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Heterogeneous Architectures for Big Data  

Batch Processing in MapReduce Paradigm 

 

Abstract— The amount of digital data produced worldwide 

is exponentially growing. While the source of this data, 

collectively known as Big Data, varies from among mobile 

services to cyber physical systems and beyond, the invariant is 

their increasingly rapid growth for the foreseeable future. 

Immense incentives exist, from marketing campaigns to 

forensics and to research in social sciences, that motivate 

processing increasingly bigger data so as to extract information 

and knowledge so as to improve processes and benefits. 

Consequently, the need for more efficient computing systems 

tailored to such big data applications is increasingly intensified. 

Such custom architectures would expectedly embrace 

heterogeneity to better match each phase of the computation. In 

this paper we review state of the art as well as envisioned future 

large-scale computing architectures customized for batch 

processing of big data applications in the MapReduce 

paradigm. We also provide our view of current important trends 

relevant to such systems, and their impacts on future 

architectures and architectural features expected to address the 

needs of tomorrow big data processing in this paradigm. 

Index Terms—Big data, hardware accelerator, FPGA, 

MapReduce, Hadoop, data center, efficiency.  

I. INTRODUCTION 

Past few decades have constantly witnessed an increasingly 

deeper penetration of computers and various sensors into 

virtually all aspect of our daily lives. We collectively produce 

large amounts of data such that it is forecast [1] that the volume 

of digital data in 2020 will be 300 times that of 2005. Mining 

this data helps various entities to better accomplish their 

missions. This spans the growing interest in big data by 

companies for customer satisfaction to increase the profits, by 

health sector for better medicine and various healthcare 

services, by social scientists and politicians for predicting 

societal needs and trends, and even by police and security 

agencies for forensics. Processing this huge amounts of data is 

a daunting task that has motivated introduction of new 

programming paradigms, such as MapReduce [2], as well as 

computing infrastructures, such as Warehouse Scale Computers 

(WSC) [3].  

Paradigms for big data analysis can be broadly classified into 

batch processing and stream processing. As the names imply, 

the former is used when the data is already collected, such as 

the case of index generation for internet-wide search by Google, 

whereas the latter is typically used when the data is produced 

online and is meant to be processed on the fly, such as the case 

of analyzing the twits posted on Twitter. Here we focus on the 

former class and the architectures to improve its performance. 

MapReduce [2] introduced by Google is among the most widely 

used programming paradigms in this class, and Hadoop [4] is 

its open-source implementation that made it available to many 

other users outside that company. A number of other surveys 

exist on MapReduce [5-7], but their goal is mainly providing a 

deeper understanding of the MapReduce paradigm and its 

software implementations or a specific use of it [6]; to the best 

of our knowledge this is the first survey focusing on various 

architectures, spanning GPGPU, hardware-software, and 

hardware-only ones, proposed to improve performance and 

efficiency of MapReduce computation. 

MapReduce programming paradigm is based on concepts 

from functional programming and is designed to relieve the 

programmer from intricate details of data distribution, 

processing, and failure handling on the cluster; this is a major 

advantage compared to prior widespread parallel programming 

paradigms such as MPI [8]. MapReduce consists of four main 

phases (and two optional ones—see Section II.B) in general: 

distributing the data among the computing nodes in the cluster, 

running the Map function on each node to produce (key, value) 

pairs in parallel, shuffling these pairs to gather all pairs with the 

same key on a single machine, and finally running the Reduce 

function on each machine to combine values of same-key pairs 

into a single value. For cost efficiency, MapReduce was 

originally developed to run on clusters of commodity 

computers in WSCs, but today and future efficiency 

requirements necessitated by rapid increase of volumes and 

number of big data jobs, require more advanced features and 

innovation in the hardware architectures, as well as hardware-

aware software improvements, for efficient processing of big 

data.  

It is noteworthy that a number of extensions to the basic 

MapReduce paradigm or general big data batch processing also 

exist that are gaining popularity; this includes Spark [9] and 

also Pregel [10]. Spark is famous for its in-memory computing 

capability as well as other features such as support for iterative 

computations, execution of a flow graph of operations, and even 

streaming features. Pregel is specifically designed to parallelize 

graph processing algorithms intended to be applied on big 

graphs. Spark introduces Resilient Distributed Datasets (RDD) 
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as its fundamental data structure, and Pregel defines Supersteps 

as its unit of computation progress where operations are 

performed in and on vertices of the big graph distributed on 

worker nodes. Consequently, the execution model, including 

computation as well as communication models and patterns, in 

such paradigms is different from the original MapReduce, and 

hence, they need their own specific architectural analysis and 

improvements. In this paper, we focus on the original 

MapReduce paradigm, its execution model, and proposed 

custom architectures for it. 

The factors involved in efficient execution of MapReduce 

big data jobs can be broken down into the following elements: 

initial data distribution and management over several 

computers, network communication required during the shuffle 

phase, computation on the processing elements for Map and 

Reduce functions, memory footprint and memory access 

pattern of Map and Reduce functions on the processing nodes, 

and usage as well as access pattern to local storage on each 

node. In each, and all, of these factors improvements can be 

envisioned, especially when noting that special-purpose 

hardware can be designed and used here, even though it incurs 

higher costs than commodity hardware; the financial benefit as 

well as the demand scale is so high that justifies the higher non-

recurring engineering (NRE) costs and amortizes it over 

multiple jobs or runs. 

There are many fold other motivations for the use of 

hardware accelerators in today and future data centers as well. 

The end of Dennard scaling and the dawn of dark silicon era are 

serious concerns such that [11] predicts in 8nm processes more 

than 50% of chip area will remain unpowered, and hence, more 

energy-efficient approaches such as custom-made hardware 

accelerators are a must. Moreover, many data centers run a few 

dedicated workloads in large scales which consequently well 

lend themselves to more efficient (performance- as well as 

energy-wise) implementations by adding custom hardware.  

We briefly review the basics of MapReduce processing 

paradigm in Section II.A and classify the phases of its operation 

in Section II.B, of which we also take advantage to identify 

open challenges and  opportunities available for improvement. 

We review architectures and proposed techniques for more 

efficient MapReduce computing in Section III for four major 

architectural choices in widespread use today: clusters of 

computers, multicore and many-core architectures, GPGPU-

accelerated architectures, and FPGA/hardware-accelerated 

ones. A few of the proposed techniques are specifically 

designed for certain use cases and application domains. These 

approaches are briefly reviewed in Section IV.  

MapReduce was initially introduced for use on clusters of 

commodity computers, but as mentioned above, dark silicon era 

and the ever increasing need for higher efficiency has also 

necessitated the move toward hardware-software 

implementations. As we review in this paper, most proposed 

techniques still need manual and labor-intensive coding and 

tuning for a hardware-software co-designed MapReduce 

processing. This imposes additional burdens to the 

user/programmer and distracts her from focusing on her main 

job: i.e., developing algorithms for processing the big data. This 

clarifies the need for programming frameworks and 

compilation/synthesis tools to seamlessly integrate hardware 

and software components for MapReduce processing. 

Currently proposed such tools and frameworks are discussed in 

Section V. 

The surveyed custom architectures are classified into four 

categories in Section VI based on their scope and major 

optimization approaches. This helps to better understand the 

state of the art in this area, and more importantly, to identify 

gaps for further research and development. 

At the end of each section, we briefly mention our view of 

open challenges and avenues for further research in that area. In 

addition, a number of emerging technologies and industrial 

actions are observed on the horizon that can influence the future 

of this track of computing paradigm. In Section VI, we provide 

our view of these items, along with their effects and the new 

opportunities as well as challenges introduced by them 

concerning the research community. This section also explains 

our view and position in research toward more efficient custom 

computing systems for future big data processing in the 

MapReduce paradigm.  

Finally the paper is summarized and concluded in Section 

VIII. 

II. BIG DATA BATCH PROCESSING BY MAPREDUCE 

Gartner [12] defines: “Big data is high-volume, high-velocity 

and/or high-variety information assets that demand cost-

effective, innovative forms of information processing that 

enable enhanced insight, decision making, and process 

automation.” In a similar definition [13], “IBM data scientists 

break big data into four dimensions: volume, variety, velocity 

and veracity”, where volume states that the scale of data is big, 

variety reflects that data comes in different forms, velocity 

corresponds to streaming data which is steadily produced at 

high speeds, and veracity represents the uncertainty of data. In 

some cases, such as index generation from documents for 

internet-scale search by Google or email search by Yahoo, the 

big data job involves batch processing of large volumes of data 

already collected or stored. In 2004, researchers at Google 

introduced MapReduce [2] to address issues of programming at 

datacenter-scale and Google proved it successful in practice by 

implementing it at scale in its huge data centers. In this section 

MapReduce model of computation is briefly reviewed.  

A. Introduction to MapReduce  

MapReduce borrows ideas from functional programming by 

introducing two functions: map and reduce. The map function 

is to produce (key, value) pairs from input data, and the reduce 

function is to reduce all same-key pairs into a single pair with 

that key and a value computed from all values of the pairs. Big 

data jobs in principle provide large data-level parallelism since 

they typically repeat a given processing on every data item input 

to them. Consequently, the map as well as reduce functions 

should in principle provide high levels of parallelism that the 

MapReduce implementation frameworks, such as Hadoop [4], 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <           3 

 

take care of distributing it over available processing nodes, and 

also handle all failures automatically. The programmer is only 

responsible to provide the map and reduce functions; the rest is 

done by the MapReduce runtime.  

WordCount is a famous example to show MapReduce model 

of computation. The map and reduce functions are [2]: 
map(String key, String value):  

  // key: document name  

  // value: document contents  

  for each word w in value:  

     EmitIntermediate(w, "1"); 

 

reduce(String key, Iterator values):  

  // key: a word  

  // values: a list of counts  

  int result = 0;  

  for each v in values:  

     result += ParseInt(v); 

  Emit(AsString(result)); 

The map function generates a (w, “1”) pair for each word in 

the given document(s), and the reduce function sums up the 

values for all pairs with the same word w as key. The 

MapReduce runtime distributes data among available compute 

nodes already setup in configuration files to participate in the 

processing, sends the map and reduce functions to appropriate 

nodes (in other words, the code is sent to where the data resides, 

instead of the conventional vice versa), transfers (key, value) 

intermediate data among the nodes where needed, and collects 

the final, possibly merged, output from the compute nodes. 

Next subsection describes each phase of a MapReduce 

computation. 

B. Classification of MapReduce Operation Phases 

A MapReduce job typically involves 6 phases, with two of 

them being optional: 

1. Initial data distribution: In this phase, the data to be 

processed is distributed among processing nodes so as to 

benefit from data-level parallelism inherently available 

in the MapReduce processing paradigm. 

2. Map function: The Map function is executed on each 

data block stored in each processing node. This is one of 

the two major data-parallel tasks involved in 

MapReduce paradigm. 

3. Data combine: In this optional phase, (key, value) pairs 

produced on each processing node during previous 

phase are combined (using the same Reduce function as 

below) on the same machine so that each node has only 

one pair per key. 

4. Data shuffle: the (key, value) pairs with the same key, 

but residing on different processing nodes, need to be 

moved to a single node so as to apply the Reduce 

function on them. This is done in the data shuffle phase. 

5. Reduce function: all pairs with the same key are now on 

a single processing node. The Reduce function is now 

applied to each set so as to obtain the final set of (key, 

value) pairs with unique keys. Depending on the big data 

job in hand, the reduce phase may not be needed and can 

be left empty. 

6. Merge: This final optional phase sorts the pairs based on 

the key, and may apply a Merge function to produce an 

output file representing the outcome of the big data 

processing without necessarily reflecting the (key, 

value) pairs to the user. 

III. ARCHITECTURES FOR MAPREDUCE PROCESSING 

MapReduce was originally developed for clusters of 

commodity computers Google employed in their data centers, 

but it has since gained widespread use for other big data 

applications and has been ported and customized to other 

computing platforms. We categorize and briefly review 

MapReduce implementations proposed for these computing 

platforms in this section, especially putting more emphasis on 

the hardware-software platforms. 

A. A Classification of Studied Architectures 

We divide the architectures for MapReduce implementation 

into four categories as shown in Fig. 1. The conventional case 

is the heterogeneous clusters often found in data centers and 

computing farms. The second class we study comprises many-

core and multicore processors now common in most desktop 

and laptop computers. Availability of physically shared caches 

and memories as well as closely coupled cores in such 

architectures provides opportunities for innovations that 

warrant a separate section to study them. The third class covers 

GPGPU that is obviously an appealing choice for MapReduce 

implementation due to the vast parallelism visible in this model 

of computation. Finally, taking advantage of hardware 

accelerators opens up a large class of other possibilities that we 

survey in the last class. We break this class further down by 

separating the architectures that accelerate solely the map 

function, only the reduce function, the operations commonly 

used in either functions, and finally full-hardware or hardware-

software implementations of the entire model of computation. 

Below subsections provide further details per class. 

 
Fig. 1 A classification of architectures used to implement MapReduce. 

B. Processing on Clusters 

MapReduce was originally developed for clusters of 

computers, and hence, no surprise that its dominant use remains 

there. The open source Apache Hadoop [4] implementation of 

MapReduce played a significant role in its widespread adoption 

by academia and industry. Tuning various parameters 
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influential to Hadoop performance, including hardware as well 

as software tuning techniques spanning BIOS, OS, JVM, and 

Hadoop configuration parameters [14], is a common way of 

improving performance on clusters. Hadoop has a large set of 

configuration parameters which are typically set manually, 

resulting in suboptimal performance. Auto-tuning these 

parameters [15] has an important influence on total system 

performance.  Hadoop file system (HDFS), the distributed file 

system used in Hadoop implementation, is implemented in Java 

for portability and can be improved by trading off portability 

and performance [16]. Other system-level optimizations, 

spanning map- and reduce-task binding and scheduling such as 

[17], communication-aware load balancing and scheduling of 

map-tasks as well as predictive load-balancing of reduce-tasks 

on heterogeneous clusters [18], performance estimation 

enhancements such as [19], memory optimizations such as [20], 

and multi-job scheduling such as [21] are also important 

improvement opportunities, but remain out of scope of this 

paper. 

C. Processing on Multicore and Many-core processors 

There are a number of software API and runtime systems that 

implement MapReduce for systems other than clusters. 

Although these are mainly software API and runtime systems, 

we include them here since some of them employ architecture-

specific optimizations as well as some functional characteristics 

of MapReduce applications that can be employed in other 

implementations as well. 

Phoenix [22, 23] implements a runtime system and user API 

in C/C++ to allow the user to develop and run MapReduce 

computations on symmetric multiprocessors (SMP) as well as 

many-core or CMP architectures. The developer provides the 

Map and Reduce functions, and in addition, can optionally 

provide a splitter and a partitioner function; these functions 

respectively split the input data among Map tasks, and partition 

the intermediate data among Reduce tasks to potentially take 

advantage of the developer’s application-specific knowledge of 

the distribution of values. The default splitter function of 

Phoenix sets the size of each data block (the unit to be processed 

by each Map task) such that it fits in the L1 cache. A number of 

further improvements are also proposed in [23] but not 

evaluated. This includes a user-specific prefetch engine to bring 

data to L2 cache in parallel with processing current ones, hints 

on cache replacements, and hardware compression-

decompression of intermediate data. Fig. 2 visualizes the 

operations in Phoenix: the key data structure is the Intermediate 

Buffer in the middle of the figure where each Map task stores 

its produced values in its dedicated row in the column 

designated by a hash function applied to the corresponding key; 

Reduce tasks then aggregate the values column-wise and write 

the outcome to the Final Buffer data structure. This 

organization is designed to remove memory address conflicts 

among concurrent workers (i.e., cores). 

Compared to sequential code, Phoenix demonstrates almost 

linear speedup in most cases, and even superlinear speedups in 

cases such as MatrixMultiply due to caching effects. The 

obtained speedup is comparable to that achievable by manually-

tuned non-MapReduce PThread implementations [23]. 

Specifically, for the applications that well fit MapReduce 

model, e.g. word-count, MatrixMultiply and ReverseIndex, 

Phoenix outperforms PThread implementation. 

 
Fig. 2. Conceptual view of Phoenix implementation of MapReduce. Map 

tasks save their outputs to rows of Intermediate Buffer, where Reduce tasks 

aggregate values stored in columns. [24] 

In cluster-based MapReduce implementations, first-order 

performance bottlenecks are typically network and storage 

traffic. In shared memory multi- and many-core systems, where 

none of these conventional bottlenecks exist, application-

specific details such as key-value data storage, memory 

conflict, and framework overheads become primary 

performance limiters. To eliminate some of these inefficiencies, 

Tiled-MapReduce [24] executes a group of Map and Combine 

tasks together for lower resource usage and higher locality. 

MATE [25] takes a further step by proposing a modification of 

the MapReduce paradigm and requiring the user to provide 

combined Map+Reduce functions. These modifications result 

in up to 3.5x speedup compared to Phoenix. 

To eliminate same above inefficiencies, Phoenix++ in [22] 

rewrites Phoenix with below major improvements which in 

total brings 4.7x performance boost: (i) three classes of user-

selectable data structures are provided to store key-value 

pairs—see below, (ii) combiner is run after each Map task, (iii) 

final sort is optional, and (iv) calls to the Map and Combine 

functions are inlined by C++ tweaks for higher efficiency. 

Regarding efficient data structures to store key-value pairs, 

an analysis of workloads is presented in [22] that can help other 

MapReduce implementations as well: MapReduce workloads 

are more deeply analyzed in [22] and are classified based on 3 

characteristics as illustrated in Fig. 3:  

(i) Map task to intermediate key distribution:  

*:* case: each map task may produce any key where the 

number of keys is not known before execution. Word-count is 

a good example of such case. 

*:k case: each map task may produce a key from only among 

k fixed known values. Histogram application represents one 

such case. 

1:1 case: each map task produces only one unique key. 

Matrix multiply, where each map task produces one element of 

the product matrix, falls into this category. 

(ii) number of values per key. 

(iii) computation load per task. 
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Fig. 3. Workload characteristics in terms of key-value pairs and per task 

computation load [22]. 

The authors in [26] state that the data structure used in 

Phoenix, a fix-sized hash table, covered the general case shown 

in gray in Fig. 3, but more efficient data structures can reduce 

hashing, resizing, and synchronization overheads. They 

introduce two workload-tailorable data structures and the user 

of the framework can choose and adapt from among these 

choices based on her knowledge and insight on the application: 

the previously fix-sized hash-table can now be resized per case, 

a k element vector is introduce for *:k cases, and a common 

array needing no synchronization among reduce tasks is 

introduced for 1:1 case of intermediate key distribution. Where 

appropriate, the user can also introduce her own storage class 

in C++, the language Phoenix++ is developed in. Phoenix++ 

and its prior versions are available online as open source 

software at [27]. 

D. Acceleration by GPGPU 

Although GPGPU can also be viewed as a many-core 

architecture, its specific properties in terms of architecture as 

well as programming warrants a separate subsection to review 

as another platform for MapReduce processing. 

MapReduce inherently provides lots of data-parallel tasks, 

and hence at the first glance, it seems to well fit the massive 

number of cores available in GPUs. The major barrier to benefit 

from this parallelism is the synchronization required among 

Reduce tasks as well as the data movements required between 

CPU and GPU memories.  

Mars [28] flow of operations to implement MapReduce on 

GPU is shown in Fig. 4 where upper parts are run on CPU and 

lower parts on the GPU. In the input data preparation step, the 

CPU first reads the input data—since GPU has no access to disk 

files—and splits it into equally sized chunks, and copies them 

to GPU memory to be processed in parallel by GPU threads 

implementing Map tasks. The intermediate (key, value) pairs 

are optionally sorted on GPU and then splitting decisions are 

made on CPU—see below—for Reduce tasks. Reduce and 

Merge phases are then run on GPU cores, and finally output 

results are copied back to CPU memory. Since GPU memory 

allows only static allocation and non-atomic writes, the Map 

function is implemented in two stages to avoid access conflicts 

among Map tasks: in the first stage, only sizes of outputs are 

counted by a prefix-sum operation (Map count box in Fig. 4) 

but actual outputs are only produced in the second stage after 

Mars scheduler uses information of the first stage to allocate 

memory for intermediate data and to assign non-overlapping 

memories to Map tasks to be run as GPU threads. Reduce tasks 

are similarly run in two stages for the same reason. Although in 

the worst case, computations are doubled by this scheme, the 

overhead is actually application-dependent; e.g. in the Matrix-

Multiply case, the counting stage simply returns the size 

needing no computation [29].  

 

 
Fig. 4. Workflow of MapReduce processing in Mars [29] project. 

A number of other optimizations are also applied in Mars: 

Different threads in a group process consecutive items of the 

input data at each step so that memory accesses are coalesced, 

and hence, memory bandwidth is better utilized. Built-in vector 

data types are also used instead of singular data types when 

accessing device memory for the same above goal. The number 

of threads per group is decided by iteratively using the CUDA 

offline calculator [30] for various numbers of threads, and is set 

such that GPU occupancy and registers utilization is 

sufficiently high. Index directories are also used so as to avoid 

moving (key, value) pairs around when sorting or performing 

other relevant operations. Specially designed string 

manipulation library for GPU, and hashing the keys while using 

a two-stage comparison technique to reduce the comparison 

overhead are among other optimizations reported in Mars [28]. 

Experimental evaluation shows up to 16x speedup for G80 GPU 

with 16 multiprocessors compared to Phoenix running on Intel 

Core2 Quad processor. 

There are a number of other ports or APIs to incorporate 

GPUs in MapReduce [4, 31, 32]; some of them restrict the 

general MapReduce framework to special cases for more 

efficient implementation [32], or deal mainly with multi-

GPU/CPU implementations rather than GPU-specific 

architectures which is of interest in this paper. The proposals 

dealing with programming frameworks for heterogeneous 
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systems spanning CPUs, GPUs, and Hardware are discussed in 

Section V. 

Challenges and opportunities: The two-stage tactic 

employed by Mars, for memory allocation and computation, is 

too general; ideas similar to the application classes as in 

Phoenix++ can be employed for more efficient data structures 

and allocation. Other ideas, such as combined Map+Reduce 

function, described in multicore/many-core MapReduce section 

above, can also be customized to the GPU case. Storage and 

network, which have traditionally been the bottlenecks of 

MapReduce on clusters, are not involved in MapReduce on 

GPU. Major bottlenecks here are memory structure and 

allocation, and conflicts on accessing memory by parallel tasks 

especially when the model of computation necessitates it, such 

as in the reduce and merge tasks. Efficient mechanisms to tackle 

above bottlenecks, in software as well as in hardware, are 

needed to take the best advantage from GPU massively parallel 

cores for MapReduce computation. 

E. Acceleration by Custom Hardware 

A survey of hardware acceleration methods for data centers 

is provided in [33]. The survey spans instruction-set extensions 

such as SSE and AVX, to GPUs, FPGAs, and custom-

accelerators for various applications in data centers including 

database engines, MapReduce processing, and graph 

applications. More specifically, [33] classifies current major 

open problems for integration of accelerators to existing 

systems as below: (i) host-accelerator and accelerator-

accelerator interconnection, (ii) memory hierarchy for the 

accelerator, and (iii) programming models and management of 

the accelerator. Automatic accelerator design from higher level 

languages (i.e., HLS: High Level Synthesis) is also considered 

important in [33] since RTL (Register Transfer Level) design is 

time-consuming and hard, especially for domain experts. Thus, 

HLS is becoming important again when many custom 

accelerators must be designed for a reconfigurable fabric to be 

used at large scale in data center. The above factors are equally 

important for MapReduce hardware-software implementations 

as well, but to further explore current practice and shed light on 

gaps for co-design of MapReduce model of computation, in this 

section we focus on the internal architectures designed for such 

MapReduce implementations. 

Accelerating the Map function: A study on the performance 

bottlenecks of Hadoop implementation of MapReduce is 

performed in [34] on TeraSort and Grep benchmarks. The 

authors state that an implicit assumption in original MapReduce 

was the use of commodity hardware (such as hard disk and 

routers), and hence, their performance bottleneck was 

overcome by adding commodity servers in higher volumes. 

They continue by showing that current high speed solid-state 

disks and network devices are not fully utilized by today 

Hadoop benchmarks, and conclude that CPU has once again 

become the performance bottleneck and the need for 

accelerators is evident again. They identify and categorize the 

following three bottlenecks to accelerate in hardware: (i) key-

value pair generation and sort by key in the Map tasks, 

(ii) merging sorted files in Map and Reduce tasks, and 

(iii) numerical calculations in Map and Reduce tasks. Their 

solution for the first category above, as shown in Fig. 5, is the 

use of a multi-core board connected to the Xeon-based host over 

PCIe bus; the board on the lower part of the figure receives data 

from the host computer by DMA over PCIe bus, dispatches 

them among the cores, and returns the result back to the host 

where final combine is done. The 36-core board achieves much 

better performance than the standalone host which according to 

the authors, its lower performance is mainly due to Java 

overhead since the multicore board and the host have almost the 

same SPECint benchmark score. In terms of energy efficiency, 

however, the multicore board is much better: it consumes only 

35W compared to 130W by the host. 

 

 
Fig. 5. Overview of the multicore-hardware accelerated system in [34]. 

Accelerating commonly used computations: An interesting 

point from [34] is that building accelerators for common 

application-independent operations involved in Hadoop, such 

as sort and merge operations, is an effective way that benefits 

all MapReduce jobs. Similarly, [35] implements simple Reduce 

functions—merely accumulation or averaging—in hardware to 

contribute to all jobs that use such Reduce functions. 

Intel QuickAssist technology can also be used [36] to 

accelerate compression and decompression parts which are 

optional parts in Hadoop computation mainly used to reduce 

network and data storage overheads. QuickAssist software API 

redirects the compress/decompress calls to the hardware-

accelerated units embedded in recent Intel processors. FPGA-

based compression accelerators can also be connected over 

PCIe slot to Hadoop nodes for the same purpose above: to 

compress data before network transmissions so as to reduce 

network traffic, and hence, enhance performance [37]. It is 

noteworthy that general compression/decompression is a 

common solution applicable to most network-based paradigms, 

and not MapReduce-specific. 

Accelerating the Reduce function: An accelerator for 

Reducers is proposed in [38] and implemented in logic blocks 

of Xilinx Zynq FPSoC to relieve the main processors (i.e., the 

ARM processors embedded in the FPGA chip) from Reduce 
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tasks. A simplified view of the proposed structure is shown in 

Fig. 6; the upper part of the figure shows processor cores that 

perform the map functions and send the (key, value) pairs to the 

lower part where the reduce function is implemented in 

hardware on the FPGA logic blocks. A memory structure for 

efficient key-value storage and key-search is proposed [35] and 

simple Reduce functions (i.e. accumulation and averaging) are 

implemented in hardware—see the small gray boxes in the 

figure. As the figure shows, current value for each processed 

key is stored in the internal data structure. Two hardware-

implemented hash chains are used to find the corresponding 

row for each key. Then, the stored key is compared to the new 

key to see if there is a hit; if neither of the hash chains results in 

a hit, the new key is stored in a queue (not shown in the figure). 

In case of a hit, the newly received value is combined with the 

previous one by the gray adder boxes (i.e. the hardware-

implemented reduce function) and are stored back in the data 

structure. The number and the size of keys storage can be 

configured based on the application needs.  Speedups up to 2.3x 

are reported [38]. In another work [39] on the same thread, 

hardware implementation of map tasks is also generated using 

HLS [40] and thus the whole system is implemented in 

hardware, reporting 2 orders of magnitude energy reduction 

compared to CPU-only implementation. Note that [39] belongs 

to next category below (all-hardware) and is mentioned here to 

illustrate the evolution of the authors’ works. 

 

 
Fig. 6. A simplified view of the accelerator block diagram for simple 

Reduce functions proposed in [38]. 

All-hardware MapReduce: FPMR [41] provides a general 

architecture on FPGA that realizes an almost complete 

MapReduce system in hardware: the architecture contains 

mapper and reducer modules as well as on-chip scheduler to 

assign tasks to the mappers and reducers, and also a data 

controller module to manage host-FPGA data transmission as 

well as passing initial data to the mappers, and storing final data 

from reducers (or possibly the merger whenever required). 

FPGA board is connected over a PCIe bus to the host that 

implements less time consuming tasks. Their implementation 

of RankBoost data mining algorithm achieves above 31x 

speedup against a software implementation. A major goal of the 

design is generality and reusability for other algorithms, and 

this is reflected in the application-independent design of FPMR 

architecture shown in Fig. 7. Replicated hardware modules are 

added for mapper and reducer tasks, shown in the middle lower 

part of the FPGA box in the figure. The Data Controller and 

Processor Scheduler boxes manage proper data dispatching and 

module activation of mapper and reducer modules. Local 

memory on the FPGA is used for storing intermediate key-value 

pairs.  The user must design the mapper and reducer hardware 

internals, and may need to improve memory structure per 

application needs (in case of RankBoost implementation in 

[41], this includes: dual global memory banks, double 

buffering, and also a mechanism to reduce bandwidth pressure 

by avoiding redundant data transmission). Parallel mappers and 

reducers contribute to the decrease in execution time, but 

pipelining is not employed.  

 
Fig. 7. FPMR architecture to implement on FPGA [41] 

The work in [39] is another work in this category that we 

discussed in previous section along with other works of the 

authors—see Fig. 6 and its corresponding text. 

A more recent all-hardware MapReduce implementation is 

Melia [42] where OpenCL is used as a vehicle to implement 

user-provided map and reduce functions directly on FPGA. 

This relieves the end-user from intricate details of FPGA 

hardware design and hardware description languages, and 

consequently, increases her productivity by allowing her to 

focus on describing the target computation in the familiar 

MapReduce paradigm. Furthermore, [42] demonstrates nearly 

4 times higher energy efficiency (performance per Watt) for 

FPGA implementation of MapReduce over CPU and GPU 

implementations.  
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Melia is provided as a software library that the designer uses, 

along with her map and reduce functions in C, to describe her 

desired functionality. Then, implementation parameters such as 

local (on-FPGA) memory usage, loop unrolling, and 

map/reduce pipeline replications are determined by a number 

of guidelines and calculations. Finally, the design is compiled 

and executed on the FPGA using OpenCL toolkit. The map and 

reduce phases are non-overlapping, which suggests either 

partial reconfiguration to occupy less FPGA space, or multi-job 

MapReduce computation to increase the utilization of FPGA 

resources, although none of them are implemented in [42].  

Raising the abstraction level of system model usually results 

in lower performance of the system implementation. To 

mitigate this, [42] applies a number of FPGA-specific 

optimizations: Memory optimizations include memory 

coalescing and use of private memories, while computation 

optimizations include loop unrolling and pipeline replication. 

As described above, Melia framework helps the designer to 

tune above parameters, and [42] reports up to nearly 44x 

performance boost over the non-optimized baseline FPGA 

design obtained by these tunings and optimizations. 

Hardware-software co-designed MapReduce: A co-design 

approach is proposed in [43] for acceleration as well as for 

energy efficiency of MapReduce jobs by implementing only the 

time-consuming parts of the application in hardware. As Fig. 8 

shows, a number of accelerators (Xilinx Zynq field-

programmable system-on-chip, or FPSoC, boards) are 

connected as slaves over a PCIe bus to an x86 processor (Xeon 

and Atom processors) as the master node. Four data mining 

benchmarks, namely K-means, KNN, SVM, and Naïve Bayes, 

are profiled to identify time-consuming functions which are 

then synthesized into hardware by Xilinx Vivado HLS tool (we 

are confused whether the profiled applications were originally 

merely core functions or fully implemented MapReduce 

applications in C, since the paper mentions C-based source 

codes [43]). The system is assumed to send the big data from 

the master node to the slave boards over PCIe and collect the 

results back; slave nodes are to process time-consuming 

functions of the algorithm in hardware on FPGA blocks. 

Analytical models are then developed based on Amdahl’s law 

as well as the overheads corresponding to all the 

communication links in Fig. 8 so as to estimate potential 

speedups if the co-designed system were implemented in 

practice. Estimated end-to-end speedups up to 2.7x, total power 

ratios of above 2x, and EDP ratios of above 15x, are reported 

[43]. Changing the master node from Xeon to Atom processor 

obviously affects power and EDP ratios but not the achievable 

speedup. Although the case studies are all data mining 

benchmarks, but the framework is general enough to be fairly 

easily adapted to other applications as well. The HLS tool 

provides some pipelining as well but its effect, and possible 

improvements of it, are not analyzed in depth and are potential 

paths for enhancement. The speedup is mainly obtained by 

hardware implementation of software functions, and replicating 

it as multiple workers.  

 

 
Fig. 8. HW-SW co-design architecture in [43] based on FPSoC boards.  

Axel [44] is another heterogeneous platform encompassing 

CPU, GPU, and FPGA. Authors in [44] demonstrate the use of 

this platform to accelerate MapReduce processing. The Axel 

cluster is a Non-uniform-Node Uniform-System (NNUS) 

heterogeneous system as shown in Fig. 9; each node consists of 

a processor, a GPU and an FPGA along with their 

corresponding memories (not shown in the figure) and a shared 

PCIe bus and a network I/O system for conventional inter-node 

communication over Gigabit Ethernet. Intra-node 

communication is provided by the PCIe bus, whereas two inter-

node communication media are provided: general Gigabit 

Ethernet for conventional networking, as well as Infiniband 

high-speed links through FPGAs for direct higher speed FPGA-

to-FPGA communication. 

 
Fig. 9. NNUS architecture of Axel [44] heterogeneous cluster. 

For MapReduce processing, two implementation paradigms 

are envisioned as shown in Fig. 10 and Fig. 11. The former uses 

FPGAs for the Reduce functions where high-speed low-latency 

direct link among FPGAs are used, whereas the latter employs 

lower-speed CPUs and the Ethernet channels among them. The 

framework provides a general flow for employing the 

heterogeneous cluster, but details of GPU and FPGA 

implementations are left to the user to provide. The authors use 
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the latter above approach for an N-body simulation and report 

22.7x down to 4.4x speedups respectively for 1-node and 16-

node clusters; they put the non-linear speedup and its 

degradation to the all-to-all communication needed due to the 

nature of the N-body simulation application. 

 

 
Fig. 10. Reduce-by-FPGA paradigm in Axel [44]. 

 

 
Fig. 11. Reduce-by-CPU paradigm in Axel [44]. 

Authors in [45] provide MapReduce API in C and use the 

architecture in Fig. 12 to distribute data among worker nodes 

implemented in FPGA, GPU, or even conventional CPU. This 

architecture is viewed as a custom computing machine for the 

MapReduce paradigm. The scheduler distributes data among 

worker nodes which can be FPGA, GPU, or even multicore 

boards. For each worker node, e.g. for the FPGA one, a data 

distributor distributes its assigned data among instances of the 

Map function on the FPGA, and returns the Reduce function 

outputs back to the system, all in a pipelined manner. For the 

FPGA part of this hardware-software MapReduce system, the 

authors manually (claimed to be easily automatable) convert the 

code to pipelined Handle-C code which is then synthesized into 

FPGA bitstream. Speedups up to 30x are reported for simple 

benchmarks and 16 pipeline instances implemented in the 

FPGA. 

 
Fig. 12. Architecture of the co-designed MapReduce custom computing 

machine in [45]. 

A number of other proposals also exist for co-designed 

MapReduce with goals other than sole performance and power. 

Authors in [46] integrate FPGA with commodity hardware 

(processor) and reconfigure the FPGA upon failures for fault-

tolerance while the data is redirected to commodity hardware 

during FPGA unavailability. Advantages of using OpenCL 

framework is demonstrated in design showcases in [47] where 

OpenCL is used to describe a variety of computation structures, 

including static as well as streaming pipeline of MapReduce 

computation, which is then implemented on FPGA boards 

connected to a host micro-server with Atom processor. Large 

power savings, in addition to performance gains, are key 

achievements demonstrated in practice in this work [47]. 

Challenges and opportunities: Although pipelining has been 

used in a few of researches we reviewed above, there is still 

room to better utilize its advantages especially since the 

massive identical computations in the map and reduce functions 

well lend themselves to pipelined execution and the high 

throughput it can provide. Data distribution and intermediate-

data shuffle phases are the other parts that need better hardware 

support and application-specific architectures. Reconfiguration 

capabilities of FPGAs is also not well taken advantage of up to 

now. For example, imagine an architecture with multiple 

pipelines for map and reduce functions where the input data and 

the intermediate ones are respectively streamed to each map and 

reduce pipeline; the number of map and reduce pipelines can be 

dynamically adjusted, by FPGA (partial) reconfiguration, upon 

production of intermediate data where the number of pairs per 

key is partially known. Recent move toward closely coupled 

FPGA-CPU chips—see Section VII.A—can make room for 

novel co-designed proposals with higher communication 

efficiency and easier computation migration, both online as 

well as offline, between the CPU and the FPGA. 
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F. Summary of Custom Architectures 

TABLE 1 summarizes major features of the custom 

architectures surveyed above. The stages of MapReduce that 

are the main focus of each work for acceleration, are given in 

the second column of the table. Third column gives the target 

platform of the work, and the fourth column gives more details 

of it in terms of number and type of the considered nodes. The 

interface employed between the accelerator and the CPU is 

given in the next column, and finally the last column describes 

the language(s) used to model the function implemented in the 

accelerator. Where important, the high level language (e.g. C) 

used by the programmer, as well as the hardware description 

language (e.g. Handle-C) used for FPGA design are both 

mentioned for emphasis.  

Lack of a commonly approved benchmark suit and 

comparison environment is a major obstacle to quantitatively 

compare the approaches and their outcomes, and hence, one has 

to suffice to subjective descriptions and comparisons. Major 

conclusions from the above survey and the summary provided 

in below table are discussed in Challenges and Opportunities 

subsections above. A further classification of our envisioned 

approaches are given in Section VI; it provides a big picture of 

current state of the art, and helps identify missing parts for 

further work.  

TABLE 1- A Summarized Comparison of Major Hardware-Acceleration 
Techniques for MapReduce. 

Proposal 
Phases 

accelerated 
Platform 

Single/ 

multi-node 

CPU-

accelerator 

interface 

Programm-

ing model 

[34] map 

server + 

multicore 

board 

Single node PCIe Java 

[35] 

common 

functions for 

reduce 

FPSoC 
Single 

FPSoC 

On-chip ARM  

AXI bus 
HDL 

[36] 
compress-

decomp. 

intel new 

processors 
Multi-node 

internal to  

core 
Java 

[37] 
compress-

decomp. 

server + 

FPGA 
Single node PCIe HDL 

[38] reduce FPSoC 
Single 

FPSoC 

On-chip ARM  

AXI bus 
HDL 

[39] all FPSoC 
Single 

FPSoC 

On-chip ARM  

AXI bus 
HLS 

[41] 
(virtually) 

all 

server + 

FPGA 
Single node PCIe HDL 

[42] all FPGA 
Single 

FPGA 

Custom  

on-chip 

C, 

OpenCL 

[43] 
benchmark-

dependent 

server + 

FPSoC 

Multi-

FPSoC 
PCIe HLS 

[44] 
map or 

reduce 

server + 

GPU+FPGA 
Multi-node 

Ethernet + 

Infiniband 
HDL 

[45] 
(virtually) 

all 

server + 

GPU+FPGA 
Multi-node Custom 

C, HDL 

(Handle-C) 

[47] all FPGA Single node Custom OpenCL 

 

IV. APPLICATION-SPECIFIC ARCHITECTURES  

FOR MAPREDUCE BIG DATA PROCESSING 

A number of other architectures focus on a specific 

application or application domain and propose acceleration 

techniques based on characteristics of those applications. 

Reference [33] briefly reviews a number of such proposals for 

general data center workloads. We review application-specific 

accelerators for MapReduce workloads in this section. 

A. Simple/Core Functions 

An FIR filter in MapReduce is implemented in [48] where 

Xilinx Zynq-based ZedBoards are used as slave nodes 

connected by an Ethernet switch to a Core-i5 master node. The 

Zynq FPGA on ZedBoard integrates dual ARM Cortex-A9 

processors clocked at 667MHz with Artix-7 FPGA blocks. The 

ARM processors run Xillinux OS on which Hadoop framework 

is run, and the FPGA blocks realize hardware implementation 

of the FIR filter in a pipelined design running at 100MHz. They 

report speedup of over 3.3x compared to a conventional (non-

MapReduce) optimized all-software FIR implementation on a 

single ARM processor, and 20% higher speed compared to the 

same ARM-based Hadoop cluster without the hardware 

accelerators. 

B. Graph Applications 

While there are proposals for designing hardware templates 

for general graph applications [33], as well as MapReduce 

implementation of graph processing algorithms such as [49], we 

are unaware of hardware implementation of MapReduce 

applications of graph processing algorithms. Given wide usage 

of graph algorithms in largescale big data processing, e.g. in 

social network analyses, acceleration by hardware for such 

applications, as well as related models of computation such as 

Pregel [10], seems a promising path to follow for further 

research. 

C. Data Mining Applications 

Authors in [50] connect multiple computers each equipped 

with an FPGA board for faster computation of k-means 

algorithm. Each iteration of k-means is implemented as a 

MapReduce job where distance calculation of data points to 

current centroids are done by the Map tasks, and calculation of 

new centroids is left to the Reduce tasks. Each FPGA board is 

connected to its computer via PCIe slot, and all boards are also 

directly connected by Ethernet switches as in Fig. 13.  A key 

point here is the use of inter-FPGA network, as shown in the 

figure, for faster direct communication among FPGAs to 

eliminate the overhead of communication through CPUs and 

general purpose local network.  The host CPU in each compute 

node merely configures the FPGA and marshals the data 

to/from it. DMA is used to transfer data to/from each FPGA 

where either the map or the reduce function is implemented; the 

(key, value) pairs are passed from mapper FPGAs to reducer 

FPGA by the Ethernet switch. They report to obtain speedups 

up to over 16x compared to optimized Mahout software-only 

implementation. The bottleneck was host-to-FPGA 

communication channel as per [50]. 
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Fig. 13. Overview of the accelerator-powered cluster in [50]. 

FPMR [41] is the other work that uses FPGA to improve or 

analyze possible speedup of data mining MapReduce 

applications (RankBoost, SVM, and PageRank)—see Section 

III.E for further details. It is noteworthy that although all the 

considered benchmarks are data mining applications, the 

proposed structure is general and nothing is application-

specific. 

Co-design architecture of [43] is also analyzed for a number 

of data mining benchmarks, but again no specific property of 

such applications is taken advantage of, and the structure is 

applicable to other general big data applications as well—see 

Section III.E and Fig. 8. 

D. Genomics 

Many big data applications exist in the field of genomics 

which could potentially benefit from MapReduce and 

accelerator implementation. Next generation genome 

sequencing with short or long reads is among such well known 

applications. Authors in [51] distribute the reads among 

computing nodes each responsible to identify potential places 

in the reference genome to align the read. As the Map function, 

the computing nodes use FPGA accelerators for the string 

matching problem, and produce (key, value) pairs each of 

which represents the index of one occurrence of the read in the 

reference genome. The pairs are shuffled as usual and the 

Reduce tasks combine them to write all occurrences of the read 

in an HBase table which is then processed to produce the final 

sequenced genome. Their experimental results report 2.73x 

speedup for each hardware accelerator occupying less than 1% 

of a Virtex-5 LX110T FPGA. 

Challenges and opportunities: Ever increasing significance 

of application domains such as Genomics, makes increasingly 

more demand for higher efficiency at lower cost and power. 

Widening use of MapReduce model of computation in such 

application domains shall make more room for innovation and 

specialization toward above goals. There is a large design space 

to explore here for application-specific improvements spanning 

memory, processing, and communication architectures 

especially on modern CPU-FPGA architecture recently on rise. 

V. FRAMEWORKS FOR PROGRAMMING AT SCALE 

Data centers when viewed as a WSC [3] are large computing 

systems with enormous computing capacity, but taking best 

advantage of this capacity, i.e. programming them, is a daunting 

task. MapReduce is one of the paradigms that helps here, but 

when hardware accelerators are added to the WSC for higher 

efficiency, new programming tools and frameworks are needed 

to complement current MapReduce frameworks such as 

Hadoop. This subsection reviews some of currently proposed or 

envisioned frameworks incorporating hardware accelerators.  

Blaze [52] provides FPGA-as-a-Service (FaaS) concept 

comprising a programming interface and a runtime system to 

allow datacenter-scale deployment and use of FPGA 

accelerators with minimal programming effort by big data 

programmers. FaaS programming interface essentially hides 

the FPGA accelerators, and their intricate details of 

programming and usage, behind a set of well-defined 

programming API that enables easy use of accelerators by big 

data analytics developers. The Blaze runtime system then takes 

care of (i) sharing the accelerators among multiple jobs and 

applications, (ii) covering multiple accelerators installed on 

multiple nodes under the same FaaS umbrella, (iii) scheduling 

accelerator functions on available FPGAs along with other 

related details such as (re-)programming the device and 

marshaling input and output data, and (iv) other advantages 

such as providing fault tolerance and hiding the latencies by 

pipelining and caching. The hardware design for the FPGA, 

however, still needs to be provided by an expert HDL designer 

which takes several weeks in their experiments [52]; 

automating this task is left to other and future work [52]. 

OpenACC (for Open Accelerators) [53] is a programming 

standard for parallel processing on CPU/GPU systems. The 

standard provides directives that the programmer can embed in 

her code to help the compiler derive efficient parallel code to 

run on GPU and/or multi-core CPU. It basically provides a 

mechanism for the programmer to transfer her knowledge of the 

field and application to the compiler. Efficient use of this 

information is up to the compiler and libraries usually 

developed by device/CPU vendors such as Nvidia. OpenACC 

framework, however, cannot run parallel code such as 

MapReduce-style code simultaneously on CPU and GPU [54]. 

Frameworks such as Panda [54] provide the capability to 

simultaneously distribute Map as well as Reduce tasks among 

CPUs and GPUs. Fig. 14 shows the flow of operations in Padna 

with its two-stage scheduling: scheduling tasks among compute 

nodes comprising CPUs and GPUs, and then within each CPU 

or GPU. The blue boxes in the figure are run on the CPU and 

the orange ones on the GPU. Data partitioning and task 

scheduling is done statically on the CPU, then the tasks are run 

in parallel on CPU and GPU. Intermediate data are also copied 

back from GPU memory to CPU memory for the shuffle stage. 

The Map and Reduce functions can be different for CPU and 

GPU, and must be provided by the programmer. Panda 

framework is available as an open source project at [31]. 

CPU 

FPGA 

accelerator 

Conventional inter-computer network 

PCIe 

Compute 

Node 

CPU 

Head Node 

CPU 

FPGA 

accelerator 

PCIe 

Compute 

Node 

Additional direct inter-FPGA network 

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at  http://dx.doi.org/10.1109/TBDATA.2017.2736557

Copyright (c) 2017 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.



> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <           12 

 

 
Fig. 14. Panda [54] flow of operations on CPU and GPU. 

HLS is used in [40] to produce Mapper as well as Reducer 

hardware from original C/C++ code of MapReduce 

applications originally developed to run on multicore 

frameworks such as Phoenix. Up to 4.3x throughput 

enhancement as well as two orders of magnitude power and 

energy improvement are reported compared to multicore 

implementation on an AMD 8-core processor [40]. The 

proposed extension (top-right of Fig. 15) to Vivado HLS flow 

is shown in Fig. 15. The extensions include directives and 

source code annotations to guide Vivado HLS flow in 

generating synthesizable HDL from the given MapReduce 

application. The rest of the flow (top-left and bottom of the 

figure) is standard Vivado HLS flow providing simulation as 

well as synthesis and bitstream generation. 

 
Fig. 15. Proposed HLS flow for MapReduce accelerator generation [40]. 

(In the figure, Exp/tion stands for Exploration, and M.R.A.is an acronym for 

MapReduce Application) 

VINEYARD [55] is a conceptual high-level framework 

aimed at providing an integrated workflow for hardware-

software implementation of big data applications in data centers 

equipped with heterogeneous computing nodes spanning 

general purpose processors, FPGAs, embedded processors such 

as ARM, and full-custom application-specific dataflow 

engines. As shown in Fig. 16, the programmer still uses familiar 

programming models for big data processing such as 

MapReduce, Spark, and Storm, and then the VINEYARD tools 

and compilation/synthesis framework (middle of the figure) 

uses library of IP blocks to efficiently implement the user 

application on the data center resources. Commonly used 

functions are envisioned to be already synthesized and stored in 

a Repository of IP blocks, shown on the right side of the figure. 

The hardware implementation (DFE: Dataflow Engine) or 

hardware-software implementation (ARM processor together 

with programmable logic) of such IP blocks would have been 

deployed in the envisioned datacenter and the VINEYARD 

runtime scheduler would choose from among them. 
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Fig. 16. VINEYARD framework for accelerator-rich data centers [55]. 

Other proposals also exist that use OpenCL for describing 

pipelines for static as well as streaming processing of data 

blocks in MapReduce, and use EDA tools to produce FPGA 

bitstreams from the OpenCL code [47], and Handle-C and 

associated tools to describe a pipelined C code in MapReduce 

model and produce pipelined FPGA implementation as in Fig. 

12 [45]. Melia [42] also uses OpenCL as an intermediate 

language to enable end-users describe their applications in 

MapReduce paradigm, and also write their map and reduce 

functions in C. Melia also provides guidelines and software 

libraries so that the application is compiled and directly run on 

the FPGA so as to achieve easier programming of the FPGA as 

well as higher energy efficiency. 

Challenges and opportunities: While it is widely admitted 

that exposing underlying hardware details to the programmer 

can potentially result in more efficient implementations, c.f. 

assembly language vs. high-level programming, it definitely 

distracts the programmer from her main job of processing the 

big data, and is less likely to find widespread use. Future 

frameworks should seamlessly integrate with big data 

processing frameworks, such as Hadoop, so that the 

programmer does not need to get involved with intricate details 

of using hardware accelerators. Such high-level frameworks 

capable of hiding underlying details from the programmer, 

while at the same time producing efficient mapping and 

implementation on heterogeneous accelerators as well as 

general-purpose computers, are essentially required for the 

success of future accelerators at scale. A number of such 

frameworks have been proposed as described above and the 

large body of research on hardware-software co-design can be 

revisited here, but such tools are still in their infancy and need 

deeper further research and development. 

VI. A CLASSIFICATION OF ARCHITECTURAL APPROACHES 

In this section we provide our view of possible approaches to 

MapReduce implementation using custom architectures. This 

not only classifies currently proposed ones, but also helps to 

identify gaps and avenues for further research.  

A. Custom architectures for the computation steps 

This is the most general case which covers all architectures 

presented in Sections III.D and III.E. In such approaches, the 

computation model (i.e., MapReduce) is analyzed and a custom 

organization is proposed to connect processing elements 

spanning CPUs, GPUs, and FPGAs. The proposed custom 

architecture may provide acceleration for all (e.g. FPMR [41]) 

or parts (e.g. [38]) of the computation steps. Nevertheless, 

although all such architectures are custom to the computation 

model of MapReduce, they are designed to be general and 

applicable to all MapReduce applications. 

Most of the proposed custom MapReduce architectures fall 

into this category as surveyed in the above sections. 

Consequently, this category is mature and one needs to dig 

further deeper to propose new methods. 

B. Architectures customized to application characteristics 

 The other class we envision, applies application-specific 

features to the proposed architecture such that it works more 

efficiently for that specific class of applications. Phoenix [26] 

is a good example of this class—see Section III.C and Fig. 3. In 

such approaches, specific features of the application are taken 

into consideration, and the architecture is customized such that 

the best advantage is taken for that certain application or class 

of applications. 

Although Section IV reviewed a number of proposals, most 

of them lack proper customization to the application needs. 

Thus, we found only a few truly application-specific 

architectures in the survey we provided above. Thus, we believe 

more opportunities exist in this class for exploration and novel 

proposals. Hot applications such as graph processing, machine 

learning, machine vision, and Genomics are among good 

candidates to target in this class. 

C. Architectures customized to data characteristics 

 As the third class of custom architectures, we propose to 

customize the architectures to the features of the specific data 

items being processed. Our experiments [56] show that 

different sources of data, have different characteristics and 

moreover, have different influences on the final outcome of the 

processing. Thus, for instance, one could add more parallelism 

into the architecture for more influential data blocks, or could 

use lower power architectures for the others. Similarly, custom 

precision in calculations could be used accordingly. Such 

customizations should obviously involve dynamic adaptation of 

the architecture since the data is only known at runtime, and 

hence, re-configurable architectures are a good fit for such 

optimizations.  

Our survey in this paper found no such custom architecture 

in the literature, and hence, this area looks unexplored and 

potentially very productive for further research.  

D. Other criteria for further classification 

Another criterion that can be imagined to further classify 

each of above classes is static architectures vs. dynamically 

adaptive ones. The conventional view of hardware architectures 

is a static organization of modules. However, modern FPGAs 
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provide features such as runtime-reconfiguration as well as 

partial reconfiguration that are barely explored for custom 

MapReduce architectures. These features can be applied to any 

of the above three classes to come up with novel adaptive 

architectures. For example, in the first class one could imagine 

FPGA architectures that initially use the entire FPGA for the 

map function, and then reconfigures the FPGA for the shuffle 

phase and/or reduce function. Adaptive architectures for the 

second and third classes above are easier to imagine. 

Conventionally, PCIe slots are used to connect FPGA boards 

to the high performance CPUs of datacenter servers, providing 

a loosely coupled processor-FPGA system. This makes PCIe a 

serious performance bottleneck in many cases. Recent 

industrial advances in more closely integrating these two 

processing elements—see Section VII.A—can provide a 

dramatic increase in processor-FPGA communication 

bandwidth and pave the way to proposing novel architectures 

in any of the above three classes in this new closely-coupled 

processor-FPGA platform. 

VII. TRENDS IN LARGE SCALE COMPUTING 

A number of market and technology movements are 

observed at the moment that can potentially change the 

landscape of computing at scale in near future. We list a number 

of them at this subsection and briefly describe what we envision 

as their effects and outcomes. Each below topic basically 

provides an opportunity for MapReduce application developers 

to improve efficiency of their applications by taking advantage 

of the new technology, but at the same time is a challenge for 

them since the developer now needs to choose from among the 

new choices enabled by the technology. This challenge, 

however, provides another opportunity in the design-

automation field for the corresponding researchers to work on 

optimizations by automatic exploration of the design space 

enabled by these choices. We provide a brief view of these 

challenges and opportunities in each section below. 

A. Closely Coupled FPGA-Multicore 

Intel recently acquired one of the two biggest FPGA 

companies, Altera [57]. Although not much is revealed on 

future plans, but it is easy to imagine that Intel who had 

abandoned its own field-programmable technology sector over 

a decade ago, will soon be releasing its next generation 

multicore processors equipped with closely-coupled FPGA 

blocks so as to enable programmers to gain higher efficiency by 

(potentially dynamically) migrating suitable computations to 

the hardware. Current host-accelerator communication 

bottlenecks imposed by limitations of interconnection standards 

such as PCIe and others will be removed, and software API such 

as QuickAssist will boost programmers’ productivity and bring 

ease of integration of hardware into the development processes. 

Xilinx is also moving toward the same goal, but from the other 

end of the spectrum by integrating multicore processors, such 

as ARM Cortex A9 cores, into its FPGAs such as its Zynq line 

of products. Xilinx Vivado HLS tool helps to hide hardware-

software integration details to some extent, but further 

productivity boosters are still missing and needed. Other recent 

CPU-FPGA platforms provide various micro-architectural 

features that affect achievable performance and energy 

efficiency in co-designed applications, and this landscape of 

choices is further expanding by introduction of more platforms 

from a variety of vendors. A quantitative comparison of choices 

and features of such modern CPU-FPGA platforms is provided 

in [58] providing guidelines for platform users as well as 

designers. 

Challenges and opportunities. In terms of new 

opportunities, such closely-coupled FPGA-multicore platforms 

shall open up a wider design space for designers to explore and 

to take advantage of static as well as dynamic computation 

offloading, and furthermore, design more efficient co-designed 

architectures for widely, or extensively although not widely, 

used big data applications.  

The challenges can be divided into two categories: hardware-

software integrated development environments (IDE), and 

automatic co-design optimization tools. Providing easy to use 

software development environments that hide intricate details 

of underlying heterogeneous hardware from the application 

developer, and automatically generate hardware and software 

units and the hardware-software interfaces, is a daunting task 

and big challenge for success of such closely coupled FPGA-

multicore platforms. The model of computation these 

environments support is an important choice. Furthermore, such 

environments need to be complemented with design space 

exploration tools that evaluate various architectural as well as 

system-level choices. In case of MapReduce model of 

computation, such choices include, but are not limited to, 

hardware vs. software implementation of each 

map/shuffle/reduce/merge task, the number of parallel 

processing elements for each task, hardware-software interface 

mechanisms, and dynamic reconfiguration alternatives (both 

total- as well as partial-reconfiguration). 

B. Memory Technologies and Memory-Centric System 

Design 

Various non-volatile memory technologies are under 

research and development that are expected to gain more 

popularity and financial viability in near future. On the other 

hand, memory-access behavior of big data applications and 

programming models such as MapReduce, meaningfully differ 

from conventional server and service workloads [59]. 

Moreover, big data applications, by definition, deal with large 

amounts of data; this has motivated MapReduce to actually 

send the computation to where the data resides, and not the 

other way around as traditionally done in distributed 

processing. 

Challenges and opportunities. Many new memory 

technologies, such as PCM, STT, and others, are non-volatile 

memories (NVRAM) and consume much less power than 

conventional DRAM and SRAM, but in terms of speed, 

throughput, and power, they show asymmetric behavior for 

read vs. write, which although makes them harder to use, but 

opens up new opportunities for innovation and research. New 
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memory hierarchy designs are needed to efficiently combine 

SRAM, DRAM, and such NVRAM technologies while 

architecting the computation nodes around the memory system 

as motivated above, leading to a memory-centric design. Such 

approaches are already under development by academic [60] as 

well as industrial [61] researchers. 

As briefed above, new opportunities for various memory 

optimizations are enabled by these new technologies. For 

hardware researchers interested in custom architectures for 

MapReduce implementation, this means design of custom 

memory-centric system organizations that reduce amount of 

data movement among memories, and multiplex the data among 

processing elements each of which implements one (or more) 

phase of MapReduce computation. The memory hierarchy can 

also be a hybrid system of SRAM, DRAM, and NVRAM 

tailored to the memory access pattern of MapReduce 

applications. Another challenge for software and algorithm 

researchers will be on design automation to properly map data 

blocks, variables, and codes of the application to this memory 

hierarchy such that efficiency metrics such as performance and 

power are improved. Co-optimization of memory access 

patterns (e.g. by scheduling of map/reduce tasks or by data 

placement) and memory organization in a reconfigurable 

system is another challenging research area in the design 

automation field.  

C. Software-Defined Architectures 

While software defined control at microarchitecture level, 

c.f. microprogramming, is debatably inefficient, it has proved 

successful at large scales. Software Defined Network (SDN) is 

a good example here, and similar proposals and activities exist 

for Software-Defined Data Center (SDDC) and Software-

Defined Infrastructure (SDI), which basically generalize the 

same idea to a higher level at data center resources scale, as well 

as software resources such as software frameworks and 

licenses. In general, SDX approaches view the available 

resources—whether hardware ones such as the computing, 

communication, and storage, or software ones mentioned 

above—as pools of components that are (virtually) separated, 

and are employed on demand, under control of a data-center-

wide software controller without, or with minimum, human 

intervention so as to use and share the resources more 

effectively based on the dynamically changing needs. Intel 

Rack Scale Architecture [62] is among such proposals in the 

industry. Other proposals also exist for resource 

interconnection and pooling such as [63] which connects 

commodity hardware resources using PCIe switches to provide 

remote access at affordable cost and higher-than-Ethernet 

speeds. Also, Catapult [64] provides a reconfigurable fabric to 

interconnect multiple FPGA accelerator boards each deployed 

on PCIe slot of a server; the FPGA boards are directly 

connected by pairs of SAS cables so that whole system provides 

high performance computation and communication for 

Microsoft Bing search engine among other possible uses. 

Venice [65] is another data center server architecture focusing 

on providing a strong communication substrate among server 

chips so that non-local resources can be efficiently used 

remotely by all chips.  

Challenges and opportunities. As an opportunity, such 

Software-Defined Architectures further widen the design space 

available to users to more efficiently implement MapReduce, 

and more importantly, to adaptively decide how much of the 

provisioned resources are assigned to the MapReduce jobs at 

each time slot. Recently, even FPGA-as-a-Service (i.e., FPGA 

boards attached to VM instances) are offered by cloud providers 

such as Amazon, expectedly at a higher price. Thus the 

challenge of choosing the right amount of resources, and 

furthermore, adapting to the dynamics of the datacenter as well 

as the application, is deepening. Automating this process of 

resource allocation and also providing runtime systems for 

application-specific resource management and adaptation is an 

opportunity for researchers in the software and design-

automation fields to provide automatic hardware-software 

implementation frameworks that efficiently map and elastically 

adapt MapReduce models to available processors and 

accelerators.  

VIII. SUMMARY AND CONCLUSION 

We reviewed the architectures, encompassing software as 

well as hardware, proposed for efficient implementation of 

batch big data processing in MapReduce paradigm as one of the 

most widespread programming models for large scale 

processing in today warehouse-scale computers. Several 

current open challenges and avenues for further enhancements 

were discussed. Furthermore, a number of trends envisioned in 

the industry, that are deemed to further deepen the need and 

motive to work further in this area, were described. Given the 

rapid growth of big data applications and their financial, social, 

and health benefits, the demand for higher throughput, 

computing capacity, and performance per Watt will only 

increase in foreseeable future. This increasingly intensifies the 

need and interest for further research in this area to fill in the 

gaps partly identified in this survey. Recent deployment of 

FPGAs in production datacenters [66] is a clear sign that the 

trend toward heterogeneous architectures for large-scale 

custom computing systems has only begun. 
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