
Equilibrium Pricing with Positive Externalities
(Extended Abstract)

Nima Anari1, Shayan Ehsani1, Mohammad Ghodsi12?, Nima Haghpanah3, Nicole
Immorlica3, Hamid Mahini1, and Vahab S. Mirrokni4

1 Computer Engineering Department, Sharif University of Technology,
anari@eecs.berkeley.edu, {ehsani, mahini}@ce.sharif.edu, ghodsi@sharif.edu

2 Institute for Research in Fundamental Sciences (IPM), P.O. Box: 19395-5746, Tehran, Iran
3 Northwestern University, EECS Department, {nima.haghpanah, nicimm}@gmail.com

4 Google Research NYC, 76 9th Ave, New York, NY 10011, mirrokni@gmail.com

Abstract. We study the problem of selling an item to strategic buyers in the pres-
ence of positive historical externalities, where the value of a product increases as
more people buy and use it. This increase in the value of the product is the result
of resolving bugs or security holes after more usage. We consider a continuum
of buyers that are partitioned into types where each type has a valuation function
based on the actions of other buyers. Given a fixed sequence of prices, or price
trajectory, buyers choose a day on which to purchase the product, i.e., they have
to decide whether to purchase the product early in the game or later after more
people already own it. We model this strategic setting as a game, study existence
and uniqueness of the equilibria, and design an FPTAS to compute an approxi-
mately revenue-maximizing pricing trajectory for the seller in two special cases:
the symmetric settings in which there is just a single buyer type, and the linear
settings that are characterized by an initial type-independent bias and a linear
type-dependent influenceability coefficient.

1 Introduction

Many products like software, electronics, or automobiles evolve over time. When a con-
sumer considers buying such a product, he faces a tradeoff between buying a possibly
sub-par early version versus waiting for a fully functional later version. Consider, for
example, the dilemma faced by a consumer who wishes to purchase the latest Win-
dows operating system. By buying early, the consumer takes full advantage of all the
new features. However, operating systems may have more bugs and security holes at
the beginning, and hence a consumer may prefer to wait with the rationale that, if more
people already own the operating system, then more bugs will have already been uncov-
ered and corrected. The key observation is, the more people that have already used the
operating system, or any product for that matter, the more inherent value it accrues. In
other words, the product exhibits a particular type of externality, a so-called historical
externality5.
? This author’s work has been partially supported by IPM School of CS (contract: CS1388-2-01)
5 Note that this is different from the more well-studied notion of externalities in the computer

science literature where a product (e.g., a cell phone) accrues value as more consumers buy it
simply because the product is used in conjunction with other consumers.



How should a company price a product in the presence of historical externalities?
A low introductory price may attract early adopters and hence help the company ex-
tract greater revenue from future customers. On the other hand, too low a price will
result in significant revenue loss from the initial sales. Often, when faced with such a
dilemma, a company will offer an initial promotional price at the product’s release in a
limited-time offer, and then raise the price after some time. For example, when releasing
Windows 7, Microsoft announced a two-week pre-order option for the Home Premium
Upgrade version at a discounted price of $50; thereafter the price rose to $120, where
it has remained since the pre-sale ended on July 11th, 2009. Additionally, beta testers,
who can be interpreted as consumers who “bought” the product even prior to release,
received the release version of Windows 7 for free (as is often the case with software
beta-testers).

We study this phenomenon in the following stylized model: a monopolistic seller
wishes to derive a pricing and marketing plan for a product with historical externalities.
To this end, she commits to a price trajectory. Potential consumers observe the price
trajectory of the seller and make simultaneous decisions regarding the day on which
they will buy the product (and whether to buy at all). The payoff of a consumer is a
function of the day on which he bought the product, the price on that day, and the set of
consumers who bought before him. We compute the equilibria of the resulting sequen-
tial game and observe that the revenue-maximizing price trajectories for the seller are
increasing, as in the Windows 7 example above.

A few words are in order about our model. First, we focus on settings in which the
seller has the ability to commit to a price trajectory. Such commitments are observed
in many settings especially at the outset of a new product (see the Windows 7 example
described above) and have been assumed in prior models in the economics literature
on pricing as well as in other games in the form of Stackelberg strategies [10]. Further,
commitment increases revenue: clearly a seller who commits to price trajectories can
extract at least as much revenue as a seller who does not (or can not). We further observe
via example in the full version of the paper that in fact commitment enables a seller to
extract unboundedly higher revenue than in settings without commitment. Second, we
assume a consumer’s payoff is only a function of past purchases; i.e., consumers have
no utility for future purchases. We motivate this in the Windows 7 example by arguing
that bugs are resolved in proportion to usage rates. Of course, strictly speaking, con-
sumers of Windows 7 benefit from future purchases as well via software updates and
the like. However, this forward-looking benefit is substantially dampened in compar-
ison to past benefits by safety and security risks, and time commitments involved in
updates. Another justification for our payoff model comes from consumers’ uncertain-
ties regarding products. In many settings, consumers have signals regarding the value
of a product (say an electronic gadget like the iPad for example), but do not observe
its precise value until the time of purchase. Past purchases and the ensuing online re-
views may help consumers improve their estimates of their values prior to purchase, an
especially important factor for risk-adverse buyers.

We focus on the non-atomic setting in which we have a continuum of consumers
so that each consumer is infinitesimally small and therefore his own action has a neg-
ligible effect on the actions of others. Consumers are drawn from a (possibly infinite)



set of types. These types capture varying behavior among consumer groups. We study a
sequential game in which the seller first commits to a price trajectory and then the con-
sumers simultaneously choose when and whether to buy in the induced normal-form
game among them. We study subgame perfect equilibria. We first observe that equilib-
ria exist due to a slight generalization of a paper of Mas-Colell [8] (see the full version of
the paper). We then turn to the question of uniqueness. We focus on well-behaved equi-
libria in which consumers with non-negative utility always purchase the product (thus
indifferent consumers purchase the product). In general multiple such equilibria may
exist. However, in an aggregate model in which the value function of each consumer
type depends only on the aggregate behavior of the population (i.e., the total fraction
of potential consumers that have bought the product and not the total fraction of vari-
ous types), then we are able to show that when they exist the well-behaved equilibria
of this game are unique in the sense that the fraction of purchases per-type-per-day is
fixed among all equilibria. This enables us to search for the revenue-maximizing price
trajectory. We address this question in settings in which we either have just one type or
there are multiple types whose valuation functions are linear in the aggregate, both of
which are special cases of the aggregate model discussed above. For each price trajec-
tory, we define its revenue to be the amount of money consumers spend on the product.
We then design an FPTAS to find the revenue-maximizing price trajectory for a monop-
olistic seller in these settings. We do this via a reduction to a novel rectangle covering
problem in which we must find the discounted area-maximizing set of rectangles that
fit underneath a given curve.

As an interesting consequence of our result, we find that the revenue maximizing
price trajectory is an increasing and convex function, matching the intuition that the
seller should attract a few early adopters with a low introductory price and then exploit
the value they add by offering high prices to remaining consumers. We also note that
the distribution of sales in the revenue maximizing equilibrium matches this intuition
as well – it is also increasing and convex.

1.1 Related Work

Our work falls in the long line of literature investigating pricing and marketing of prod-
ucts that exhibit externalities [1,2,3,4,5,6,7,9]. Among these, the paper of Bensaid and
Lesne [2] is most closely related to our own work. Bensaid and Lesne [2] analyzed the
two and infinite period pricing problems in the presence of linear historical externali-
ties and they study equilibria of the induced games both with and without commitment.
They observe, as we do, that optimal price trajectories are increasing. The historical
externalities that we study generalize the externalities of Bensaid and Lesne [2], and in
this more general model, we solve for the optimal price sequence for any fixed number
of price periods. Most of the remaining externalities literature studies externalities in
which consumers care about the total population of users of a product and hence their
utility is affected by future sales as well as past sales. Although the phenomenon stud-
ied is different from ours, some of the modeling assumptions in these papers are similar
to ours. For example, in the economics literature, Cabral, Salant, and Woroch [3] also
consider a seller that commits to a price trajectory and then observe that the revenue-
maximizing price sequence with fully rational consumers (playing a Bayesian equilib-



rium) is increasing. Similar to our model, they study the pricing problem in the presence
of a continuum of consumers.

In the computer science literature Akhlaghpour et al. [1] and Hartline et al. [5] study
algorithmic questions regarding revenue maximization over social networks for prod-
ucts with externalities. However, their models assume naive behavior for consumers.
Namely, they assume consumers act myopically, buying the product on the first day in
which it offers them positive utility without reasoning about future prices and sales that
could affect optimal buying behavior and long-term utility. Furthermore, Hartline et
al. [5] allow the seller to use adaptive price discrimination. In contrast, we model con-
sumers as fully rational agents that strategically choose the day on which to buy based
on full information regarding all future states of the world and a sequence of public
posted prices. While the correct model of pricing and consumer behavior probably lies
somewhere between these two extremes, we believe studying fully rational consumers
is an important first step in relaxing myopic assumptions.

2 Model

We wish to study the sale of a good by a monopolistic seller over k days to a set
of potential consumers or buyers. We model our setting as a sequential game whose
players consist of the monopolistic seller and a continuum of potential consumers or
buyers b ∈ [0, 1]. In our game, the seller moves first, selecting a price trajectory
p = (p1, . . . , pk) where pi ∈ < assigning a (possibly negative) price pi to each day
i. The buyers move next, selecting a day on which to buy the product given the com-
plete price trajectory, as described below.

The buyers are partitioned into n types T1, . . . , Tn where each Tt is a subinter-
val of [0, 1].6 The strategy set A = {1, . . . , k} ∪ {∅} indicates the day on which the
product is bought (∅ is used to indicate that the product was not purchased). Hence the
strategy profile of the buyer population can be represented by a (k + 1) × n matrix
X = {Xi,t}i=1,...,k+1;t=1,...,n where entry Xi,t indicates the fraction of buyers that
are of type t and buy the product before day i, and we define X1,t = 0 for all t. Note
that by normalization

∑
tXk+1,t ≤ 1 and 1−

∑
tXk+1,t is the fraction of buyers that

don’t buy the product at any time. Corresponding to this matrix X we also define the
marginal strategy profile matrix x = {xi,t}i=1,...,k;t=1,...,n where xi,t = Xi+1,t−Xi,t

is the fraction of buyers who are of type t and buy on day i. In the special case when
there is only 1 type, we use Xi as a scalar to denote the fraction of buyers who bought
before day i and xi as a scalar to denote the fraction of buyers who buy on day i.

Given a strategy profile X , we define the value of buyers of type t buying on day i
by a value function F t

i (Xi) where Xi is the i’th row of X (hence buyers are indifferent
to future buying decisions). Note the explicit dependence of F on time, which allows
F t
i (Xi) to be different than F t

j (Xj), for i 6= j. The revenue-maximization results in
Section 4 further assume that the dependence of F t

i (Xi) on i is of the form F t
i (Xi) =

βiF t(X) for β ∈ [0, 1]. This special case is of particular interest as the β factor models
settings in which the value degrades over time due to, for example, a reduction in the
novelty of the product.

6 Later, we will generalize this to infinitely many types.



Given a strategy profile X , the payoff of buyers of type t who buy on day i is
defined to be F t

i (Xi) − pi. We additionally allow buyers to have a discount factor α
such that their payoff is (1 − α)i(F t

i (Xi) − pi). Thus α represents the way in which
agents discount future payoffs with respect to present payoffs. We say that a strategy
profile X is a Nash equilibrium of the induced subgame given by price trajectory p,
or equivalently X ∈ NE(p), if for any buyer of type t who buys on day i we have
i ∈ argmaxj(F

t
j (Xj) − pj)(1 − α)j , and the strategy is ∅ whenever the maximum

is negative (in which case the buyer’s payoff is zero). We call an equilibrium well-
behaved if all indifferent buyers buy, i.e., a buyer does not buy if and only if his payoff
(1 − α)i(F t

i (Xi) − pi) is negative on all days 1 ≤ i ≤ k. We say that (p,X) is a
(well-behaved) equilibrium if the profile X is a (well-behaved) Nash equilibrium for
the subgame of price trajectory p. Equivalently, a marginal strategy profile x is a (well-
behaved) Nash equilibrium for the subgame of price trajectory p if for any type t and
day i we have xi,t > 0 only if i ∈ argmaxj(F

t
j (Xj) − pj)(1 − α)j and the value of

this maximum is non-negative.
Given a price trajectory p and a marginal strategy profile x that arises in the subgame

induced by p, we define the payoff of the seller to be the revenue of x for p, which is
R(p, x) =

∑k
i=1

∑n
t=1 xi,tpi(1−α)i. A subgame perfect equilibrium of the sequential

game is then a price trajectory p∗ and a set of marginal strategy profiles xp for each pos-
sible price trajectory p such that: (1) xp is a Nash equilibrium of the subgame induced
by p, and (2) p∗ maximizes R(p, xp). The outcome of this subgame perfect equilibrium
is (p∗, xp∗) and its revenue is R(p∗, xp∗).

We are interested in computing the outcome in a revenue-maximizing subgame per-
fect equilibrium. To do so, we must compute a price trajectory which maximizes the
revenue of the seller in equilibrium. Note that this is equal to finding the best response
of the seller given the strategies {xp} of the buyers. We solve this problem for special
settings in which there exist revenue-maximizing well-behaved equilibria inNE(p) for
any price trajectory p, allowing us to maximize over them. These settings are as follows.
For the purpose of these definitions, we will allow each buyer to have a unique type and
hence there are infinitely many types. We will use b ∈ [0, 1] to denote type of buyer b.

Definition 1. The Aggregate Model: The value function of each type in this model is
a function of the aggregate behavior of the population and is invariant with respect to
the behavior of each separate type. That is, the value function of buyer b is a function
of Xi only, where Xi is a scalar indicating the total fraction of all buyers who buy
before day i. In this instance, we overload the notation for the value function and let
F b
i (Xi) indicate the value of buyer b (hence F b

i (·) now maps the unit interval to the
non-negative reals).

Definition 2. The Linear Model: This is a special case of the aggregate model which is
defined by a function Fi, an initial bias I , and a function C so that the value of buyer
b is F b

i (Xi) = I + C(b) · Fi(Xi). We further define the commonly-known distribution
C : R→ [0, 1] such that C(c∗) indicates the fraction of buyers b with C(b) ≤ c∗.

Definition 3. The Symmetric Model: In this version we only have one type, that is,
F b
i = Fi for all b.



We note that alternatively, one could model this pricing game as a sequential game
with multiple stages where in each day i the seller selects a price pi and then buyers
simultaneously choose whether to buy or not. Such a model is appropriate when it is not
possible for a seller to commit to a price trajectory in advance. Again, in this setting, one
could study the subgame perfect equilibria and analyze the resulting revenue. Clearly
the revenue with commitment is at least as high as that without commitment. Also, there
are examples in which the revenue without commitment can be unboundedly less.

3 Uniqueness of Equilibria

We prove that if there exists a well-behaved equilibrium, that is an equilibrium in which
everyone with non-negative utility buys on some day, then it is unique. We show this
for an infinite number of types in the aggregate model which generalizes both the linear
and symmetric models.

Recall that we allow for each buyer b ∈ [0, 1] to have a unique type in the aggregate
model such that the valuation function of buyer b is F b

i . We will show that in all of
the well-behaved equilibrium points the fraction of people buying on each day is the
same. In turn, it implies that the revenue of all well-behaved equilibrium points is the
same and hence the well-behaved equilibria are revenue-unique. In what follows, we
consider the equilibria of a fixed price sequence p. We start with a definition: Consider
two well-behaved equilibria x and y. Partition the set of k days to two sets as follows:
We call a day i a level 1 day, and denote it by i ∈ D1(x, y), if Xi < Yi. Otherwise, if
Xi ≥ Yi, we call i a level 2 day and denote it by i ∈ D2(x, y).

Lemma 1. Assume that there exist two distinct well-behaved equilibria x and y. Then
there exists a buyer whose strategy in x is a day i such that i ∈ D1(x, y) and whose
strategy in y is j ∈ D2(x, y).

Theorem 1. Let F b
i (X) be a strictly increasing function for each buyer b and day i. For

a price sequence p and two well-behaved equilibrium points x and y, we haveXi = Yi,
i.e. the fraction of buyers who have bought the product before day i is unique.

Proof. Assume for contradiction that we have two well-behaved equilibrium points x
and y and a day i for which Xi 6= Yi. Again assume without loss of generality that
Xi < Yi. By lemma 1 we know that there exists a buyer b who buys on a level 1 day in
x and buys on a level 2 day in y. Assume that b buys on day i in x and on day j in y.
Then F b

i (Xi) − pi ≥ F b
j (Xj) − pj and F b

j (Yj) − pj ≥ F b
i (Yi) − pi. Adding the two

inequalities we get: F b
i (Xi) + F b

j (Yj) ≥ F b
j (Xj) + F b

i (Yi). On the other hand since
i is a level 1 day, Xi < Yi; hence by monotonicity F b

i (Xi) < F b
i (Yi). Since j is a

level 2 day, Xj ≥ Yj ; hence F b
j (Yj) ≤ F b

j (Xj). The addition of these two inequalities
contradicts the previous one.

4 Revenue Maximization

In this section, we solve the revenue-maximizing problem in two special cases: the
discounted version of the symmetric model, and the general linear model without dis-
count factors. In both cases, we provide an FPTAS to compute the revenue-maximizing



price sequence. We do this by first showing that in both cases, the revenue maximiz-
ing equilibria are well-behaved ones, and then considering the problem of maximizing
over well-behaved equilibria. We characterize the set of well-behaved equilibria in each
section, and then use novel reductions of the problem into a new problem, called the
Rectangular Covering Problem (RCP). The RCP is to maximize the discounted area
covered by a certain number of rectangles that are fit under a given curve.

Definition 4. Rectangular Covering Problem (RCP) Given an increasing function F
and an integer k, find a sequence p of size at most k that maximizes the discounted total
area of the rectangles fit under the graph of F , that is, p ∈ argmaxp′

∑
t(F
−1(p′t+1)−

F−1(p′t))p
′
tγ

t.

We provide an FPTAS for the RCP in the full version of the paper. Given the re-
ductions from the revenue maximization problem to rectangular covering problem, this
directly gives us FPTASs for the two versions of the problem.

4.1 Symmetric Setting

We start by characterizing the equilibria. Since all players in this model have the same
valuation function F , the marginal strategy profile matrix will reduce to the vector
x = (x1, . . . , xk). Also, fixing p and x, the utility of buyer b for the item on day i is
F b
i (Xi) = F (Xi)β

i(1−α)i−pi(1−α)i, and the revenueR(p, x) =
∑

i xipi(1−α)i.
By renaming qi = pi(1 − α)i and γ = β(1 − α), the utility of buyer b for the item on
day i will be F (Xi)γ

i − qi, and the revenue becomes
∑

i xiqi. Using this new nota-
tion, we may assume without loss of generality that the only discount factor is γ. For
convenience, we use p for the discounted prices q.

Since we only have one type in this model, we know that the utility of buying in
day i is equal among all players. We use the term utility of a day i, denoted by ui,
for ui = F (Xi)γ

i − pi. Define u(p, x) = maxi ui. Consider a price sequence and its
equilibrium strategy profile x. We get the following properties immediately from the
facts that players are utility maximizing: (i) players are allowed to choose inaction and
have utility zero, (ii) they choose to buy if there is a day with a strictly positive utility.
First, if there is an i with xi > 0, then u(p, x) ≥ 0 and ui = u(p, x). Second, if there is
a day i with xi > 0, then

∑k
i=1 xi = 1.

Lemma 2. Let p̂ be the revenue-maximizing price vector that results in equilibrium x̂.
Then u(p̂, x̂) = 0.

We use lemma 2 to find a closed form for the revenue of a price sequence. Assume
that there is a price sequence p with equilibrium x and u(p, x) = 0 such that for some
day i, we have xi = 0 and xi+1 > 0. Then we can define a new price sequence p̃ which
is equal to p except that p̃j = pj+1/γ for each j ≥ i. Also define the vector x̃ to be
equal to x except that x̃j = xj+1 for each j ≥ i, and x̃k = 0. One can observe that
the pair (p̃, x̃) is an equilibrium with no less revenue. So we can assume WLOG that
for a revenue maximizing price sequence p̂ associated with x̂, there exists a k′ ≤ k
such that xi 6= 0 if and only if i ≤ k′. For such a price sequence, lemma 2 shows that
F (Xi)γ

i − pi = 0 for each 1 ≤ i ≤ k′. As a result, we have Xi = F−1(pi/γ
i), which



is well-defined as F is increasing. Now set p′t = pt/γ
t. The fraction of people buying

on day i and paying price pi is equal to xi = F−1(p′i+1) − F−1(p′i). So the revenue
is

∑
i xipi =

∑
i(F
−1(p′i+1) − F−1(p′i))p

′
iγ

i. The revenue maximization problem
therefore reduces to the rectangular covering problem.

4.2 Linear Version

Similar to the symmetric model, we reduce the linear model to rectangular covering
problem by first characterizing the set of well-behaved equilibria. The sketch of this
more technical proof is as follows. We show that in each equilibria all the purchases
are sorted by the Cb coefficient, i.e., a player with a lower Cb buys earlier than one
with higher such coefficient. We then argue that each equilibria is characterized by a se-
quence of thresholds (s1, s2, . . . , sk) such that each person b with Cb ∈ [si−1, si] buys
in day i. The problem is then to optimize the sequence (s1, s2, . . . , sk) to maximize
revenue. Using this characterization, we provide a closed form of the optimum revenue
in the following lemma.

Lemma 3. If x and p correspond to the revenue-maximizing equilibrium, the total rev-
enue can be expressed by the following formulaR(p, x) = I+

∑k
i=2(1−Xi)C−1(Xi)×

(F (Xi)− F (Xi−1)).

We then show how this problem can be reduced to RCP in the following lemma.

Lemma 4. The problem of maximizing
∑k

i=2(1 − Xi)C−1(Xi)(F (Xi) − F (Xi−1))
can be reduced to the Rectangular Covering Problem.
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