
Simplifying Planar Visibility Polygons

Alireza Zarei and Mohammad Ghodsi

1 Computer Engineering Department
Sharif University of Thechnology

2 IPM School of Computer Science

Abstract. Boundary of a region illuminated by a light source may be composed of
many vertices and points. Because of the limited resolution of the display screens,
there is no need to exactly maintain all the detail of the boundaries. Instead, an
approximation of the boundary is always sufficient in realistic applications. This is
also true for the visible region of an observer. The classical line simplification methods
can be used to approximate such boundaries by simpler polygons. Unfortunately, the
error function used in these methods does not consider the position of the observer
(light source) which is an important parameter in our simplification. In this paper, we
propose an error function that considers the distance of the boundary polygon and
the observer and describe an efficient method for its computation. We then illustrate
that this error function can be embedded in current offline simplification algorithms
without increasing the time and space complexities. Moreover, we propose a method
to simplify such regions in a streaming data model in which the boundary vertices
are given as a stream of points and we do not have enough memory to maintain the

whole data. Our method uses O(k2
√

ε
) additional storage and each point is processed

in O(k√
ε log ε

) amortized time. In this method, the error of the resulting simplification

with 2k points is not bigger than (2 + ε) times the error of the optimal solution with
k points in which we can store all points. This method can also be used for point,
segment or polygon observers inside planer scenes.

Key words:Computational geometry, planar visibility, line simplification

1 Introduction

In many applications of computer graphics and robotics, we are asked to compute the region
visible from an observer (or a light source), or the set of illuminated points. This is a basic
problem in computational geometry and there are many solutions for its different versions
[16–22].

In a planer scene which is composed of a set of polygonal objects in the plane, two points
are visible from each other if their connecting segment does not intersect the scene objects.
The set of points visible from a point q is called its visibility polygon and is denoted by
VP(q). The visibility polygon of a point in a planer domain is always a star-shaped simple
polygon.

In real applications, an observer usually has a limited vision power, i.e., it can not distin-
guish small visibility differences at far distances. Moreover, the required space to maintain
the exact visibility polygon is too high and it will be impossible to maintain such polygons
exactly. On the other hand, the accuracy of the display screens is also limited. That is, to
display such a polygon on a display screen, only its approximation is displayed.

The boundary of a visibility polygon, simply referred to by visibility polygon in the rest of
this paper, is composed of many consecutive line segments, some of which may be so far from
the observer. The observer in above applications may be unable to distinguish between the
segments endpoints. As a result, it will see several segments as a single line segment. Figure 1

2 Alireza Zarei and Mohammad Ghodsi

vk

q

v1

v2vn

vj−1

vj+1

vj

v3

vi

vi−1

vi+1

vs
vt

vm

vr

Fig. 1. In simplifying VP(q), the vertex vi which is farther then vj from the observer q is a better
candidate for elimination.

depicts such a condition in which the observer q sees segments v1v2, v2v3, . . . , vnv1 but
segments vi−1vi and vivi+1 are farther from q than segments vj−1vj and vjvj+1. Therefore,
q can see the correct position of point vj while the point vi is seen as a point of the segment
vi−1vi+1.

In this paper, we clarify our motivation and consider the problem of simplifying (approx-
imating) the visibility polygon of such observers inside a polygonal domain.

This problem is a special case of the classical line simplification problem for which there
are several algorithms. These methods approximate a given path of line segments by another
path with smaller number of segments which minimizes the difference between the initial
and the simplified paths. This difference, to be formally defined later, is called the error of
this simplification.

There are two optimization goals in the line simplification algorithms: min-k and min-δ.
In the min-k version, there is a given error threshold and we are to use the minimum number
of vertices in the simplified path meeting the error threshold. In min-δ, we are allowed to
use at most k vertices for some given k in the simplified path and the goal is to minimize
the error of the simplification.

There are many variants of the line simplification problem. In its restricted version, the
vertices of the simplified path are required to be selected from the set of the vertices of
the initial path. Some results on the unrestricted version can be found in [9–11, 13]. For
the restricted version, the main algorithms can be found in [7, 12, 14, 6, 15, 2, 4, 8]. Also,
an efficient approximation algorithm can be found in [2] which approximately solves the
restricted version of this problem.

These simplification methods use different error functions to compute the difference
between the initial and the simplified paths. Almost all of the referenced algorithms solve
the line simplification problem under the Hausdorff distance for L1, L2 or L∞ metrics. Line
simplification under the Fréchet distance has been considered only by Godau and Alt [8, 4].

Unfortunately, none of the error functions used in these algorithms is proper for our
purpose of simplifying visibility polygons. In our target applications, the vertices of the
path that are closer to the observer are more important than the farther points. Precisely,
we need an approximating error function which considers the distance between the points
of the visibility polygon and the observer.

To solve this problem, we define a proper approximating error function which consid-
ers this distance. We prove that this error function can be computed efficiently and can
be used along with current simplification methods without increasing their time or space
complexities. Therefore, our target problem can be solved efficiently under min-k or min-δ
optimization goals.

Simplifying Planar Visibility Polygons 3

We further consider the cases in which the observer is like a radar inside a dynamic
environment that circularly sweeps its neighbor and draws its visibility polygon. In such ap-
plications, the visible points are given continuously as a stream of input data and we assume
that it is impossible to maintain and show all of these points. Therefore, it is necessary to
approximate the exact visibility polygon by another polygon of smaller number of vertices.

In this model, regardless of the number of the points in the input path, we must simplify
the path by at most k points. Also, we must continuously update the simplification as
new points are received. For this version of the problem, our proposed method uses O(k2√

ε
)

additional storage and each point is processed in O(k√
ε log ε

) amortized time. Then, the error
of the resulting simplification with 2k points is not bigger than (2 + ε) times the error of
the optimal simplification with k points. This method is based on the general algorithm
proposed in [1].

Our error function can be extended for different observer types like segment observers
which is done in this paper. To the best of our knowledge, the results of this paper are the
first in this area and there are several interesting open directions in applying and extending
this notion.

The rest of this paper is organized as follows: in Section 2, our visibility-dependent sim-
plification error function is described and we use this metric to simplify visibility polygons in
non-stream input models. In Section 3, we solve the problem in streaming data model. The
extensions and future works of the proposed method are given is Section 4 and the paper is
summarized and concluded in Section 5.

2 Visibility-Dependent Simplification

We focus on the restricted version of the line simplification problem. For this problem,
let P be a path defined by a sequence of points p0, p1, p2, . . . , pn. Any subsequence Q =
q0, q1, . . . , ql, ql+1 of P is a l-simplification of P if q0 = p0 and ql+1 = pn. In this simplification,
any segment qiqi+1 of Q (0 ≤ i ≤ l) is the corresponding simplification of the subpath
ps, ps+1, . . . , pt of P where qi = ps and qi+1 = pt. In other words, we have replaced the
subpath ps, ps+1, . . . , pt of P with segment qiqi+1 in Q.

Therefore, Q is an approximation of P and can be stored using smaller size of memory,
however, at the cost of losing the accuracy of P . Assume that error is our error function
used to compare similarity of Q and P . Using this metric, we denote the error of this
approximation by error(Q) and it is defined to be the maximum error of segments qiqi+1(0 ≤
i ≤ l) under this metric. The error of a segment qiqi+1 under a metric error is denoted by
error(qiqi+1) and is defined to be the error of approximating the subpath ps, ps+1, . . . , pt

by segment qiqi+1 under this error metric. Usually, the definition of the error metric error
depends on the application.

Hausdorff error function, errorh, is the metric used in almost all simplification al-
gorithms. For a segment qiqi+1 which is the simplification of a subpath ps, ps+1, . . . , pt,
errorh(qiqi+1) is defined as the maximum euclidian distance of the points ps, ps+1, . . . , pt

from segment qiqi+1. For example, errorh(prps) in Figure 1 is |pkpr| which is the distance
of the point pk from segment prps. Also, in this figure, errorh(pspt) = d(pm, pspt) where
d(pm, pspt) is the distance of the point pm from segment pspt.

The Hausdorff error function only depends on the initial and the simplified paths and
therefore, is not proper for simplifying visibility polygons in which the position of the ob-
server has an important role. Assume that P = p1, p2, . . . , pn, p1 of Figure 1 is the visibility
polygon of a point observer q. Here, pj is closer to the observer than pi which is assumed
to be too far from q. If we are to simplify P by removing one point and we have only two
choices pi and pj , it would be better to remove pi while if we use Hausdorff error function,

4 Alireza Zarei and Mohammad Ghodsi

|qp| = 1
q

p

p′

α

Fig. 2. Vision distinction power of a point observer.

pi will be removed. In order to use current simplification algorithms, we must formalize this
issue as an error function to be used in these algorithms.

For this purpose, we define the vision distinction power of a point observer q as the max-
imum distance of two points, which are at unit distance from q, such that q can distinguish
between them as two separate points. The vision distinction power of a point observer q,
denoted by vdp(q), means that if the distance between two points that lie on the unit circle
centered at q is less than vdp(q), q will see them as a single point. As shown in Figure 2, if
vdp(q) is too small and |pp′| = vdp(q), we can say that vdp(q) = |pp′| ' |qp|.α ' α.

Therefore, we can say that the vision distinction power of a point observer q is the
smallest angle of two rays emitted from q such that q can see different points along these
rays. For small values of α, a point observer q of vdp(q) = α sees all points of the disk
centered at o of diameter d as a single point if d ≤ α|qo|. The reason is that this disc is
contained between two rays from q which their angle is less than α and according to the
definition of vdp, these points are seen as a single point.

Now, we are ready to define our simplification error function which considers vdp. As
shown in part A of Figure 3, assume that we are to approximate the path pippj , a part
of the visibility polygon of the observer q, by segment pipj . From the viewpoint of q, this
approximation maps the point p to point p′. Also, other points of segments pip and ppj are
mapped to their corresponding points of segments pip

′ and p′pj .
The corresponding visibility-dependent error of this simplification for a point t on the

path pippj is denoted by errorvis(t, pipj) and is defined as |tt′|
|tq| where t′ is the intersection

point of segments tq and pipj . This means that in this simplification and at distance |tq|
from the observer we have violated from the initial path by a value of |tt′|. This definition
is also extended to paths of more internal vertices. The visibility polygon of q is a star-
shaped polygon and p lies between pi and pj on the boundary of this polygon. Therefore,
the supporting line of pq always intersects pipj . If pi, pj and q are collinear, p and all
other points of the polygon boundary from pi to pj must also lie on segment pipj . For such
situations, the error of all points of the path from pi to pj is zero which corresponds to our
definition of the error function.

In some cases like part B of Figure 3, tq does not intersect pipj . For such situations, point
t is mapped to point t′ which is the intersection point of pipj and the supporting line of
tq. In these cases, the visibility-dependent error of point t is defined to be |tt′|

|t′q| . Comparing
the definition of errorvis function for these two cases, when the corresponding values of |tq|
in parts A and B of Figure 3 are equal, we assign greater error value to point t in part A.
This means that in the same situations we prefer to simplify using the outer diameters of
the visibility polygon compare to the internal ones. Another benefit of this definition is that
the error function will be monotone to be defined and used later.

Simplifying Planar Visibility Polygons 5

part A part B

p

q

t

t′

p

pi pj

p′

errorvis(t, pipj) = |tt′|
|tq|

q

errorvis(t, pipj) = |tt′|
|t′q|

p′

pj

t

t′pi

Fig. 3. Visibility-dependent simplification error.

Our visibility-dependent error function associated with a path pi, pi+1, . . . , pj simpli-
fied by segment pipj , denoted by errorvis(pipj), is defined to be the maximum visibility-
dependent error of points of this path.

This definition for visibility-dependent error function strongly relates to the notion of
width. The width of a set of points with respect to a given direction −→

d is the minimum
distance of two lines being parallel to −→d that enclose the point set. Let PL(i, j)(PU (i, j)) be
the set of points of subpath P (i, j) = pi, pi+1, . . . , pj that lie in the closed half plane defined
by the supporting line of pipj which contains(does not contains) the point observer q. We
denote by wL(i, j)(wU (i, j)) the width of the points of PL(i, j)(PU (i, j)) with respect to the
direction −−→pipj . We have,

Lemma 1. For a subpath P (i, j) = pi, pi+1, . . . , pj of VP(q),

errorvis(pipj) = max(wU (i,j)
d(q,pipj)+wU (i,j) ,

wL(i,j)
d(q,pipj)

)

where d(q, pipj) is the orthogonal distance of point q from the supporting line of pipj.

Proof. From Thales theorem, for any point p on path P (i, j) that lies in opposite side of pipj

relative to q we have errorvis(p, pipj) = d(p,pipj)
d(p,pipj)+d(q,pipj)

. Therefore, the maximum error

of these points is wU (i,j)
d(q,pipj)+wU (i,j) . Similarly, for a point p on path P (i, j) that lies in the

same side of pipj relative to q we have errorvis(p, pipj) = d(p,pipj)
d(q,pipj)

and their maximum is
wL(i,j)

d(q,pipj)
. ut

A direct consequence of this lemma is that the associated error of a segment pipj belongs
to a vertex pk(i ≤ k ≤ j) which makes computation of this error function straightforward.
Using this result we can simply compute the corresponding error of any segment pipj that
may be appeared in simplification during the simplification process by only checking vertices
of the subpath P (i, j).

Fortunately, algorithms proposed for both restricted and unrestricted versions of the line
simplification problem do not require any special property for the error function and we can
plugged our error function into. Moreover, this error function can be used under min−k
and min−δ optimization goals as well. The only change in these algorithms is to use our
error function for a segment pipj when we want to simplify the path pi, pi+1, . . . , pj with
this segment.

As an example, we use our error function in Imai and Iri[15] approach for solving the
min−k version of the line simplification problem. In this approach we build a directed acyclic
graph G over the vertices of the path P = p0, p1, ,̇pn. For any pi ∈ P , there is a vertex pi in

6 Alireza Zarei and Mohammad Ghodsi

G and an edge pipj is added to this graph if errorvis(pipj) is not greater than the allowed
error threshold. The shortest path from p0 to pn in G is the solution of this version of the
simplifying P . As seen here, the only change is to use our visibility-dependent error function
whenever we want to compute the corresponding error of a segment pipj .

3 Visibility-Dependent Simplification in Streaming Model

In Section 2, we described a method to measure the associated error of simplifying the
visibility polygon of a point observer in which the position of the observer is considered. Also,
we showed how this error function can be used in current offline simplification algorithms.
These algorithms are only applicable to situations where all of the points of the path are
available in memory. In some applications we can not maintain the whole path because of the
limited amount of memory or unnecessity of maintaining these points. For example, consider
a radial sweep line which trace the scene around a point observer. In such applications, we
want to compute an approximation of the visibility polygon as the visible points are identified
by the sweep line.

Formally, the vertices of the visibility polygon are given as a stream of input data and
we want to simplify the path. Abam et.al proposed a general algorithm that can be used to
simplify a path which its vertices are given as a stream of input points[1]. The min−k version
of the line simplification is not well-defined in streaming model. Thus, their algorithm only
solves the min−δ version of the line simplification problem.

In order to use this algorithm on a path P (n) = p0, p1, . . . , pn with an error function
error, two conditions must be satisfied:

– error must be a c-monotone error function on the path P (n) for any n > 0. This means
that for any two segments pipj and plpm such that i ≤ l ≤ m ≤ j and pi, pj , pl and pm

are vertices of the path P (n), we have

error(plpm) ≤ c.error(pipj).

In other words, an error function is c-monotone if the error of a segment can not be
worse than c times the error of any segment that encloses it.

– There must be an e-approximate error oracle for error on the path P (n) to be defined as
follows. In streaming models, we may lose some vertices of the subpath P (i, j) between
points pi and pj . Then, we can not compute the exact value of the error function for
this segment and we must approximate this error value. We denote the approximated
error value of a segment pipj by error∗(pipj). We call the procedure that computes this
approximation as our error oracle. An error oracle is e-approximate if for any segment
pipj for which the oracle is called by the algorithm we have

error(pipj) ≤ error∗(pipj) ≤ e.error(pipj).

Having these two conditions, the algorithm of Abam et al. [1] simplifies a streaming
path P by a path Q of at most k internal vertices. The time the algorithm needs to update
the simplification upon the arrival of a new point is O(log k) plus the time spent by the
error oracle. Besides the storage needed for the simplification Q, the algorithm needs O(k)
storage plus the storage needed by the error oracle. The algorithm is quite simple (assume
that k = l):

Suppose we have already handled the points p0, . . . , pn. (We assume n > l +1; until that
moment we can simply use all points and have zero error.) Let Q := q0, q1, . . . , ql, ql+1 be
the current simplification. The algorithm will maintain a priority queue Q that stores the
points qi with 1 ≤ i ≤ l, where the priority of a point is the error (as computed by the
oracle) of the link qi−1qi+1. In other words, the priority of qi is (an approximation of) the
error that is incurred when qi is removed from the simplification. Now the next point pn+1

is handled as follows:

Simplifying Planar Visibility Polygons 7

1. Set ql+2 := pn+1, thus obtaining an (l + 1)-simplification of P (n + 1).
2. Compute error∗(qlql+2) and insert ql+1 into Q with this error as priority.
3. Extract the point qs with minimum priority from Q; remove qs from the simplification.
4. Update the priorities of qs−1 and qs+1 in Q.

The error of the simplification Q obtained by this algorithm for l = 2k is at most ce
times the error of the optimal simplification of P with k points in non-streaming model
which we have all points in memory. So, in order to use this algorithm we must show that
our visibility-dependent error function, errorvis, is c-monotone and we must propose an
error oracle to approximate the error of any segment pipj for which the oracle is called in
this algorithm.

Lemma 2. Over the visibility polygon of a point observer, the visibility-dependent error
function errorvis is 2-monotone.

Proof. Assume that points pi, pj , pl and pm lie on VP(q) such that i ≤ l ≤ m ≤ j and
errorvis(plpm) belongs to a point pk where l ≤ k ≤ m and p′k and p′′k are respectively the
intersection points of the supporting line of qpk and segments plpm and pipj . VP(q) is a star-
shaped polygon and q is a point in its center. Following the order of points on the boundary
of this polygon, the supporting line of segments plq, pmq and pkq intersect segment pipj

and the supporting line of pkq intersects plpm. Therefore, there are six permutations for
positions of points pk, p′k and p′′k on the supporting line of qpk (shown in Figure 4). For all
of these configurations we have

errorvis(pipj) ≥ max(errorvis(pl, pipj), errorvis(pm, pipj), errorvis(pk, pipj)),

and
errorvis(p′k, pipj) ≤ max(errorvis(pl, pipj), errorvis(pm, pipj)).

Consequently, we have

errorvis(pipj) ≥ max(errorvis(p′k, pipj), errorvis(pk, pipj)).

We prove the lemma for all these configuration by showing that

errorvis(plpm) = errorvis(pk, plpm) ≤ 2max(errorvis(p′k, pipj), errorvis(pk, pipj)) ≤
2errorvis(pipj).

The first equality is our assumption that pk has the maximum error on plpm among all
points of path pl, pl+1, . . . , pm and we have already shown the last inequality. Therefore, it
is only enough to show the middle inequality.

– Case 1(shown in part A of Figure 4): In this configuration we have,

errorvis(pk, plpm) = |pkp′k|
|pkq| ≤

|pkp′′k |
|pkq| = errorvis(pk, pipj) ≤

2max(errorvis(p′k, pipj), errorvis(pk, pipj)).

– Case 2(shown in part B of Figure 4): Here, if |pkp′′k | ≥ |p′′kp′k| then we have,

errorvis(pk, plpm) = |pkp′k|
|pkq| = |pkp′′k |+|p′′kp′k|

|pkq| ≤ 2|pkp′′k |
|pkq| ≤

2errorvis(pk, pipj) ≤ 2max(errorvis(p′k, pipj), errorvis(pk, pipj)),

and if |pkp′′k | < |p′′kp′k| then we have,

errorvis(pk, plpm) = |pkp′k|
|pkq| ≤

2|p′′kp′k|
|pkq| ≤ 2|p′′k p′k|

|p′′k q| ≤

2errorvis(p′k, pipj) ≤ 2max(errorvis(p′k, pipj), errorvis(pk, pipj)).

So in both conditions, the lemma is valid in this case.

8 Alireza Zarei and Mohammad Ghodsi

part A

part D part E part F

part Cpart B

pj

q

pi pj

pl pm

pk

p′k

p′′k

q

pl pm

p′k

pk

pi

p′′k

q

pk

p′k

p′′k
pl pm

pjpi

q

pi

p′′k

p′k

pk

pl pm

q

pk

p′′k

p′k

pi

pmpl

q

pk

p′k

p′′k

pl pm

pjpi

pj

pj

Fig. 4. The visibility-dependent error function is 2-monotone.

– Case 3(shown in part C of Figure 4): For this case, assume that |pkp′′k | = x|pkq| =
x(|pkp′k|+ |p′kq|). Then,

max(errorvis(p′k, pipj), errorvis(pk, pipj)) ≥ errorvis(p′k, pipj) = |pkp′k|+|pkp′′k |
|pkp′′k |+|pkq| =

|pkp′k|+x(|pkp′k|+|p′kq|)
x|pkq|+|pkq| = (x+1)|pkp′k|+x|p′kq|

(x+1)|pkq| = errorvis(pk, plpm) + x|p′kq|
(x+1)|pkq| ≥ errorvis(pk, plpm).

– Case 4(shown in part D of Figure 4): The proof of this case is exactly the same as case
3.

– Case 5(shown in part E of Figure 4): The proof of this case is exactly the same as case
2.

– Case 6(shown in part F of Figure 4): The proof of this case is exactly the same as case
1.

So, we proved that in all cases, errorvis(plpm) ≤ 2errorvis(pipj). Also, it is simple to show
that this upper bond is tight in cases 2 and 5. ut

Now, we propose an approximating procedure that approximates errorvis(pipj), the error
value of any segment pipj for which the simplification algorithm is called.

According to Lemma 1, the approximating oracle can approximate d(q, pipj), wL(i, j)
and wU (i, j) to find an approximation of errorvis(pipj). It is easy to find the exact value of
d(q, pipj). We use the method described by Agarwal and Yu [3] to approximate wL and wU .

Agarwal and Yu [3] have described a streaming algorithm for maintaining a core-set that
can be used to approximate the width of a set of points in any direction. Their algorithm re-
quires O(1√

ε
) space and O(1

log ε) amortized time per point to maintain a core-set from which
the width of the input stream can be computed efficiently. This is done by additionally main-
taining the convex hull of the core-set using the data structure by Brodal and Jacob [5]. This
data structure uses linear space and can be updated in logarithmic time. Also it supports
queries for the extreme point in a given direction in logarithmic time. Using these results,

Simplifying Planar Visibility Polygons 9

we have an (1 + ε)-approximate error oracle for errorvis and the value of errorvis(pipj) can
be computed in O(1

log ε) time.

Lemma 3. There is a (1 + e)-approximate error oracle for the visibility-dependent error
function on visibility polygon of a point observer that uses O(k2√

ε
) storage and has O(k√

ε log ε
)

amortized update time where k is the number of the internal points of the simplification.

Proof. Assume that Q = q0, q1, . . . , qk, qk+1 is the current simplification of path P (n) =
p0, p1, . . . , pn. Any one of the segments qiqj where 0 ≤ i ≤ j ≤ k + 1, may appear in the
simplification in future and we must be able to approximate their errorvis(qiqj). Thus, we
maintain two core-set structures for each segment qiqj . One of these core-sets is used to
approximate wU (i, j) and only the points of PU (i, j) are added to this core-set. The other
core-set is maintained for approximating wL(i, j) and only contains the points of pL(i, j).

Therefore, we maintain O(k2) core-sets of size O(1√
ε
). Considering a new point pn+1 =

qk+2, we must create O(k) new core-sets, one for each of the lines qipn+1 for 0 ≤ i ≤ k + 1.
These core-sets are created by copying the corresponding core-sets of qipk+1 and inserting
point pn+1 into them using the algorithm by Agarwal and Yu [3]. When a point qs is removed
form the simplification, the core-sets of all segments that start or end at qs have become
meaningless and are therefore deleted.

In total, O(k2√
ε
) storage is needed for the O(k2) core-sets. The update of the oracle

involves creation of O(k) core-sets from the current ones. This must be done by comparing
the position of the points of the current core-sets to the new segment for which the core-sets
are created and inserting the points in proper(upper or lower) core-set of the new segment.
So, we need O(k 1√

ε
1

log ε) amortized time to create the new core-sets. The new point is added

to these core-sets in O(k
log ε) amortized time. Therefore, the time the oracle needs to process

a new point is O(k√
ε log ε

). ut
Combining the result of lemmas 2, 1 and 3 with the algorithm of Abam et al. [1] described

at the beginning of this section, we have the following result on simplifying the visibility
polygon of a point observer based on the visibility-dependent error function:

Theorem 1. There is a streaming algorithm that maintains a 2k-simplification for VP(q)
under the visibility-dependent error function. This algorithm uses O(k2√

ε
) additional storage

and each point is processed in O(k√
ε log ε

) amortized time and the error of the result simpli-
fication is not larger than (2 + ε) times the error of the optimal offline k-simplification.

4 Extensions and Future Works

In previous sections, we defined the visibility-dependent error function only for point ob-
servers. This definition can be extended to other kinds of observers. Assume that our observer
is a line segment. There are two types of visibility polygons for a segment: weak and strong.
Weak visibility polygon of segment pq is the set of points that are visible from at least one
point of pq. Strong visibility polygon is defined to be the set of points that are visible from
all points of pq.

Assume that we want to approximate a subpath pipi+1, . . . , pj of the weak visibility
polygon of a segment observer pq by the segment pipj and px is a point on this path. A
reasonable definition of visibility-dependent error function of this approximation for px is
min(errorvis(px, pipj) with respect to point p′x) over all points p′x on segment pq where
px and p′x are visible from each other. A reasonable visibility-dependent error function for
strong visibility polygon is to use max instead of min in the above definition.

10 Alireza Zarei and Mohammad Ghodsi

These definitions can also be extended to simple polygon observers. Applying the pro-
posed algorithm for simplifying the visibility polygon of these types of observers is an inter-
esting future work that may follow this work.

Another practical and useful extension of this paper is to apply the notion of simplifying
visibility polygon for a moving observer. For moving observers we need online simplification
algorithms instead of offline or streaming methods used in this paper.

Simplifying the visible region of an observer in 3D has many applications as well as
the theoretic interests. So, another interesting problem is to extend this definition of error
function to higher dimensions

Finally, implementing this algorithm and comparing with the image drawn on limited
resolution display screens is a good method to find the improvement points of this work.

5 Conclusions

In this paper, we considered the problem of simplifying the visibility polygon of an observer
inside a planer scene. This problem have many applications in computer graphics, games,
robotics, path planning and GIS. We first defined a visibility-dependent error function to
compare different simplifications, formally. For our definition of the visibility-dependent
simplification, we described how to use current simplification methods to simplify a visibility
polygon, efficiently.

Then, we proposed a simplification method for conditions where the points of the visibil-
ity polygon are given as a stream of points and we do not have enough storage to maintain
all points. Here, our method uses O(k2√

ε
) additional storage and each point is processed in

O(k√
ε log ε

) amortized time. In this method, the error of the resulting simplification with 2k

points is not bigger than (2 + ε) times the error of the optimal simplification with k points
in which we can store all points.

Also, we described how to extend our visibility-dependent error function for other ob-
server types and several interesting extension points and future works are introduced in
Section 4. This is the first attempt in defining formal simplification criteria which considers
the visibility properties and it can be used in real applications in which the exact boundaries
are not displayed or maintained.

References

1. M. A. Abam, M. de Berg, P. Hachenberger, and A. Zarei. Streaming Algorithms for Line
Simplification. 23rd ACM Symp. on Computational Geometry (SoCG), pages 175–183, 2007.

2. P.K. Agarwal and K. R. Varadarajan. Efficient algorithms for approximating polygonal chains.
Discrete & Compututationl Geometry 23(2):273–291, 2000.

3. P.K. Agarwal, H. Yu. A Space-Optimal Data-Stream Algorithm for Coresets in the Plane. In:
Proc. 23th ACM Symposium on Computational Geometry (SOCG), pages 1–10, 2007.

4. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal curves. Inter-
national Journal on Computational Geometry and Applications 5:75–91 1995.

5. G.S. Brodal and R. Jacob. Dynamic Planar Convex Hull. In Proc. 43rd Annual Symposium on
Foundations of Computer Science (FOCS), pages 617–626, 2002

6. W.S. Chan and F. Chin. Approximation of polygonal curves with minimum number of line seg-
ments. In Proc. 3rd Annual International Symposium on Algorithms and Computing (ISAAC),
LNCS 650, pages 378–387, 1992.

7. D.H. Douglas and T.K. Peucker. Algorithms for the reduction of the number of points required
to represent a digitized line or its caricature. Canadian Cartographer 10:112–122, 1973.

8. M. Godau. A natural metric for curves: Computing the distance for polygonal chains and
approximation algorithms. In Proc. 8th Annual Symposium on Theoretical Aspects of Computer
Science (STACS), pages 127–136, 1991.

Simplifying Planar Visibility Polygons 11

9. M.T. Goodrich. Efficient piecewise-linear function approximation using the uniform metric.
Discrete & Computational Geometry 14:445–462, 1995.

10. L.J. Guibas, J.E. Hershberger, J.S.B. Mitchell, and J.S. Snoeyink. Approximating polygons and
subdivisions with minimum link paths. International Journal of Computatioanl Geometry and
Applications 3:383–415, 1993.

11. S.L. Hakimi and E.F. Schmeichel. Fitting polygonal functions to a set of points in the plane.
CVGIP: Graphical Models Image Processing 53:132–136, 1991.

12. J. Hershberger and J. Snoeyink. An O(n log n) implementation of the Douglas-Peucker al-
gorithm for line simplification. In Proc. 10th ACM Symposium on Computational Geometry
(SOCG), pages 383–384, 1994.

13. H. Imai and M. Iri. An optimal algorithm for approximating a piecewise linear function. Journal
of Information Processing 9(3):159–162, 1986.

14. H. Imai and M. Iri. Polygonal approximations of a curve-formulations and algorithms. In: G.T.
Toussaint (ed.), Computational Morphology, North-Holland, pages 71–86, 1988.

15. A. Melkman and J. ORourke. On polygonal chain approximation. In: G.T. Toussaint (ed.),
Computational Morphology, North-Holland, pages 87–95, 1988.

16. H. Gindy and D. Avis. A linear algorithm for computing the visibility polygon from a point.
Journal of Algorithms, 2:186197, 1981.

17. P. J. Heffernan and J. S. B. Mitchell. An optimal algorithm for computing visibility in the
plane. SIAM Journal of Computing, 24(1):184201, 1995.

18. S. Suri and J. ORourke. Worst-case optimal algorithms for constructing visibility polygons with
holes. In Proc. of the second annual symposium on Computational geometry, pages 1423, 1986.

19. M. Pocchiola and G. Vegter. The visibility complex. Internattional Journal of Computation
Geometry and Applications, 6(3):279308, 1996.

20. A. Zarei and M. Ghodsi. Efficient computation of query point visibility in polygons with holes.
In Proc. 21st Annual Symposium on Computational Geometry, pages 314320. ACM, 2005.

21. M. T. B. Aronov, L Guibas and L. Zhang. Visibility queries and maintenance in simple polygons.
Discrete and Computational Geometry, 27(4):461483, 2002.

22. A. L. P. Bose and J. I. Munro. Efficient visibility queries in simple polygons. Computational
Geometry: Theory and Applications, 23(3):313335, 2002.

