summarized Comparison of Major Hardware-Acceleration
Techniques for MapReduce.

Proposal
Phases

accelerated
Platform

Single/

multi-node

CPU-

accelerator

interface

Programm-

ing model

[34] map

server +

multicore

board

Single node PCIe Java

[35]

common

functions for

reduce

FPSoC
Single

FPSoC

On-chip ARM

AXI bus
HDL

[36]
compress-

decomp.

intel new

processors
Multi-node

internal to

core
Java

[37]
compress-

decomp.

server +

FPGA
Single node PCIe HDL

[38] reduce FPSoC
Single

FPSoC

On-chip ARM

AXI bus
HDL

[39] all FPSoC
Single

FPSoC

On-chip ARM

AXI bus
HLS

[41]
(virtually)

all

server +

FPGA
Single node PCIe HDL

[42] all FPGA
Single

FPGA

Custom

on-chip

C,

OpenCL

[43]
benchmark-

dependent

server +

FPSoC

Multi-

FPSoC
PCIe HLS

[44]
map or

reduce

server +

GPU+FPGA
Multi-node

Ethernet +

Infiniband
HDL

[45]
(virtually)

all

server +

GPU+FPGA
Multi-node Custom

C, HDL

(Handle-C)

[47] all FPGA Single node Custom OpenCL

IV. APPLICATION-SPECIFIC ARCHITECTURES

FOR MAPREDUCE BIG DATA PROCESSING

A number of other architectures focus on a specific

application or application domain and propose acceleration

techniques based on characteristics of those applications.

Reference [33] briefly reviews a number of such proposals for

general data center workloads. We review application-specific

accelerators for MapReduce workloads in this section.

A. Simple/Core Functions

An FIR filter in MapReduce is implemented in [48] where

Xilinx Zynq-based ZedBoards are used as slave nodes

connected by an Ethernet switch to a Core-i5 master node. The

Zynq FPGA on ZedBoard integrates dual ARM Cortex-A9

processors clocked at 667MHz with Artix-7 FPGA blocks. The

ARM processors run Xillinux OS on which Hadoop framework

is run, and the FPGA blocks realize hardware implementation

of the FIR filter in a pipelined design running at 100MHz. They

report speedup of over 3.3x compared to a conventional (non-

MapReduce) optimized all-software FIR implementation on a

single ARM processor, and 20% higher speed compared to the

same ARM-based Hadoop cluster without the hardware

accelerators.

B. Graph Applications

While there are proposals for designing hardware templates

for general graph applications [33], as well as MapReduce

implementation of graph processing algorithms such as [49], we

are unaware of hardware implementation of MapReduce

applications of graph processing algorithms. Given wide usage

of graph algorithms in largescale big data processing, e.g. in

social network analyses, acceleration by hardware for such

applications, as well as related models of computation such as

Pregel [10], seems a promising path to follow for further

research.

C. Data Mining Applications

Authors in [50] connect multiple computers each equipped

with an FPGA board for faster computation of k-means

algorithm. Each iteration of k-means is implemented as a

MapReduce job where distance calculation of data points to

current centroids are done by the Map tasks, and calculation of

new centroids is left to the Reduce tasks. Each FPGA board is

connected to its computer via PCIe slot, and all boards are also

directly connected by Ethernet switches as in Fig. 13. A key

point here is the use of inter-FPGA network, as shown in the

figure, for faster direct communication among FPGAs to

eliminate the overhead of communication through CPUs and

general purpose local network. The host CPU in each compute

node merely configures the FPGA and marshals the data

to/from it. DMA is used to transfer data to/from each FPGA

where either the map or the reduce function is implemented; the

(key, value) pairs are passed from mapper FPGAs to reducer

FPGA by the Ethernet switch. They report to obtain speedups

up to over 16x compared to optimized Mahout software-only

implementation. The bottleneck was host-to-FPGA

communication channel as per [50].

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 11

Fig. 13. Overview of the accelerator-powered cluster in [50].

FPMR [41] is the other work that uses FPGA to improve or

analyze possible speedup of data mining MapReduce

applications (RankBoost, SVM, and PageRank)—see Section

III.E for further details. It is noteworthy that although all the

considered benchmarks are data mining applications, the

proposed structure is general and nothing is application-

specific.

Co-design architecture of [43] is also analyzed for a number

of data mining benchmarks, but again no specific property of

such applications is taken advantage of, and the structure is

applicable to other general big data applications as well—see

Section III.E and Fig. 8.

D. Genomics

Many big data applications exist in the field of genomics

which could potentially benefit from MapReduce and

accelerator implementation. Next generation genome

sequencing with short or long reads is among such well known

applications. Authors in [51] distribute the reads among

computing nodes each responsible to identify potential places

in the reference genome to align the read. As the Map function,

the computing nodes use FPGA accelerators for the string

matching problem, and produce (key, value) pairs each of

which represents the index of one occurrence of the read in the

reference genome. The pairs are shuffled as usual and the

Reduce tasks combine them to write all occurrences of the read

in an HBase table which is then processed to produce the final

sequenced genome. Their experimental results report 2.73x

speedup for each hardware accelerator occupying less than 1%

of a Virtex-5 LX110T FPGA.

Challenges and opportunities: Ever increasing significance

of application domains such as Genomics, makes increasingly

more demand for higher efficiency at lower cost and power.

Widening use of MapReduce model of computation in such

application domains shall make more room for innovation and

specialization toward above goals. There is a large design space

to explore here for application-specific improvements spanning

memory, processing, and communication architectures

especially on modern CPU-FPGA architecture recently on rise.

V. FRAMEWORKS FOR PROGRAMMING AT SCALE

Data centers when viewed as a WSC [3] are large computing

systems with enormous computing capacity, but taking best

advantage of this capacity, i.e. programming them, is a daunting

task. MapReduce is one of the paradigms that helps here, but

when hardware accelerators are added to the WSC for higher

efficiency, new programming tools and frameworks are needed

to complement current MapReduce frameworks such as

Hadoop. This subsection reviews some of currently proposed or

envisioned frameworks incorporating hardware accelerators.

Blaze [52] provides FPGA-as-a-Service (FaaS) concept

comprising a programming interface and a runtime system to

allow datacenter-scale deployment and use of FPGA

accelerators with minimal programming effort by big data

programmers. FaaS programming interface essentially hides

the FPGA accelerators, and their intricate details of

programming and usage, behind a set of well-defined

programming API that enables easy use of accelerators by big

data analytics developers. The Blaze runtime system then takes

care of (i) sharing the accelerators among multiple jobs and

applications, (ii) covering multiple accelerators installed on

multiple nodes under the same FaaS umbrella, (iii) scheduling

accelerator functions on available FPGAs along with other

related details such as (re-)programming the device and

marshaling input and output data, and (iv) other advantages

such as providing fault tolerance and hiding the latencies by

pipelining and caching. The hardware design for the FPGA,

however, still needs to be provided by an expert HDL designer

which takes several weeks in their experiments [52];

automating this task is left to other and future work [52].

OpenACC (for Open Accelerators) [53] is a programming

standard for parallel processing on CPU/GPU systems. The

standard provides directives that the programmer can embed in

her code to help the compiler derive efficient parallel code to

run on GPU and/or multi-core CPU. It basically provides a

mechanism for the programmer to transfer her knowledge of the

field and application to the compiler. Efficient use of this

information is up to the compiler and libraries usually

developed by device/CPU vendors such as Nvidia. OpenACC

framework, however, cannot run parallel code such as

MapReduce-style code simultaneously on CPU and GPU [54].

Frameworks such as Panda [54] provide the capability to

simultaneously distribute Map as well as Reduce tasks among

CPUs and GPUs. Fig. 14 shows the flow of operations in Padna

with its two-stage scheduling: scheduling tasks among compute

nodes comprising CPUs and GPUs, and then within each CPU

or GPU. The blue boxes in the figure are run on the CPU and

the orange ones on the GPU. Data partitioning and task

scheduling is done statically on the CPU, then the tasks are run

in parallel on CPU and GPU. Intermediate data are also copied

back from GPU memory to CPU memory for the shuffle stage.

The Map and Reduce functions can be different for CPU and

GPU, and must be provided by the programmer. Panda

framework is available as an open source project at [31].

CPU

FPGA

accelerator

Conventional inter-computer network

PCIe

Compute

Node

CPU

Head Node

CPU

FPGA

accelerator

PCIe

Compute

Node

Additional direct inter-FPGA network

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 12

Fig. 14. Panda [54] flow of operations on CPU and GPU.

HLS is used in [40] to produce Mapper as well as Reducer

hardware from original C/C++ code of MapReduce

applications originally developed to run on multicore

frameworks such as Phoenix. Up to 4.3x throughput

enhancement as well as two orders of magnitude power and

energy improvement are reported compared to multicore

implementation on an AMD 8-core processor [40]. The

proposed extension (top-right of Fig. 15) to Vivado HLS flow

is shown in Fig. 15. The extensions include directives and

source code annotations to guide Vivado HLS flow in

generating synthesizable HDL from the given MapReduce

application. The rest of the flow (top-left and bottom of the

figure) is standard Vivado HLS flow providing simulation as

well as synthesis and bitstream generation.

Fig. 15. Proposed HLS flow for MapReduce accelerator generation [40].

(In the figure, Exp/tion stands for Exploration, and M.R.A.is an acronym for

MapReduce Application)

VINEYARD [55] is a conceptual high-level framework

aimed at providing an integrated workflow for hardware-

software implementation of big data applications in data centers

equipped with heterogeneous computing nodes spanning

general purpose processors, FPGAs, embedded processors such

as ARM, and full-custom application-specific dataflow

engines. As shown in Fig. 16, the programmer still uses familiar

programming models for big data processing such as

MapReduce, Spark, and Storm, and then the VINEYARD tools

and compilation/synthesis framework (middle of the figure)

uses library of IP blocks to efficiently implement the user

application on the data center resources. Commonly used

functions are envisioned to be already synthesized and stored in

a Repository of IP blocks, shown on the right side of the figure.

The hardware implementation (DFE: Dataflow Engine) or

hardware-software implementation (ARM processor together

with programmable logic) of such IP blocks would have been

deployed in the envisioned datacenter and the VINEYARD

runtime scheduler would choose from among them.

CPU

GPU

Map &

Combine

Map &

Combine

Combine

the pairs

S
h

u
ff

le
 a

m
o
n

g
 a

n
d

 b
y
 C

P
U

s

CPU

GPU

Reduce

Reduce

Combine

the pairs

C
o
m

b
in

at
io

n
 a

n
d

 M
er

g
e

am
o
n

g
 a

n
d

 b
y
 C

P
U

s

map reduce shuffle

CPU

GPU

Map &

Combine

Map &

Combine

Combine

the pairs

CPU

GPU

Reduce

Reduce

Combine

the pairs

Compute Node Compute Node

Compute Node Compute Node

…

…

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 13

Fig. 16. VINEYARD framework for accelerator-rich data centers [55].

Other proposals also exist that use OpenCL for describing

pipelines for static as well as streaming processing of data

blocks in MapReduce, and use EDA tools to produce FPGA

bitstreams from the OpenCL code [47], and Handle-C and

associated tools to describe a pipelined C code in MapReduce

model and produce pipelined FPGA implementation as in Fig.

12 [45]. Melia [42] also uses OpenCL as an intermediate

language to enable end-users describe their applications in

MapReduce paradigm, and also write their map and reduce

functions in C. Melia also provides guidelines and software

libraries so that the application is compiled and directly run on

the FPGA so as to achieve easier programming of the FPGA as

well as higher energy efficiency.

Challenges and opportunities: While it is widely admitted

that exposing underlying hardware details to the programmer

can potentially result in more efficient implementations, c.f.

assembly language vs. high-level programming, it definitely

distracts the programmer from her main job of processing the

big data, and is less likely to find widespread use. Future

frameworks should seamlessly integrate with big data

processing frameworks, such as Hadoop, so that the

programmer does not need to get involved with intricate details

of using hardware accelerators. Such high-level frameworks

capable of hiding underlying details from the programmer,

while at the same time producing efficient mapping and

implementation on heterogeneous accelerators as well as

general-purpose computers, are essentially required for the

success of future accelerators at scale. A number of such

frameworks have been proposed as described above and the

large body of research on hardware-software co-design can be

revisited here, but such tools are still in their infancy and need

deeper further research and development.

VI. A CLASSIFICATION OF ARCHITECTURAL APPROACHES

In this section we provide our view of possible approaches to

MapReduce implementation using custom architectures. This

not only classifies currently proposed ones, but also helps to

identify gaps and avenues for further research.

A. Custom architectures for the computation steps

This is the most general case which covers all architectures

presented in Sections III.D and III.E. In such approaches, the

computation model (i.e., MapReduce) is analyzed and a custom

organization is proposed to connect processing elements

spanning CPUs, GPUs, and FPGAs. The proposed custom

architecture may provide acceleration for all (e.g. FPMR [41])

or parts (e.g. [38]) of the computation steps. Nevertheless,

although all such architectures are custom to the computation

model of MapReduce, they are designed to be general and

applicable to all MapReduce applications.

Most of the proposed custom MapReduce architectures fall

into this category as surveyed in the above sections.

Consequently, this category is mature and one needs to dig

further deeper to propose new methods.

B. Architectures customized to application characteristics

 The other class we envision, applies application-specific

features to the proposed architecture such that it works more

efficiently for that specific class of applications. Phoenix [26]

is a good example of this class—see Section III.C and Fig. 3. In

such approaches, specific features of the application are taken

into consideration, and the architecture is customized such that

the best advantage is taken for that certain application or class

of applications.

Although Section IV reviewed a number of proposals, most

of them lack proper customization to the application needs.

Thus, we found only a few truly application-specific

architectures in the survey we provided above. Thus, we believe

more opportunities exist in this class for exploration and novel

proposals. Hot applications such as graph processing, machine

learning, machine vision, and Genomics are among good

candidates to target in this class.

C. Architectures customized to data characteristics

 As the third class of custom architectures, we propose to

customize the architectures to the features of the specific data

items being processed. Our experiments [56] show that

different sources of data, have different characteristics and

moreover, have different influences on the final outcome of the

processing. Thus, for instance, one could add more parallelism

into the architecture for more influential data blocks, or could

use lower power architectures for the others. Similarly, custom

precision in calculations could be used accordingly. Such

customizations should obviously involve dynamic adaptation of

the architecture since the data is only known at runtime, and

hence, re-configurable architectures are a good fit for such

optimizations.

Our survey in this paper found no such custom architecture

in the literature, and hence, this area looks unexplored and

potentially very productive for further research.

D. Other criteria for further classification

Another criterion that can be imagined to further classify

each of above classes is static architectures vs. dynamically

adaptive ones. The conventional view of hardware architectures

is a static organization of modules. However, modern FPGAs

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 14

provide features such as runtime-reconfiguration as well as

partial reconfiguration that are barely explored for custom

MapReduce architectures. These features can be applied to any

of the above three classes to come up with novel adaptive

architectures. For example, in the first class one could imagine

FPGA architectures that initially use the entire FPGA for the

map function, and then reconfigures the FPGA for the shuffle

phase and/or reduce function. Adaptive architectures for the

second and third classes above are easier to imagine.

Conventionally, PCIe slots are used to connect FPGA boards

to the high performance CPUs of datacenter servers, providing

a loosely coupled processor-FPGA system. This makes PCIe a

serious performance bottleneck in many cases. Recent

industrial advances in more closely integrating these two

processing elements—see Section VII.A—can provide a

dramatic increase in processor-FPGA communication

bandwidth and pave the way to proposing novel architectures

in any of the above three classes in this new closely-coupled

processor-FPGA platform.

VII. TRENDS IN LARGE SCALE COMPUTING

A number of market and technology movements are

observed at the moment that can potentially change the

landscape of computing at scale in near future. We list a number

of them at this subsection and briefly describe what we envision

as their effects and outcomes. Each below topic basically

provides an opportunity for MapReduce application developers

to improve efficiency of their applications by taking advantage

of the new technology, but at the same time is a challenge for

them since the developer now needs to choose from among the

new choices enabled by the technology. This challenge,

however, provides another opportunity in the design-

automation field for the corresponding researchers to work on

optimizations by automatic exploration of the design space

enabled by these choices. We provide a brief view of these

challenges and opportunities in each section below.

A. Closely Coupled FPGA-Multicore

Intel recently acquired one of the two biggest FPGA

companies, Altera [57]. Although not much is revealed on

future plans, but it is easy to imagine that Intel who had

abandoned its own field-programmable technology sector over

a decade ago, will soon be releasing its next generation

multicore processors equipped with closely-coupled FPGA

blocks so as to enable programmers to gain higher efficiency by

(potentially dynamically) migrating suitable computations to

the hardware. Current host-accelerator communication

bottlenecks imposed by limitations of interconnection standards

such as PCIe and others will be removed, and software API such

as QuickAssist will boost programmers’ productivity and bring

ease of integration of hardware into the development processes.

Xilinx is also moving toward the same goal, but from the other

end of the spectrum by integrating multicore processors, such

as ARM Cortex A9 cores, into its FPGAs such as its Zynq line

of products. Xilinx Vivado HLS tool helps to hide hardware-

software integration details to some extent, but further

productivity boosters are still missing and needed. Other recent

CPU-FPGA platforms provide various micro-architectural

features that affect achievable performance and energy

efficiency in co-designed applications, and this landscape of

choices is further expanding by introduction of more platforms

from a variety of vendors. A quantitative comparison of choices

and features of such modern CPU-FPGA platforms is provided

in [58] providing guidelines for platform users as well as

designers.

Challenges and opportunities. In terms of new

opportunities, such closely-coupled FPGA-multicore platforms

shall open up a wider design space for designers to explore and

to take advantage of static as well as dynamic computation

offloading, and furthermore, design more efficient co-designed

architectures for widely, or extensively although not widely,

used big data applications.

The challenges can be divided into two categories: hardware-

software integrated development environments (IDE), and

automatic co-design optimization tools. Providing easy to use

software development environments that hide intricate details

of underlying heterogeneous hardware from the application

developer, and automatically generate hardware and software

units and the hardware-software interfaces, is a daunting task

and big challenge for success of such closely coupled FPGA-

multicore platforms. The model of computation these

environments support is an important choice. Furthermore, such

environments need to be complemented with design space

exploration tools that evaluate various architectural as well as

system-level choices. In case of MapReduce model of

computation, such choices include, but are not limited to,

hardware vs. software implementation of each

map/shuffle/reduce/merge task, the number of parallel

processing elements for each task, hardware-software interface

mechanisms, and dynamic reconfiguration alternatives (both

total- as well as partial-reconfiguration).

B. Memory Technologies and Memory-Centric System

Design

Various non-volatile memory technologies are under

research and development that are expected to gain more

popularity and financial viability in near future. On the other

hand, memory-access behavior of big data applications and

programming models such as MapReduce, meaningfully differ

from conventional server and service workloads [59].

Moreover, big data applications, by definition, deal with large

amounts of data; this has motivated MapReduce to actually

send the computation to where the data resides, and not the

other way around as traditionally done in distributed

processing.

Challenges and opportunities. Many new memory

technologies, such as PCM, STT, and others, are non-volatile

memories (NVRAM) and consume much less power than

conventional DRAM and SRAM, but in terms of speed,

throughput, and power, they show asymmetric behavior for

read vs. write, which although makes them harder to use, but

opens up new opportunities for innovation and research. New

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 15

memory hierarchy designs are needed to efficiently combine

SRAM, DRAM, and such NVRAM technologies while

architecting the computation nodes around the memory system

as motivated above, leading to a memory-centric design. Such

approaches are already under development by academic [60] as

well as industrial [61] researchers.

As briefed above, new opportunities for various memory

optimizations are enabled by these new technologies. For

hardware researchers interested in custom architectures for

MapReduce implementation, this means design of custom

memory-centric system organizations that reduce amount of

data movement among memories, and multiplex the data among

processing elements each of which implements one (or more)

phase of MapReduce computation. The memory hierarchy can

also be a hybrid system of SRAM, DRAM, and NVRAM

tailored to the memory access pattern of MapReduce

applications. Another challenge for software and algorithm

researchers will be on design automation to properly map data

blocks, variables, and codes of the application to this memory

hierarchy such that efficiency metrics such as performance and

power are improved. Co-optimization of memory access

patterns (e.g. by scheduling of map/reduce tasks or by data

placement) and memory organization in a reconfigurable

system is another challenging research area in the design

automation field.

C. Software-Defined Architectures

While software defined control at microarchitecture level,

c.f. microprogramming, is debatably inefficient, it has proved

successful at large scales. Software Defined Network (SDN) is

a good example here, and similar proposals and activities exist

for Software-Defined Data Center (SDDC) and Software-

Defined Infrastructure (SDI), which basically generalize the

same idea to a higher level at data center resources scale, as well

as software resources such as software frameworks and

licenses. In general, SDX approaches view the available

resources—whether hardware ones such as the computing,

communication, and storage, or software ones mentioned

above—as pools of components that are (virtually) separated,

and are employed on demand, under control of a data-center-

wide software controller without, or with minimum, human

intervention so as to use and share the resources more

effectively based on the dynamically changing needs. Intel

Rack Scale Architecture [62] is among such proposals in the

industry. Other proposals also exist for resource

interconnection and pooling such as [63] which connects

commodity hardware resources using PCIe switches to provide

remote access at affordable cost and higher-than-Ethernet

speeds. Also, Catapult [64] provides a reconfigurable fabric to

interconnect multiple FPGA accelerator boards each deployed

on PCIe slot of a server; the FPGA boards are directly

connected by pairs of SAS cables so that whole system provides

high performance computation and communication for

Microsoft Bing search engine among other possible uses.

Venice [65] is another data center server architecture focusing

on providing a strong communication substrate among server

chips so that non-local resources can be efficiently used

remotely by all chips.

Challenges and opportunities. As an opportunity, such

Software-Defined Architectures further widen the design space

available to users to more efficiently implement MapReduce,

and more importantly, to adaptively decide how much of the

provisioned resources are assigned to the MapReduce jobs at

each time slot. Recently, even FPGA-as-a-Service (i.e., FPGA

boards attached to VM instances) are offered by cloud providers

such as Amazon, expectedly at a higher price. Thus the

challenge of choosing the right amount of resources, and

furthermore, adapting to the dynamics of the datacenter as well

as the application, is deepening. Automating this process of

resource allocation and also providing runtime systems for

application-specific resource management and adaptation is an

opportunity for researchers in the software and design-

automation fields to provide automatic hardware-software

implementation frameworks that efficiently map and elastically

adapt MapReduce models to available processors and

accelerators.

VIII. SUMMARY AND CONCLUSION

We reviewed the architectures, encompassing software as

well as hardware, proposed for efficient implementation of

batch big data processing in MapReduce paradigm as one of the

most widespread programming models for large scale

processing in today warehouse-scale computers. Several

current open challenges and avenues for further enhancements

were discussed. Furthermore, a number of trends envisioned in

the industry, that are deemed to further deepen the need and

motive to work further in this area, were described. Given the

rapid growth of big data applications and their financial, social,

and health benefits, the demand for higher throughput,

computing capacity, and performance per Watt will only

increase in foreseeable future. This increasingly intensifies the

need and interest for further research in this area to fill in the

gaps partly identified in this survey. Recent deployment of

FPGAs in production datacenters [66] is a clear sign that the

trend toward heterogeneous architectures for large-scale

custom computing systems has only begun.

ACKNOWLEDGMENTS

This work is supported by grant number G930826 from Sharif

University of Technology. We are grateful for their support.

REFERENCES

[1] J. Gantz and D. Reinsel, "The digital universe in 2020: Big

data, bigger digital shadows, and biggest growth in the far east," IDC

iView: IDC Analyze the future, vol. 2007, pp. 1-16, 2012.
[2] J. Dean and S. Ghemawat, "MapReduce: Simplified data

processing on large clusters," Int'l Symp. on Operating System Design

and Implementation (OSDI), 2004.
[3] L. A. Barroso, J. Clidaras, and U. Hölzle, The Datacenter as

a Computer: An Introduction to the Design of Warehouse-Scale

Machines (2nd Edition): Morgan & Claypool Publishers, 2013.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 16

]4[(2016, Oct. 2016). Apache Hadoop Project. Available:

http://hadoop.apache.org/
[5] R. Li, H. Hu, H. Li, Y. Wu, and J. Yang, "Mapreduce parallel

programming model: A state-of-the-art survey," International Journal

of Parallel Programming, vol. 44, pp. 832-866, 2016.
[6] C. Doulkeridis and K. Nørvåg, "A survey of large-scale

analytical query processing in MapReduce," The VLDB Journal, vol.

23, pp. 355-380, 2014.
[7] V. Vijayalakshmi, A. Akila, and S. Nagadivya, "The survey

on MapReduce," Int J Eng Sci Technol, vol. 4, 2012.
[8] D. W. Walker, "The design of a standard message passing

interface for distributed memory concurrent computers," Parallel

Computing, vol. 20, pp. 657-673, 1994.
[9] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and

I. Stoica, "Spark: Cluster Computing with Working Sets," HotCloud,

vol. 10, p. 95, 2010.
[10] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I.

Horn, N. Leiser, et al., "Pregel: a system for large-scale graph

processing," in Proceedings of the 2010 ACM SIGMOD International

Conference on Management of data, 2010, pp. 135-146.
[11] E. B. H. Esmaeilzadeh, R. St. Amant, K. Sankaralingam, and

D. Burger, "Dark silicon and the end of multicore scaling," presented

at the International Symposium on Computer Architecture (ISCA),

New York, 2011.
[12] (2016, Sep. 2016). What is Big Data? by Gartner Research.

Available: http://www.gartner.com/it-glossary/big-data/
[13] (2016, Sep. 2016). The Four V's of Big Data, by IBM.

Available: http://www.ibmbigdatahub.com/infographic/four-vs-big-

data
[14] S. B. Joshi, "Apache hadoop performance-tuning

methodologies and best practices," presented at the International

Conference on Performance Engineering (ICPE), 2012.
[15] N. Yigitbasi, T. L. Willke, G. Liao, and D. Epema, "Towards

machine learning-based auto-tuning of mapreduce," in Modeling,

Analysis & Simulation of Computer and Telecommunication Systems

(MASCOTS), 2013 IEEE 21st International Symposium on, 2013, pp.

11-20.
[16] J. Shafer, S. Rixner, and A. L. Cox, "The Hadoop distributed

filesystem: Balancing portability and performance," presented at the

International Symposium on Performance Analysis of Systems &

Software (ISPASS), 2010.
[17] C.-H. Chen, J.-W. Lin, and S.-Y. Kuo, "MapReduce

Scheduling for Deadline-Constrained Jobs in Heterogeneous Cloud

Computing Systems," IEEE Transactions on Cloud Computing, 2015.
[18] F. Ahmad, S. Chakradhar, A. Raghunathan, and T. N.

Vijaykumar, "Tarazu: Optimizing MapReduce On Heterogeneous

Clusters," in International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS), London,

UK, 2012, pp. 61-74.
[19] S. M. NabaviNejad and M. Goudarzi, "Energy Efficiency in

Cloud-Based MapReduce Applications through Better Performance

Estimation," presented at the International Conference on Design,

Automation and Test in Europe (DATE), Dresden, Germany, 2016.
[20] S. M. NabaviNejad, M. Goudarzi, and S. Mozaffari, "The

Memory Challenge in Reduce Phase of MapReduce Applications,"

IEEE Transactions on Big Data, 2016.
[21] W. Hu, C. Tian, and X. Liu, "Multiple-Job Optimization in

MapReduce for Heterogeneous Workloads " presented at the

International Conference on Semantics Knowledge and Grid (SKG),

2010.
[22] J. Talbot, R. M. Yoo, and C. Kozyrakis, "Phoenix++:

Modular MapReduce for Shared-Memory Systems," presented at the

MapReduce, San Jose, California, 2011.

[23] C. Ranger, R. Raghuraman, A. Penmetsa, G. Bradski, and C.

Kozyrakis, "Evaluating MapReduce for Multi-core and Multiprocessor

Systems," presented at the International Symposium on High

Performance Computer Architecture (HPCA), 2007.
[24] R. Chen, H. Chen, and B. Zang, "Tiled-MapReduce:

Optimizing Resource Usages of Data-parallel Applications on

Multicore with Tiling," presented at the International Conference on

Parallel Architectures and Compilation Techniques (PACT), 2010.
[25] W. Jiang, V. T. Ravi, and G. Agrawal, "A Map-Reduce

System with an Alternate API for Multi-Core Environments,"

presented at the International Conference on Cluster, Cloud and Grid

Computing (CCGrid), 2010.
[26] R. M. Yoo, Anthony Romano, and C. Kozyrakis, "Phoenix

Rebirth: Scalable MapReduce on a Large-Scale Shared-Memory

System," presented at the International Symposium on Workload

Characterization (IISWC) 2009.
[27] C. Kozyrakis. (2016, Oct. 2016). Phoenix: An API and

runtime environment for data processing with MapReduce for shared-

memory multi-core & multiprocessor systems. Available:

https://github.com/kozyraki/phoenix
[28] W. Fang, B. He, Q. Luo, and N. K. Govindaraju, "Mars:

Accelerating MapReduce with Graphics Processors," IEEE

Transactions on Parallel and Distributed Systems, vol. 22, pp. 608-

620, 2011.
[29] B. He, W. Fang, Q. Luo, N. K. Govindaraju, and T. Wang,

"Mars: A MapReduce Framework on Graphics Processors," presented

at the International Conference on Parallel architectures and

compilation techniques 2008.
[30] (2016, Sep. 2016). CUDA Occupancy Calculator by nVidia

Corp. Available:

http://developer.download.nvidia.com/compute/cuda/CUDA_Occupa

ncy_calculator.xls
]31[(2016, June 2016). Panda Framework. Available:

https://github.com/futuregrid/panda
[32] Bryan Catanzaro, N. Sundaram, and K. Keutzer, "A Map

Reduce Framework for Programming Graphics Processors," presented

at the Workshop on Software Tools for MultiCore Systems (STMCS),

Boston, 2008.
[33] S. Yesil, M. M. Ozdal, T. Kim, A. Ayupov, S. Burns, and O.

Ozturk, "Hardware Accelerator Design for Data Centers," presented at

the Int'l Conference on Computer Aided Design (ICCAD), 20 15.

[34] T. Honjo and K. Oikawa, "Hardware Acceleration of

Hadoop MapReduce," presented at the Int'l Conf. on Big Data, 2013.
[35] C. Kachris, G. C. Sirakoulis, and D. Soudris, "A MapReduce

scratchpad memory for multi-core cloud computing applications,"

Microprocessors and Microsystems, vol. 39, pp. 599-608, 2015.
[36] (2013, Apr. 2016). Accelerating Hadoop* Applications

Using Intel® QuickAssist Technology. Available:

http://www.intel.com/content/dam/www/public/us/en/documents/solu

tion-briefs/accelerating-hadoop-applications-brief.pdf

[37] S. D. Kim, S. M. Lee, S. M. Lee, J. H. Jang, J.-G. Son, Y. H.

Kim, et al., "Compression accelerator for hadoop appliance," in

International Conference on Internet of Vehicles, 2014, pp. 416-423.
[38] C. Kachris, G. C. Sirakoulis, and D. Soudris, "A

Reconfigurable MapReduce Accelerator for multi-core all-

programmable SoCs," presented at the Int'l Symp. on System-on-Chip,

2014.
[39] C. Kachris, D. Diamantopoulos, G. C. Sirakoulis, and D.

Soudris, "An FPGA-based integrated mapreduce accelerator

platform," Journal of Signal Processing Systems, pp. 1-13, 2016.
[40] D. Diamantopoulos and C. Kachris, "High-level

Synthesizable Dataflow MapReduce Accelerator for FPGA-coupled

Data Centers," presented at the SAMOS Conf., 2015.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://hadoop.apache.org/
http://www.gartner.com/it-glossary/big-data/
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
http://www.ibmbigdatahub.com/infographic/four-vs-big-data
https://github.com/kozyraki/phoenix
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
http://developer.download.nvidia.com/compute/cuda/CUDA_Occupancy_calculator.xls
https://github.com/futuregrid/panda
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/solution-briefs/accelerating-hadoop-applications-brief.pdf

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 17

[41] Y. Shan, B. Wang, J. Yan, Y. Wang, N. Xu, and H. Yang,

"FPMR: MapReduce Framework on FPGA, A Case Study of

RankBoost Acceleration," presented at the Symp. on Field

Programmable Gate Arrays (FPGA), 2010.
[42] Z. Wang, S. Zhang, B. He, and W. Zhang, "Melia: A

MapReduce Framework on OpenCL-Based FPGAs," IEEE

Transactions on Parallel and Distributed Systems, vol. 27, pp. 3547-

3560, 2016.
[43] K. Neshatpour, M. Malik, M. A. Ghodrat, A. Sasan, and H.

Homayoun, "Energy-Efficient Acceleration of Big Data Analytics

Applications Using FPGAs," presented at the Int'l Conf. on Big Data,

2015.
[44] K. H. Tsoi and W. Luk, "Axel: A Heterogeneous Cluster

with FPGAs and GPUs," presented at the Symp. on Field

Programmable Gate Array (FPGA), Monterery, California, 2010.
[45] J. H. C. Yeung, C. C. Tsang, K. H. Tsoi, B. S. H. Kwan, C.

C. C. Cheung, A. P. C. Chan, et al., "Map-reduce as a Programming

Model for Custom Computing Machines," presented at the

International Symposium on Field-Programmable Custom Computing

Machines (FCCM), 2008.
[46] D. Yin, G. Li, and K.-d. Huang, "Scalable MapReduce

Framework on FPGA Accelerated Commodity Hardware," presented

at the Internet of Things, Smart Spaces, and Next Generation

Networking, 2012.
[47] J. Costabile. (2015). Hardware Acceleration for

Map/Reduce Analysis of Streaming Data Using OpenCL. Available:

https://www.altera.com/content/dam/altera-

www/global/en_US/pdfs/technology/system-design/solutions/design-

solution-syncopated-engineering.pdf
[48] Z. Lin and P. Chow, "ZCluster: A Zynq-based Hadoop

Cluster," presented at the Int'l Symp. on Field Programmable

Technology (FPT), 2013.
[49] S. Lattanzi, B. Moseley, S. Suri, and S. Vassilvitskii,

"Filtering: A Method for Solving Graph Problems in MapReduce,"

presented at the Symposium on Parallelism in Algorithms and

Architectures 2011.
[50] Y.-M. Choi and H. K.-H. So, "Map-reduce processing of k-

means algorithm with FPGA-accelerated computer cluster," in

Application-specific Systems, Architectures and Processors (ASAP),

2014 IEEE 25th International Conference on, 2014, pp. 9-16.
[51] C. Wang, X. Li, P. Chen, A. Wang, X. Zhou, and H. Yu,

"Heterogeneous Cloud Framework for Big Data Genome Sequencing,"

IEEE/ACM Transaction on Computational Biology and

Bioinformatics, vol. 12, pp. 166-178, 20 15.

[52] M. Huang, D. Wu, C. H. Yu, Z. Fang, M. Interlandi, T.

Condie, et al., "Programming and Runtime Support to Blaze FPGA

Accelerator Deployment at Datacenter Scale," in Proceedings of the

Seventh ACM Symposium on Cloud Computing, 2016, pp. 456-469.
[53] (2016 , Sep. 2016). OpenACC: Directives for Accelerators.

Available: http://www.openacc.org/
[54] H. Li, G. Fox, G. Laszewski, Z. Guo, and J. Qiu, "Co-

processing SPMD Computation on GPUs and CPUs on Shared

Memory System," presented at the International Conference on Cluster

Computing (CLUSTER), 2013.
[55] C. Kachris, D. Soudris, G. Gaydadjiev, H.-N. Nguyen, D. S.

Nikolopoulos, A. Bilas, et al., "The VINEYARD Approach: Versatile,

Integrated, Accelerator-Based, Heterogeneous Data Centres,"

presented at the Applied Reconfigurable Computing, 2016.
[56] H. Ahmadvand and M. Goudarzi, "Using Data Variety for

Efficient Progressive Big Data Processing in Warehouse-Scale

Computers," IEEE Computer Architecture Letters, 2016.

[57] (Dec. 2015, Sep. 2016). Intel Completes Acquisition of

Altera. Available: https://newsroom.intel.com/news-releases/intel-

completes-acquisition-of-altera/
[58] Y.-k. Choi, J. Cong, Z. Fang, Y. Hao, G. Reinman, and P.

Wei, "A quantitative analysis on microarchitectures of modern CPU-

FPGA platforms," in Design Automation Conference (DAC), 2016

53nd ACM/EDAC/IEEE, 2016, pp. 1-6.
[59] Z. Jia, L. Wang, J. Zhan, L. Zhang, and C. Luo,

"Characterizing Data Analysis Workloads in Data Centers," presented

at the International Symposium on Workload Characterization

(ISWC), 2013.
[60] K. Asanović, "FireBox: A Hardware Building Block for

2020 Warehouse-Scale Computers " presented at the Usenix

Conference on File and Storage Technologies (FAST), 2014.
[61] (2016, Sep. 2016). The Machine: The future of technology,

by Hewlett Packard Labs. Available:

http://www.labs.hpe.com/research/themachine/
]62[(2016, Sep. 2016). Intel® Rack Scale Design. Available:

www.intel.com/content/www/us/en/architecture/rack-scale-design-

overview.html
[63] R. Hou, T. Jiang, L. Zhang, P. Qi, J. Dong, H. Wang, et al.,

"Cost effective data center servers," in High Performance Computer

Architecture (HPCA2013), 2013 IEEE 19th International Symposium

on, 2013, pp. 179-187.
[64] A. Putnam, A. M. Caulfield, E. S. Chung, D. Chiou, K.

Constantinides, J. Demme, et al., "A reconfigurable fabric for

accelerating large-scale datacenter services," in Computer

Architecture (ISCA), 2014 ACM/IEEE 41st International Symposium

on, 2014, pp. 13-24.
[65] J. Dong, R. Hou, M. Huang, T. Jiang, B. Zhao ,S. A. McKee,

et al., "Venice: Exploring server architectures for effective resource

sharing," in High Performance Computer Architecture (HPCA), 2016

IEEE International Symposium on, 2016, pp. 507-518.
[66] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J.

Fowers, M. Haselman, et al., "A cloud-scale acceleration architecture,"

in Microarchitecture (MICRO), 2016 49th Annual IEEE/ACM

International Symposium on, 2016, pp. 1-13.

Maziar Goudarzi (S’00, M’11,

SM'16) is an Associate Professor at

the Department of Computer

Engineering, Sharif University of

Technology, Tehran, Iran. He

received the B.Sc., M.Sc., and Ph.D.

degrees in Computer Engineering

from Sharif University of Technology

in 1996, 1998, and 2005, respectively.

Before joining Sharif University of

Technology as a faculty member in

September 2009, he was a Research Associate Professor at

Kyushu University, Japan from 2006 to 2008, and then a

member of research staff at University College Cork, Ireland in

2009. His current research interests include architectures for

large-scale computing systems, green computing, hardware-

software co-design, and reconfigurable computing. Dr.

Goudarzi has won two best paper awards, published several

papers in reputable conferences and journals, and served as

member of technical program committees of a number of IEEE,

ACM, and IFIP conferences including ICCD, ASP-DAC,

ISQED, ASQED, EUC, and IEDEC among others.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/technology/system-design/solutions/design-solution-syncopated-engineering.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/technology/system-design/solutions/design-solution-syncopated-engineering.pdf
https://www.altera.com/content/dam/altera-www/global/en_US/pdfs/technology/system-design/solutions/design-solution-syncopated-engineering.pdf
http://www.openacc.org/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
https://newsroom.intel.com/news-releases/intel-completes-acquisition-of-altera/
http://www.labs.hpe.com/research/themachine/
http://www.intel.com/content/www/us/en/architecture/rack-scale-design-overview.html
http://www.intel.com/content/www/us/en/architecture/rack-scale-design-overview.html

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) < 18

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

