
How to Extend Visibility Polygons by Mirrors to
Cover Invisible Segments

Arash Vaezi? and Mohammad Ghodsi??

Sharif University of Technology

Abstract. Given a simple polygon P with n vertices, the visibility poly-
gon (VP) of a point q (VP(q)), or a segment pq (VP(pq)) inside P can be
computed in linear time. We propose a linear time algorithm to extend
VP of a viewer (point or segment), by converting some edges of P into
mirrors, such that a given non-visible segment uw can also be seen from
the viewer. Various definitions for the visibility of a segment, such as
weak, strong, or complete visibility are considered. Our algorithm finds
every edge such that, when converted to a mirror, makes uw visible to
our viewer. We find out exactly which interval of uw becomes visible, by
every edge middling as mirror, all in linear time.

1 Introduction

Many variations of visibility polygons have been studied so far. In general, we
have a simple polygon P with n vertices, and a viewer which is a point (q), or a
segment (pq) inside P. The goal is to find the maximal sub-polygon of P visible
to the viewer (VP(q) or VP(pq)). There are linear time algorithms to compute
VP(q) ([7]) or when the viewer is a segment [5].

It was shown in 2010 that VP of a given point or segment can be computed
in presence of one mirror-edge in O(n) [6]. Also, it was shown in the same paper
that the union of two visibility polygons can be computed in O(n).

We consider different problems of finding every edge e such that when con-
verted to a mirror (and thus called mirror-edge) can make at least a part of a
specific invisible segment visible (also called e-mirror-visible) to a given point or
segment. We propose linear time algorithms for these problems. Considering a
segment as a viewer, we deal with all different definitions of visibility, namely,
weak, complete and strong visibility, which was introduced by [3]. Also, we can
easily find mirror-visibile intervals of the invisible segment (uw) considering all
edges as mirrors in linear time corresponding to the complexity of P.

This paper is organized as follows: In Section 2, notations are described. Next
in Section 3, we present a linear time algorithm to recognize every mirror-edge

? Department of Computer Engineering, Sharif University of Technology,
avaezi@ce.sharif.edu

?? Department of Computer Engineering, Sharif University of Technology, and In-
stitute for Research in Fundamental Sciences (IPM), Tehran, Iran. This au-
thor’s research was partially supported by the IPM under grant No: CS1392-2-01,
ghodsi@sharif.edu

e of P that makes a given segment uw e-mirror-visible to q. In Section 4 we
will show that e-mirror-visible interval of uw to q can be computed in constant
time. In Section 5, we deal with a given segment instead of a point. And finally,
Section 6 contains some discussions and future works.

2 Notations and assumptions

Suppose P is a simple polygon and int(P) denotes its interior. Two points x and
y are visible to each other, if and only if the open line segment xy lies completely
in int(P). The visibility polygon of a point q in P, denoted as VP(q), consists
of all points of P visible to q. Edges of VP(q) that are not edges of P are called
windows. The weak visibility polygon of a segment pq, denoted as WVP(pq), is
the maximal sub-polygon of P visible to at least one point (not the endpoints)
of pq. The visibility of an edge e = (vi, vi+1) of P can be viewed in different
ways [3]: P is said to be completely visible from e if for every point z ∈ P and
for any point w ∈ e, w and z are visible (denoted as CVP short from completely
visible polygon). Also, P is said to be strongly visible from e if there exists a
point w ∈ e such that for every point z ∈ P, w and z are visible (SVP). These
different visibilities can be computed in linear time (see [5] for WVP and [3] for
CVP and SVP).

Suppose an edge e of P is a mirror. Two points x and y are e-mirror-visible,
if and only if they are directly visible with one specular reflection through a
mirror-edge e. Specular reflection is the mirror-like reflection of light from a
surface, in which light from a single incoming direction is reflected into a single
outgoing direction. The direction in which light is reflected is defined by the
law-of-reflection, which states that the incident, surface-normal and reflected
directions are coplanar.

Since only an interval of a mirror-edge is useful, we can consider the whole
edge as a mirror, and there is no need to split an edge.

We assume that n vertices of P are ordered in clockwise order (CWO).

3 Expanding point visibility polygon

We intend to find every mirror-edge e of P that causes a given point q see any
interval of a given segment uw inside P. We will find the exact interval of uw
which is e-mirror-visible to q for every mirror-edge e of P in the next section.

3.1 Overview of the algorithm

Obviously, any potential mirror-edge e that makes uw visible to q should lie on
VP(q)∩WVP(uw) which can be computed in linear time. If the goal is to check
e-mirror-visibility of the whole uw, we should instead compute the complete
visibility polygon of uw (i.e. VP(q) ∩ CVP(uw)).

Suppose that e is intersected by VP(q) ∩WVP(uw) from v1(e) to v2(e) in
CWO . We use this part of e as mirror. We will find out whether any part of uw

is e-mirror-visible. Let L1(e) and L2(e) be two half-lines from the ray-reflection
of q at v1(e) and v2(e) respectively. Also let q′(ei) be the image of q considering
ei from v1(ei) to v2(ei) (ei is the ith potential mirror-edge in CWO).

q
LBV (e)

RBV (e)

v2(e)

P

v1(e)

u

w

q′(e)

L2(e)

Visible region through the mirror

L1(e)

e

Fig. 1. The region between L1(e) and L2(e) is the visible area by q through e being a
mirror from v1(e) to v2(e).

If uw intersects the region between L1(e) and L2(e) and no part of P ob-
structs uw, then uw is e-mirror-visible (see Figure 1). Since P is simple, e-mirror-
visibility can only be obstructed by reflex vertices.

For each mirror-edge e, we define LBV(e) (for Left Blocking Vertex of e) and
RBV(e) (for Right Blocking Vertex of e) as below. In Subsection 3.2.2, we will
prove that no other reflex vertex can block e-mirror-visibility area except for
these two reflex vertices.

3.2 LBV s and RBV s

Definition 1. Assume that p1, p2, . . . , pk are the reflex vertices we meet when
tracing WVP(uw) starting from u in CWO before we reach a mirror-edge e. We
define LBV (e) to be that vertex pj such that if pjq′(e) (i.e. from pj to q′(e)) holds
all other pi (i 6= j 1 ≤ i ≤ k) reflex vertices on its left side. In another word, if we
move from pj to q′(e) all other pi reflex vertices are on our left side (see Figure
6 in Appendix). If more than one vertex has this property, we choose the one
with the lowest index. If no such vertex exits, we set v1(e) as LBV (e). RBV (e)
is defined similarly when we trace WVP(uw) from w in counter-clockwise order
(CCWO).

Different mirror-edges may have the same LBVs or RBVs. And, obviously
through Definition 1, for each mirror-edge e, LBV (e) and RBV (e) is unique.

Algorithm 1 (to check whether q can see any interval of uw through
mirror-edge e).
Assuming that e, from v1(e) to v2(e) is in VP(q) ∩WVP(uw) and L1(e) and
L2(e) are as defined above, the following cases are considered:

1. If L1(e) and L2(e) both lie in one side of uw, then uw is not in the e-mirror-
visible area. That is, q cannot see uw through e.

2. Otherwise, if uw is between L1(e) and L2(e). I.e., it is in the middle of the
mirror-visible area, q can see uw through the mirror-edge e. Because e is
visible to uw, and the visibility area from L1(e) to L2(e) is a continuous
region.

3. Otherwise, L1(e) or L2(e) crosses uw. In this case, we check whether any part
of P, obstructs the whole visible area through e (In case of CVP(uw), it is
sufficient to check L1(e) and L2(e) not to cross uw, except in its endpoints.)
For this, it is checked whether P blocks the rays from the right or left side
of e. If LBV (e) lies on the left side of L2(e), and RBV (e) lies on the right
side of L1(e), then q can see uw through e.
Otherwise, q and uw are not e-mirror-visible.

Obviously, collision checking of a constant number of points and lines can be
done in O(1) for any mirror-edge.

Computing LBV and RBV vertices

Algorithm 2. First consider the computation of LBV vertices. We already
know that the potential mirror-edges lie in VP(q)∩WVP(uw). To make an easy
understanding, these edges are numbered in CWO as e1, e2,

Considering WVP(uw) we construct a new polygon by adding q′(ei)v1(ei)
and q′(ei)v2(ei) to each mirror-edge ei, and eliminating v1(ei)v2(ei) interval from
ei.

We call this polygon TP(uw) (Tracing Polygon). Obviously, TP(uw) may
not be a simple polygon, and has O(n) vertices corresponding to the complexity
of P (see Figure 7 in Appendix).

Starting from u (the left endpoint of uw) we trace TP(uw) in clockwise order.
While doing so, we construct a convex shape on the reflex vertices of P we visit,
using an algorithm similar to Graham’s scan [4] in P’s order of vertices. We
consider u as one reflex vertex.

As we meet a new reflex vertex, we push the line containing the new con-
structed edge of the convex shape into a stack named S and update the stack
as we move forward. When q′(ei) of a mirror-edge ei is reached in our trace,
q′(ei) is compared with the line on the top of the stack called `. If q′(ei) lies
on the right side of `, ` is popped from S. Otherwise, if q′(ei) lies on, or on
the left side of `, then we assign ` as the chosen line for ei, denoted as cl(i).
` (Top(S)) is then check with q′(ei+1), q′(ei+2), . . . , to become their possible

w

p4

q

p2

p5

p1

v2(e2)
v1(e3)

v1(e4)

v2(e3)

v2(e1)
v2(e4)v1(e2)

v1(e1)

p3

p6
On the Line

q′(e3)

u

Fig. 2. Updating the convex shape while tracing TP(uw) and facing with new reflex
vertices. p5 is chosen as LBV (e1), p3 and p2 as LBV (e2) and LBV (e3), respectively. If
we consider u for the fourth mirror-edge, first we select p1. But, later we should change
LBV (e4) to be v1(e4), because p1 cannot block the e4-mirror-visibility.

chosen lines, or popped up. If the stack is empty when we visit q′(ei), we assign
LBV (ei) = v1(ei).

Obviously, when a new reflex vertex is met, the convex shape and the stack
is updated accordingly (see Figure 2) and the algorithm continues.

See Figure 3, for an example. Here, the stack contains 3 lines (`1, `2, `3, the
last on top) when we reach v1(e1). We check q′(e1) with `3, which is on Top(S),
to see if it has q′(e1) on its left. If q′(e1) lies on the right, then q′(e1) is checked
with `2. Here, cl(1) = `3.

At the end, for each mirror-edge ei, we consider the two reflex vertices of cl(i),
say re1 and re2 (in CCWO). If q′(ei) lies on the left of cl(i), then LBV (ei) = re2.
Otherwise, it lies on cl(i), then LBV (ei) = re1. If there are more than two reflex
vertices consider the last on cl(i) (re1).

The RBV vertices are computed similarly by tracing TP(uw) in counter-
clockwise direction starting from w.

At the end, since there may be some false vertices chosen as LBV or RBV
vertices, we will trace WVP(uw) in both directions to correct these cases. First

w

v2(e2)
v1(e3)

p3

v2(e3)

p6

p4

p2

v2(e4)

v1(e1)

v2(e1)

p5

`3 = p3p5

`2 = p2p3

`1 = p1p2

p1

v1(e2)

WV P (uw)

q

v1(e4)

q′(e1)

q′(e2)

q′(e3)

u

Fig. 3. Constructing the convex hull to distinguish LBV vertices for all mirror-edges.
p1, p2, p3 and p5 are the reflex vertices that are used in the convex hull construction.
Four mirror-edges e1 to e4 are shown. In this figure, p5 is LBV(e1) .

each LBV (ei) chosen by previous algorithm is compared with the segment d =
v2(ei)u. If LBV (ei) lies on the left side of d, or if LBV (ei) = u, then LBV (ei) was
falsely chosen since it is not obstructing the mirror-visibility area. The correction
is made in this case by setting LBV (ei) = v1(ei). We proceed similarly for RBV
vertices in the other direction.

Obviously, all these operations can be performed in O(n) time. For more
justification, do not consider the stack and see what happens to the lines (see
[1] for more details).

Proof of correctness and analysis of the algorithm In this Subsection we
present the proof and the analysis of the algorithm.

Theorem 1. Suppose P is a simple polygon with n vertices, q is a given point
inside P, and uw is a given segment which is not directly visible by q. Every
edge e that makes uw e-mirror-visible to q can be found in O(n) time.

Remark1. We will prove this theorem assuming that uw is a diagonal of P.
Since the assertion that uw is actually a diagonal is not used in the proof, the
stated proof holds for any segment inside P. To start tracing TP(uw), instead
of the endpoints of the diagonal, we can use one endpoint of the closest edge of
P to the given segment. Let at least one endpoint of this edge be upon the given
segment inside the polygon.

Remark2. Note that the algorithm covers some situations where uw does not
have their endpoints on the boundary of P. In these cases there might be some
mirror-edge e which can see uw from its behind. In another word, e may see a
part of the invisible target segment from w to u, and w is on the left side of the
e-mirror-visible interval when we are standing on uw and facing to e (see Figure
9 in Appendix). And, we need to swap the position of u and w and run the
above-mentioned algorithms one more time to see if these kind of mirror-edges
exist that may make an interval of the target mirror-visible to q. So, we need to
use wu instead of uw. And, we need to run all above-mentioned algorithms one
more time using wu, which takes an additional O(n) time complexity. Note that
these two runs do not have any conflict with each other, and they find absolutely
independent mirror-edges. This is because, a mirror-edge e which sees uw from
behind will be eliminated in the first run. And this is because, in the first run,
using uw, w is placed on the left side of L1(e), and e will be eliminated through
case 1 of Algorithm 1. Without lost of generality, for simplicity we assume that
no mirror-edge can see uw from behind.

Proof. 1. The algorithm correctly computes all LBV ’s and RBV ’s in O(n).
This is clear from Definition 1 and Algorithm 2. This algorithm constructs
two convex hulls.

2. Algorithm 1 correctly checks whether each mirror-edge e can make at least a
part of the given segment uw e-mirror-visible to q. For this, we only need to
prove that the algorithm is correct if case 3 occurs. Other cases are obvious.
That is, if L1(e) or L2(e) or both cross uw, and if LBV (e) = pj does not cross
L2(e) where we decide that uw is e-mirror-visible from q, then no other reflex
vertices can completely obstruct the e-mirror-visible area. Suppose on the
contrary, that another vertex pl completely obstructs the visible area while
pj does not. In this case, q′(e)pl is on the right side of L2(e) and thus is on the

right side of q′(e)pj which contradicts pj being LBV (e). Similar arguments
hold for RBV . We can also prove that no other reflex vertices (other than
the left and right chains that appear when we trace the WVP(uw)) can
obstruct the visibility.

4 Specifying the visible part of uw

In this section we present an algorithm to determine the visible interval of the
given segment (uw) which is e-mirror-visible by middling of a given mirror-edge
(e).

Lemma 1. We have a simple polygon P, a point q as a viewer, and a segment
uw, inside P. In linear time corresponding to the complexity of P, for every
mirror-edge e, we can compute the exact interval of uw that is e-mirror-visible.

Proof. We will show for a specified mirror-edge e, while we have LBV (e), we
can find e-mirror-visible part of uw in constant time. Therefore, it takes O(n)
time to distinguish the visible intervals of uw, for every mirror-edge.

Consider a mirror-edge e, without loss of generality suppose we know uw is
e-mirror-visible. We can find the visible part of uw using the following algorithm:

Algorithm 3 (to find the visible part of uw through mirror-edge e).
Let u′(e) and w′(e) corresponding to u and w, be the endpoints of the visible
interval of uw, respectively.

Note that Algorithm 2 provides all LBV and RBV vertices of all mirror-
edges.

1. If LBV (e) = v1(e): Then the intersection of L1(e) and uw determines u′(e).
Clearly, if L1(e) places in the left side of uw then u itself is u′(e).

2. If LBV (e) 6= v1(e): If LBV (e) does not lie on the right side of L1(e), then
again the intersection of L1(e) and uw determines u′(e). Otherwise,

we compute the intersection of the protraction of q′(e)LBV (e) and uw. The
intersection point is u′(e).

Acting the same way we can find w′.

Correctness and analysis of Algorithm 3

First step is obvious because there is nothing to obstruct the mirror-visibility
area, and it takes constant time. About the second step, if LBV (e) lies–on or–
on the left side of L1(e), the intersection point of L1(e) and uw is u′(e). Note
that we know L1(e) is not in the right side of w because we knew uw is e-mirror-
visible to q. If LBV (e) lies on the right side of L1, then from Definition 1 we
know LBV (e) is e-mirror-visible. We only need to prove that the protraction of
q′(e)LBV (e) determines u′(e). There may be several reflex vertices on the right
side of L1(e). Suppose on the contrary, u′′(e), the intersection of uw and q′pj
(pj 6= LBV (e) is a reflex vertex on the right side of L1), is closer to u. Then, the

line q′pju′′(e) must be on the right side of LBV (e), which contradicts Definition
1 (see Figure 8 in Appendix).

Since no direction for L1(e), or property of q being in the left side of e was
used, the same proof holds for RBV (e) .

5 Extending a segment visibility polygon

In this section, we deal with different cases of the problem of making two invisible
segments mirror-visible to each other.

Lemma 2. We are given a simple polygon P and two segments, say xy and uw,
inside P. Assume that uw is not visible to xy. For every mirror-edge e, we can
find out if uw is weakly, completely, or strongly mirror-visible to xy, in linear
time corresponding to the complexity of P.

Proof. To prove Lemma 4 we simply use Algorithm 1 in Section 3. Here, as
we deal with a segment as a viewer, we encounter more difficulties than the
previous sections. For instance, we need to consider different vertices in place
of v1(e), or v2(e) in Algorithm 1. And, to find these verices the intersection of
different visibility polygons maybe required. Also, different half-lines may be as
replacement for L1(e) and L2(e).

We have the following cases:

1. The whole xy can see the whole uw.
2. The whole xy can see at least one point of uw.
3. xy can see the whole uw in a weak visible way.
4. At least one point of xy can see at least one point of uw.

We deal with these cases in the following subsections. Without loss of generality,
consider a mirror-edge e on P. In each subsection, we find appropriate substitutes
for v1(e), v2(e), L1(e), and L2(e).

5.1 The whole xy can see the whole uw

First, we compute the intersection visibility polygon of the endpoints of xy (x
and y). Then, while tracing the completely visibility polygon of uw (CVP(uw)),
we select the common part of each edge with the intersection visibility polygon
of the endpoints. As a result, we have v1(e) and v2(e) for every mirror-edge e.
Obviously, this step only takes O(n) time complexity.

Consider x as a viewer, let the reflective ray from v1(e) be L1,x(e), and the
reflective ray from v2(e) be L2,x(e). Similarly, we define L1,y(e) and L2,y(e).

We should use L1,x(e) as L1(e), and L2,y(e) as L2(e) in Algorithm 1. Since
we know any potential mirror-edge from v1(e) to v2(e) is completely visible for
xy, it is sufficient to check L1,x(e) to lie in the left side of u, and L2,y(e) to lie in
the right side of w.

5.2 The whole xy can see at least one point of uw

In this subsection, we want to find out if there is any point on uw which is
e-mirror-visible to the whole xy.

We can use a method similar to the previous subsection, only now the strongly
visibility polygon of uw (SVP(uw)) is required. We use L1,x(e) as L1(e), and
L2,y(e) as L2(e).

Considering SVP(uw), there is an interval or at least a point on uw which
holds the property of being strongly visible.

For the last step, we need to find out if this point or segment has intersection
with the interval from u′(e) to w′(e).

5.3 xy can see the whole uw in a weak visible way

There may be no point on xy to see the whole uw by itself. Here, we want to
find out if uw is completely e-mirror-visible considering all the points on xy.

We use the intersection of WVP(xy) and CVP(uw), to find all the potential
mirror-edges (v1 and v2 vertices).

Since we deal with the weak visibility polygon, we may face some mirror-
edges which are visible to none of the endpoints of xy, but to an interval of xy in
the middle. We need to find this interval for each mirror-edge. In fact different
mirror-edges may have different points on xy, to make their L1 and L2 half-lines.
It is sufficient to check these half-lines with the endpoints of uw to make sure
that the mirror-visibility region covers uw completely.

For a specific mirror-edge ei, let x(ei) and y(ei) be the points on xy corre-
sponding to x and y respectively. We can use the ray reflection of x(ei) on ei as
L1(ei), and the ray reflection of y(ei) as L2(ei) in Algorithm 1. In O(n) time we
can find these points on xy for all mirror-edges through the following way:

Definition 2. Consider a potential mirror-edge e (from v1(e) to v2(e)) such
that there are two reflex vertices that block the visibility of a portion of xy before
v1(e) and after v2(e) in P’vertex order. Define r1(e) and r2(e) to be these reflex
vertices, respectively.

Obviously, if there is no r1(e) or r2(e) then there is no obstruction, and we
can use corresponding v1(e) and v2(e), to find L1(e) and L2(e).

See Figure 4, in this figure we have r1(e) and r2(e) vertices. The blue sub-
segment of xy can see e completely, but all the points –from x(e) to the blue
sub-segment, and from the blue sub-segment to y(e)– cannot see at least some
part of e. For the points on the other side of these yellow points, e is not visible.
The reflected rays from e ,which is between the green half-lines, is the area which
segment xy can see, in a weak visible way, through e. We call these half-lines
L1,y(e) and L2,x(e).

In order to find x(e) and y(e), we only need r1(e) and r2(e), because we
can protract v2(e)r1(e) and v1(e)r2(e) to find their intersection with xy. The
intersection points are x(e) and y(e).

Suppose there are m potential mirror-edges, we should find r1(ej) and r2(ej)
1 ≤ j ≤ m. The idea is similar to Algorithm 2.

Computing r1(e) and r2(e) reflex vertices for all mirror-edges:

To compute these reflex vertices we use two convex shapes over the reflex
vertices in two directions. For a particular mirror-edge e, r1(e)v2 should hold
all left-side reflex vertices on its left, and of course r2(e)v1 should hold all the
right-side reflex vertices on its right. Note that it is not important if there were
more than one reflex vertex on either r1(e)v2 or r2(e)v1 (see Figure 5).

In this subsection, we use L1,y(e) and L2,x(e) instead of L1(e) and L2(e) re-
spectively. Also, while using Algorithm 2, we need CVP(uw) in place of WVP(uw)
to construct TP(uw) .

v2(e)

x
r1(e)

r2(e)

ev1(e)

x(e)

y(e)

L2,x(e)

L1,y(e)

y

Fig. 4. r1(e), r2(e), x(e) and y(e) are shown for mirror-edge e.

5.4 At least one point of xy can see at least one point of uw

Here we can behave similar to the previous subsection except that we need
WVP(xy)∩WVP(uw) to find potential mirror-edges. And, considering a mirror-
edge e, we use L1,x(e) and L2,y(e) half-lines to be used in Algorithm 1.

Also, we need WVP(uw) in the construction of TP(uw) because it is sufficient
to make e-mirror-visible any point on xy to any point on uw.

6 Discussion

We dealt with the problem of extending the visibility polygon of a given point
or a segment in a simple polygon, so that another segment becomes visible to
the viewer.

We tried to achieve this purpose by converting some edges of the polygon to
mirrors. The goal is to find all such kind of edges, and the mirror-visible part
of the target segment by each of these edges individually. Using the algorithm
we proposed, this can be done in linear time corresponding to the complexity of
the simple polygon.

We covered all the possible types of visibility when we dealt with a given
segment as a viewer, and we wanted to extend its visibility to see another given
segment. We proved all the possible cases need just O(n) time.

We only discussed finding the edges to be mirrors, but it is shown that having
two mirrors, the resulting visibility polygon, may not be a simple polygon [7].
Also, having h mirrors, the number of vertices of the resulting visibility polygon,
can be O(n + h2), and for h mirrors, each projection, and its relative visibility
polygon can be computed in O(n) time, which leads to overall time complexity
of O(hn).

v2(e)

x

y

ev1(e)

x
′

y
′

Convex Shape

L2,x
′

r1(e)

r2(e)

Fig. 5. Constructing convex shape similar to Algorithm 2.

The problem can be extended as; put mirrors inside the polygon, a point
with a limited visibility area, find some edges which can give the point a specific
vision or different visions and so on.

References

1. A. Vaezi, M. Ghodsi. Extending Visibility Polygons by Mirrors to Cover Specific
Targets. EuroCG2013, 13–16, 2013.

2. B. Aronov, A. Davis, T. Day, S. P. Pal, D. Prasad. Visibility with one reflection.
Discrete & computational Geometry, 19: 553–574, 1998.

3. D. Avis, G. T. Toussaint. An optional algorithm for determining the visibility of
a polygon from an edge. IEEE Transactions on Computers, C-30: 910-1014, 1981.

4. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf Computational Geom-
etry Algorithms and Applications. Springer, third edition Department of Computer
Science Utrecht University, 13,14 2008.

5. L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time
algorithms for visibility and shortest path problems inside triangulated simple
polygons. Algorithmica, 2: 209–233, 1987.

6. B. Kouhestani, M. Asgaripour, S. S. Mahdavi, A. Nouri and A. Mohades. Visibility
Polygons in the Presence of a Mirror Edge. In Proc. 26th European Workshop on
Computational Geometry, 26: 209–212, 2010.

7. D. T. Lee. Visibility of a simple polygon. Computer Vision, Graphics, and Image
Processing, 22: 207–221, 1983.

Appendix

u

w

q

p1

p2

p3

p4

p5

v2(e2)
v1(e3)

v2(e3)

p6

v2(e1)v1(e2)

v1(e1)

q′(e1)

Fig. 6. From Definition 1, vertex p5 is LBV (e1).

w

v2(e2)
v1(e3)

p3

p6

p2

v2(e1)

p5

p1

v1(e2)

q

q′(e1)

q′(e2)

q′(e3)

u

v2(e3)

v1(e1)

TP (uw)

p4

Fig. 7. Constructing TP(uw), which is useful to distinguish LBV vertices for all mirror-
edges. p1, p2, ... ,p6 are the reflex vertices of P.

q

p1

p2

p3

p4

p5

u

w
u′(e2)

p′3

v1(e1)

v2(e1)

v2(e2)v1(e2)

q′(e2)

Fig. 8. p3 = LBV (e2), and the intersection of the protraction of q′(e2)p3 and uw is
u′(e2).

u

w

q

e

new − w

new − u

Fig. 9. Mirror-edge e sees uw from its behind. And, we need to replace w with u and
run all algorithms one more time in order to find these kinds of mirror-edges.

