1 + € Approximation of Tree Edit Distance in Quadratic Time'"

Mahdi Boroujeni
Sharif University of Technology
Tehran, Iran
safarnejad@ce.sharif.edu

MohammadTaghi Hajiaghayi*
University of Maryland
College Park, MD, USA

hajiagha@cs.umd.edu

ABSTRACT

Edit distance is one of the most fundamental problems in computer
science. Tree edit distance is a natural generalization of edit dis-
tance to ordered rooted trees. Such a generalization extends the
applications of edit distance to areas such as computational biology,
structured data analysis (e.g., XML), image analysis, and compiler
optimization. Perhaps the most notable application of tree edit dis-
tance is in the analysis of RNA molecules in computational biology
where the secondary structure of RNA is typically represented as a
rooted tree.

The best-known solution for tree edit distance runs in cubic
time. Recently, Bringmann et al. show that an O(n?-°?) algorithm
for weighted tree edit distance is unlikely by proving a conditional
lower bound on the computational complexity of tree edit distance.
This shows a substantial gap between the computational complexity
of tree edit distance and that of edit distance for which a simple
dynamic program solves the problem in quadratic time.

In this work, we give the first non-trivial approximation algo-
rithms for tree edit distance. Our main result is a quadratic time
approximation scheme for tree edit distance that approximates the
solution within a factor of 1 + € for any constant € > 0.
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1 INTRODUCTION

Edit distance is one of the most fundamental problems in combinato-
rial optimization. It has been subject to many studies since the 60’s
and even after 50 years, some of the questions regarding its com-
putational complexity are still open. Two natural generalizations
of edit distance are tree edit distance and language edit distance.
While the known algorithmic results for tree edit distance have
been mostly basic and unexciting, recent developments have been
very fruitful for language edit distance [12, 25, 30]. In this work,
our focus is on approximation algorithms for tree edit distance and
present the first non-trivial results for this problem.

Tree edit distance was first introduced by Selkow [31] in the
late 70’s. Since then, tree edit distance has found its applications in
various areas such as computational biology [9, 21, 32, 38], struc-
tured data analysis (e.g., XML) [13, 16, 18], image analysis [14], and
compiler optimization [17]. Perhaps the most notable application
of tree edit distance is in the analysis of RNA molecules in compu-
tational biology where the secondary structure of RNA is typically
represented as a rooted tree [21, 23].

While in edit distance, the goal is to transform a string s into
another string s, in tree edit distance the goal is to transform a
rooted tree T into another rooted tree T using the least number of
edit operations. We assume that both trees T and T are rooted, and
there is a left-to-right order between the sibling nodes. Moreover,
every node has a label which identifies the type of the node. The
elementary operations are node deletion, node addition, and node
relabel. In node deletion, we remove a node r and replace it with all
of its children, preserving their order. The reverse of node deletion
is node addition which allows us to select a consecutive set of
siblings and bring them under a new node r which appears at the
previous position of the relocated nodes. In node relabel, we simply
modify the label of an existing node.
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The computational aspect of the problem is also widely studied.
Tai [36] gives the first solution for tree edit distance that runs in
time O(n®) where n is the total number of nodes in both trees. This
was later improved in a series of works to an O(n*) algorithm [39],
and an O(n? log n) algorithm [27]. Finally, Demaine et al. provide
an O(n®) time algorithm [17]. Very recently, the seminal work of
Bringmann et al. [11] proves that the cubic running time barrier
for weighted tree edit distance cannot be beaten unless APSP! ad-
mits a truly subcubic time solution and weighted k-clique? admits
an O(nk~€) time solution. The existence of such a lower bound
was previously conjectured by Abboud [1] in a set of seven open
problems. Also, an O(ndmax>) algorithm is proposed by Touzet [37]
that is subcubic when the distance between the two trees is small
(dmax here denotes an upper bound on the solution size). Despite
these studies, the literature on tree edit distance is quite poor con-
cerning approximation solutions. The only relevant results are the
O(n3/*) and O(hmayx) approximation algorithms of Akutsu et al. [2]
for degree-bounded trees that run in time O(n%). hmax here de-
notes an upper bound on the heights of the two trees. A quadratic
time algorithm with approximation factor O(n?/3) follows from
the algorithm of Touzet [37] by solving the problem for instances

whose distance is smaller than n!/3

and reporting a solution of
O(n) for instances with a distance of at least n!/. In contrast to
tree edit distance, approximation algorithms for edit distance have
been subject to many studies [4, 5, 7, 8, 22, 24, 28], culminating
in a poly(log) approximation algorithm in linear time. Recently, a
quantum algorithm is given for edit distance that approximates the
solution within a constant factor in truly subquadratic time [10] by
exploiting triangle inequality. Subsequent work discovers a novel
classic replacement for the quantum techniques and obtains a truly
subquadratic time algorithm within a constant factor for classic
computers [15].

In this work, we present a 1+ € approximation algorithm for tree
edit distance that runs in time O (n?). We show that the running time
of our algorithm improves to 5(ndmax) when the solution size is
guaranteed to be bounded by dmax. Our results also imply an almost
linear time algorithm (5 (n)) with an approximation factor of O(v/n).
Although the recent result of [11] suggests that weighted tree edit
distance is strictly (computationally) harder than edit distance, our
results suggest that both problems may be equally time-consuming,
concerning approximation algorithms for the unweighted case.
Table 1 compares our results to the previously known solutions.
Tree edit distance is a generalization of edit distance; therefore, a 1+
€ approximation algorithm for tree edit distance is hard to acheive
unless edit distance admits a truly subquadratic 1+ € approximation
scheme.

We obtain our result through several combinatorial ideas. Some
of these ideas such as heavy-light decomposition, or reducing the
problem to forest edit distance (see Section 2 for a definition) have
been used in the previous work [17, 27, 37]. These techniques are

!finding all pairs shortest paths in a graph.

2In the weighted k-clique problem, we are given an undirected weighted graph on n
nodes, and O(n?) edges with integral weights, and we seek to find a k-clique with
the highest total sum of edge weights.
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Table 1: In the bounded TED problem, we are guaranteed
that the distance between the two trees is bounded by dmax-
hmax in the algorithm of [2] denotes an upper bound on the
heights of the trees. x follows from the O(ndmax’) algorithm
of Touzet [37].

Our Results
Problem Reference Appr;zt?;atlon R%?E;:g

TED Theorem 5.3 1+e€ 5(n2)
bounded TED | Full version 1+¢ 5(ndmax)

TED Full version O(+/n) 5(n)

Previous Work

TED [36] exact 0o(n®)

TED [39] exact o(n%)

TED [27] exact O(n®logn)

TED [17] exact o(n®)
bounded TED [37] exact O(ndmax’)

TED [2] o(n3/%) o(n?)

TED [37]% 0(n?/3) Oo(n?)

TED [2] O(hmax) 0o(n?)

very classic as almost any algorithm for TED uses these ideas. How-
ever, the main techniques that enable us to achieve a 1 + € approx-
imate solution are pretty novel and to the best of our knowledge
have not been used in previous work.

2 PRELIMINARIES

Given two ordered rooted trees T and T, the tree edit distance
problem (TED) seeks to transform one of the trees into another one
via the minimum number of operations. In TED, we assume both
trees are rooted, each node has a label, and the children of each
node are ordered. We call two subtrees identical if the roots’ labels
are the same, the number of the children of the roots are equal, and
the subtrees of the children of the roots are also identical in the
same order. In each operation, we are allowed to remove a node,
add a new node, or relabel an existing node, all at the same cost
of one. In each case, the order of the siblings remains the same in
each neighborhood. When we remove a node, it will be replaced by
its children (if any) without any change in the order of its siblings
or that of its children. Similarly, when we wish to add a new node,
we are allowed to select a number of consecutive siblings (in an
arbitrary neighborhood) and add the new node as their father. In
this case, the newly added node takes their place, and the replaced
nodes appear as its children in the same order. It can also be the case
that we simply add a new node without any children at any position
in a tree. Figure 1 illustrates how node deletion, node addition, and
node relabel modify a tree.

To simplify the notation, we represent each tree with a balanced
string of parentheses. Balanced here implies that every opening
parenthesis has a corresponding closing parenthesis and that the
pairs of parentheses are correctly nested. In this representation,
each node u is represented with a pair of opening and closing paren-
theses which enclose the children of u in the order they appear in
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(a) The node with label e is deleted.

(b) The node with label e is inserted.

(c) The node with label a is relabeled to e.

Figure 1: Three basic operations to transform a tree into an-
other one. Modified nodes are highlighted in each example.

the tree. This representation always corresponds to a sequence of
trees which we call an ordered forest. When the first and the last
characters of the representation match, it means that the represen-
tation corresponds to a tree, and all of the nodes are nested under
a single node which is the root of the tree.

Every pair of matching parentheses has a label identical to that
of its corresponding node in the tree. We show this label on top
of the parentheses. For example, a leaf with a label a is shown

by “?Z)i”. This way, node deletion, node addition, and node relabel
are equivalent to deleting a matching pair of parentheses, adding
a matching pair of parentheses, or relabeling an existing pair of
matching parentheses. When we add a node, we select a number
of consecutive siblings to be its children. Similarly, when we add a
new pair of parentheses, we select a substring, where the match of
every parenthesis is inside the substring. Figure 2 shows how these
operations change the representations of the trees.

For a string s (5) which represents a tree or an ordered forest, we
denote its i’th character by s[i] (s[i]). We also denote a substring of
s (5) from the £’th character to the r’th character by s[¢, r] (5[, r]).
For a substring s[¢,r], we call a character s[i] redundant, if the
matching parenthesis of s[i] is outside of s[£,r]. Based on this,
the refined subsequence of a substring s[¢, r] is the sequence of
all characters in s[¢, r] that are not redundant. For a tree or an
ordered forest represented by s, we call the refined subsequence of
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caeccbbeddac caccbbddac

((C00)0)) = ((OO0))

(a) The node with label e is deleted.
caccbbddac caccebbddeac

(000N = ((O00))

(b) The node with label e is inserted.
caccbbddac ceccbbddec

((000)) = ((000))

(c) The node with label a is relabeled to e.

Figure 2: Three basic operations to transform a tree into an-
other one. The representations belong to trees of Figure 1.
Modified parentheses are underlined in each example.

a substring s[¢, r] a subforest of s. Moreover, a subforest is proper if
it is the refined subsequence of a substring that has no redundant
closing parenthesis. Throughout this paper, we use T when we
refer to a forest or a tree, and we use s when we refer to its string
representation. We also use T and 5 when we refer to a second
forest or tree, or its string representation. Moreover, we denote
the nodes of a tree with characters u and v and use x and y for
their corresponding parentheses in the string representations. We
also denote the labels of the nodes with characters a, b, c, d, and
e. Similar to TED, forest edit distance (FED) seeks to transform
one ordered forest into another one with the minimum number of
operations.

For two ordered rooted trees T and T, we denote their tree edit
distance by ted(T, T). Similarly, for the string representations of
two ordered rooted trees s and s we denote it by ted(s, 5). Moreover,
we denote the forest edit distance between two ordered forests s
and 5 by fed(s, 5). For two nodes u and % in T and T, respectively, we
define ted(u, u) as the tree edit distance between subtrees rooted
by u and u with an additional assumption that node u is mapped
to node #. Note that ted(r, 7) may differ from ted(T, T), where r
and 7 are roots of T and T, respectively, because of the additional
assumption. In our algorithm, we add two dummy roots in the
beginning to the two trees, compute the ted of the two new roots
and output it as the ted between two input trees.

In addition, we denote the edit distance between two strings s
and § by ed(s, s). The size of the subtree induced by a node u is
shown by size(u). Moreover, let isClosing (isOpening) be a function
that gets a parenthesis as input and outputs 1 (0) if it is a closing
parenthesis and 0 (1) otherwise. Note that O is similar to big O
notation but ignores poly(log n) and poly(1/¢) factors.

3 OUR RESULTS AND TECHNIQUES

Let us begin by explaining a naive O(n*) dynamic programming
algorithm for tree edit distance. We refer to the input trees by T
and T and denote the corresponding representations of the given
trees by s and s, respectively. Since both trees have n nodes in total,
the number of pairs of matching parentheses in s and s sum to n.
Notice that, each pair of matching parentheses in a string denotes
a subtree. Thus, we define the tree edit distance between two pairs
of parentheses of s and § as the tree edit distance between their
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corresponding subtrees. In this algorithm, we compute the tree edit
distance between every pair of parentheses x and y of s and § in
a bottom-up order. That is, we start with the leaves of the trees
and move on to their parents until we compute the solution for the
roots of the two trees.

Let x and x be two matching pairs of parentheses of s and s
that correspond to nodes u and u of the trees. Since we solve the
problem in a bottom-up order, when we wish to compute the tree
edit distance between x and X, the solution is given for every pair
of the children of x and x. Thus, the problem that we need to solve
is the following:

Lett and t be two balanced strings of parentheses corresponding
to two forests F and F. Along with t and t, we are given the tree edit
distance of every pair of matching parentheses of the two strings. The
goal is to compute the smallest number of edit operations on these
strings to transform t into t.

The operations that we are allowed to perform are the tree edit
operations described in Section 2. We call this problem forest edit
distance (FED). A similar definition of this problem is also given
in [39]. Notice that a fundamental difference between tree edit
distance and forest edit distance is that in forest edit distance, all
the tree edit distances are given in the input whereas, in tree edit
distance, the input only contains the two trees. We elaborate on
forest edit distance later in this section.

The naive O(n*) time algorithm for tree edit distance uses forest
edit distance as a black box to find the tree edit distances between
every pair of nodes of the trees. It has been shown that forest
edit distance can be solved in time O(n?) for two forests with n
nodes in total [39]. Since we use FED for every pair of nodes of the
two trees, the total running time of our algorithm is O(n?). Indeed
by fixing a parameter hmax to be an upper bound on the height
of the two trees, one can show that the same algorithm runs in
time O(n®hmax) which is 5(n3) for balanced trees. The classic tree
decomposition of Sleator and Tarjan [34] (called heavy-light tree
decomposition) is then used by Klein [27] to improve the running
time to O(n?). Roughly speaking, Sleator and Tarjan show that any
tree can be decomposed into a number of spines such that in any
path from the root to any leaf of the tree, we cross at most O(log n)
spines. Moreover, such a decomposition can be found in linear time.
Thus, an algorithm for solving the problem for two spines leads to
a solution for the whole trees with a logarithmic overhead. This
technique has been applied to a variety of algorithms [6, 17, 27, 35]
to break the linear dependence on the height of the trees.

In order to design a 1 + € approximation algorithm, we too make
use of the heavy-light tree decomposition of Sleator and Tarjan [34].
Based on this decomposition and the analysis that we present in
Section 5.3, an O(n?) time algorithm for approximating TED follows
from a similar algorithm that solves the problem for two spines
of the trees with similar running time and approximation factor
(see Figure 3). To be more specific, let us clarify what we mean by
solving the problem for two spines of the trees. In the heavy-light
decomposition, the vertices are decomposed into a set of disjoint
spines. Every spine has a property that the depth of the vertices
increase as we traverse the spine. Therefore, the second node of
a spine is a child of the first node; the third node is a child of the
second node and so on.
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accchbbccbcbaaba

s ((O00N0))

~l

acbbcbbbcchaaa

- ((OHOO))O)

Figure 3: A spine for each of trees T and T is illustrated in
this example. Spine nodes are highlighted. The string repre-
sentations of the two trees s and 5 are shown below each tree.
The parentheses are colored accordingly.

The naive O(n*) algorithm constructs the solution in a bottom-
up manner and for every pair of vertices, uses FED to solve the
problem. When the spines are involved, we do the same thing except
that we compute the solution for all vertices of a spine in a sin-
gle shot. Therefore, the depth of the recursion reduces to O(log n).
Now, assume that we are given two spines S = (u1,uz,...) and
S = (i1, 1y, . ..) of the two trees and we would like to solve the
problem for the subtrees rooted under u; and u; for the vertices
of the spines (see Figure 4 for the inputs and outputs of the prob-
lem). That is, for any pair of nodes u; and u;, we would like to
compute/approximate ted(u;, #;). However, additional important
information is also provided: for any two vertices v and v such
that either v ¢ Sorv ¢ 5, ted(v, v) is given. This information is
available since we solve the problem for the spines in a bottom-up
order. We call this problem spine edit distance. Spine edit distance
generalizes the FED problem since if both spines have only one
node, the resulting problem would be equivalent to FED for the
children of the two nodes. Figure 4 shows the input and output of
the problem for two given spines.

Indeed, our main challenge is to approximate the solution for
two spines. In an instance of spine edit distance, let us call the nodes
that appear in the spines (u, ug, ... and uj, Uy, . . .) the highlighted
nodes and similarly, we call the parentheses corresponding to these
nodes highlighted parentheses. We refer to the rest of the nodes and
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ted [y [t [ U3 [01 [ D2 [ 03 [ D4
u1 6 3 2 1
uz 7 4 2 1
us 7421
Uq 7 5 3 1
U1 6 1210 1 1 1 1
vy | 6| 2 1 1 0 0 1
vy | 6 | 2 2 2 1 1 1
e |6 | 3121110
Input
ted | up | uy | us
w | 315 |7
uz 3 2 4
us | 4| 0 2
w | 61210
Output

Figure 4: The inputs and outputs of an instance of the spine
edit distance problem corresponding to the example of Fig-
ure 3. In spine edit distance, the input contains the tree edit
distances between all pairs of nodes except the pairs that
are both highlighted. The input also contains two trees each
with a spine. In the output, we should compute/approximate
the solution for the pairs of highlighted nodes.

parentheses in the subtrees as solid nodes and solid parentheses.
Spine edit distance seeks to find a solution for two intertwined FED
and ED problems (see Figure 5). On the one hand, if we only take
into account the highlighted nodes and ignore the costs for the
rest of the nodes, the problem becomes an instance of ED. On the
other hand, if we ignore these nodes and only consider the solid
nodes, the problem becomes an instance of FED. Both ED and FED
admit O(nz) time solutions even in weighted cases; however, there
is a conditional lower bound of Q(n3°() on the computational
complexity of weighted spine edit distance due to [11]%.

In Section 5.2, we explain our 1 + € approximation algorithm for
spine edit distance which also carries over to TED. The intuition
behind our algorithm is the following: Recall that the goal of the
spine edit distance problem is to find the tree edit distance between
the nodes of the two spines. Fix a node u; € S and a node u; € S
and assume that the goal is to approximate ted(u;, 1) subject to
node u; being transformed into node #;. Assume that ted(ug, #;)
is known for every k > i and [ > j. Moreover, assume that we are
given a highlighted node u; and a node w and are guaranteed that
there exists an optimal way to transform the subtree rooted by u;
to the subtree rooted by #; in a way that node u;s transforms into
w and that all highlighted nodes in between u; and u;» are removed
and all nodes in the path from #; to w are inserted. Note that w can
be either a highlighted or a solid node in the subtree of #;. Provided
that this information is correct, we can then formulate ted (u;, u;) :=
ted(uj, w) + R+ C+ L as the solution corresponding to the nodes u;
and #;. In the above formulation, R := (i’ —i—1) + (depth(w) —j—1)
denotes the cost of removing the nodes between u; and u;» and

3 A subcubic time solution for spine edit distance yields a subcubic time solution for
TED.

713

STOC ’19, June 23-26, 2019, Phoenix, AZ, USA

Highlighted Nodes:

abccba

s:((0))

acbccbca

s: (((0))

Solid Nodes:

i

B @ " @ o e ’DZ

ccbbbaab cbbcbbaa

s:0000) s:(0)00

Figure 5: The example of Figure 3 is separated into an in-
stance of edit distance and an instance of forest edit dis-
tance.

A®)

inserting the nodes between #; and w. Moreover, C denotes the
cost of transforming the solid nodes in between u; and u; (solid
nodes in the subtree rooted by u; but not in the subtree rooted by
u;r) to the solid nodes in between #; and w. In addition, L denotes
the cost of changing the label of u; to the label of #;. Indeed, R
and L can be computed in time O(1); however, computing C may
be time-consuming. As we show in Section 5.2, the problem of
computing C essentially reduces to solving FED.

The first step of our algorithm is constructing a data structure
that enables us to approximate C in the above formulation in time
5(1). We call this data structure FEDDS. Provided that FEDDS is
available, we can approximate ted(u;, #5) := ted(uy, w) +R+C+1L
in time O(1). Since the highlighted nodes of the first forest are
ignored for computing C, we only incorporate the solid nodes of
the first forest for determining C. Thus, one can interpret FEDDS
as a data structure that receives an instance of FED as input and
answers the queries of the following type in time O(1):

Let t and t be the string representations for two forests F and F.
Given two intervals [€,r] and [€,7] of the input strings such that
both t[¢,r] and i[¢, 7] are balanced, what is the forest edit distance
between t[C,r] and I[{,7]?

Notice that the special case of the above problem is when both
[¢,7] and [£, 7] span the entire length of the two string representa-
tions and thus in the output, we have to compute the FED of the two
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acccbbbccbcbaaba

s: ((0C00)0))

acbbcbbbccbaaa

s ((HO)O)

Figure 6: This example illustrates how ted(ui,u1) is computed from ted(us,uz) in the example of Figure 3. ted(uj,u;) =

ted(us, ) +R+C+L=0+1+2+0=3.

forests. In Section 4.2, we design an algorithm for FEDDS with pre-
processing time O(n?) and query time O(1). Our data structure ap-
proximates the solution within a factor of 1 + €. The high-level idea
is that we construct O(log;, . n) data structures FEDDS; where
k= (1+e) for0 < i < log,,,n Each FEDDSy is responsible
for answering the queries whose solutions are close to k. For each
FEDDS}, we break the input strings into roughly O(n/k) marked
points. After a preprocessing in time O(n), for every pair of marked
points, we design an O(k?) time algorithm to compute the forest
edit distance up to a threshold of O(k) from the beginning of the
marked points. Then, we show that since the additive error for
FEDDS}, is allowed to be as large as ek, we can afford to modify
each query to make sure both intervals of each query start from
marked points. Hence, using the precomputed information, we can
answer each query in time O(1). This data structure is explained in
Section 4.2.

Theorem 4.3 [restated informally]. For any € > 0, FEDDS can be
constructed in time O(n®). Then it can output fed between any two
proper subforests in time O(1) within an approximation factor of 1+e€.

Let us get back to the computation of spine edit distance. Now
that FEDDS is available, given that for a pair of nodes u; and u; their
solution is derived from u;» and w, one can compute ted(u;, #;) in
time 5(1). However, u;s and w are not known in advance. Indeed
one can try O(n?) possibilities for u; and w and solve the problem
in time 5(n2) for u; and %; and in time 5(n4) for all pairs of nodes
of the two spines. However, this running time is not desirable. We
improve this algorithm significantly by exploiting the following
facts:

e As the distance between u; and u;» increases, R also increases.
Therefore, if dmayx is an upper bound on the solution, then
i’ < i+ dmax + 1 holds.

e The difference between the number of solid nodes on the
right of u; and the number of solid nodes on the right of
w appears in part C of the solution. Therefore, w also has
O(dmax) possibilities.
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e ted(uj,uj) = d is a desirable estimate for the tree edit dis-
tances of the highlighted pairs of nodes that are no more
than ed away from u; and u; in the string representations.

We explain these abstract ideas in details in Section 5.2 and show
how this gives us a 1+ € approximate solution for spine edit distance
and in turn for tree edit distance. We face several challenges to
approximate the solution within a factor of 1 + €. We briefly point
out some of the difficulties in the following:

e Our approach for solving spine edit distance is dynamic, and
we lose an error of 1 + € in every step. We have to make sure
the error does not propagate.

e We may have different (additive) error thresholds based on
the values of ted(u;,u;). Our algorithm should be careful
about the error thresholds without having prior information
about the solution.

The above challenges make our algorithm quiet involved and
non-trivial. Finally, it follows that once we get a 1 + € approximate
solution for spine edit distance, we can turn that into an algorithm
for TED with roughly the same running time.

Theorem 5.3 [restated informally]. For any e > 0, TED admits an
O(n?) time algorithm with approximation factor 1 + €.

In Section 6 of the full version of the paper, we revisit the above
ideas for the case where the tree edit distance between the two
trees is guaranteed to be at most dmax and show that the running
time of our algorithm improves to O(ndmay). The general idea is
that if the opening (closing) parentheses of two nodes in the input
trees differ by more than 2dmax, we know that the optimal solution
does not map them together. Thus, we do not need to compute tree
edit distance between them.

Theorem 6.4 [restated informally]. For any € > 0, TED admits an
O(ndmax) time algorithm with approximation factor 1 + €, where
dmax is an upper bound on the size of the solution.
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We further design a linear time algorithm for approximating TED
in Section 7 of the full version of the paper, with an approximation
factor of O(+/n). First, notice that all the algorithms we discussed
so far have a super-linear running time when the distance between
the two trees is not constant. Therefore, in order to give a linear
time solution, one should go beyond the above ideas. Let us assume
for simplicity that a distance d is given to us as input, and our goal
is to either approve that the distance between the two trees is at
most d or that the solution is much larger than 20d+/n. Note that it
is safe to assume that at least one of the two cases holds. Thus, if
d > +/n the solution is always equal to d and the problem is trivial.
Hence, we assume w.lo.g. that d < /1. Moreover, we assume that d
is the distance between the two trees, and based on that, try to find
a solution. If we fail, we realize that the solution is at least 20dv/n.

To illustrate our techniques, let us assume that the two trees
have very simple structures. In the extreme case, we consider both
trees to be paths. Divide each of the trees into v/n disjoint paths of
size 4/n that span the vertices of the two forests. We denote these
paths by P, P, . .. ’P\/E for T and f’l, f’z, . ,1_3\/71 for T (see Figure
7). The key idea that enables us to approximate the solution in
near-linear time is the following structural properties:

(1) if ted(T,T) < d holds then ted(P;, P;) < 8d also holds for

any 1 <i < +/n.
(2) ¥;ted(P;, P;) > ted(T, T).

anttna

((0))

ve |

)

anttna

s (o))

Figure 7: The decomposition of the paths is illustrated in
this example

In words, the above two properties show that 3; ted(P;, P;)
gives us an O(+/n) approximate solution for ted(T, T). However,
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computing Y; ted(P;, P;) may take up to O(\/ﬁz) = O(n) time for
each i and thus if we naively find the solution for each i € [y/n],
the total running time would be o(n3/2).

If the tree edit distance between the two trees is exactly equal
to d, we know that both properties (i) and (ii) hold. However, we
need to find a way to verify this equality. To this end, we use a
randomized procedure and analyze its correctness with concen-
tration bounds. Fix a probability p = O(logn/d). Select a subset |
of the set {1,2,...,+/n} such that each number appears in | inde-
pendently with probability p. Compute S = ;¢ ted(P;, P;) and
approximate 3, _; - m ted(P;, P;) with 1/pS. We show that if d is

an accurate estimate for ted(T, 7_"), the approximated value is close
to d w.h.p. On the other hand, if ted(T, T) is a multiplicative factor
O(+/n) larger than d then the estimate we get in our algorithm is
much larger than d w.h.p. and thus we can distinguish the two
cases w.h.p. Therefore, this algorithm gives us a correct solution
w.h.p. On the computational front, we show that the running time
of our algorithm is 5(n) if we use our 5(ndmax) time algorithm for
estimating the TED’s of the paths.

The above ideas lead to an O(n) time algorithm for approximat-
ing the tree edit distance between two paths. To extend this result
to general trees, we need a proper decomposition of the trees into
smaller components. There already exist several tree decomposi-
tion techniques (e.g., separator decomposition based on [26] and
microtree/macrotree decomposition of [3]); however, none of these
techniques apply to our algorithm. Thus, we introduce a new tree
decomposition technique which we call synchronous decomposition
of trees. For a given 1 < A < n, our algorithm decomposes one
of the trees into O(n/A) (not necessarily connected) components
of size at most O(A). However, our decomposition maintains the
property that for each disconnected component, there exists a node
in the tree such that adding that node to the component (along with
its incident edges) makes the component connected. Our algorithm
finds a similar decomposition for the second tree and corresponds
the decomposed components together. An example of our synchro-
nous tree decomposition is shown in Figure 8. In our linear time
algorithm, we set A = O(+/n) in the synchronous decomposition.

Via our synchronous decomposition, we are able to apply the
above technique to estimate the solution size. However, in contrast
to the case of paths, here every decomposed component may be
neighbors with O(+/n) other components. This further complicates
the algorithm as ted(T;, T;) < 8d may not hold for two decomposed
components T; and T; of the two trees. We show that these ideas
give us an almost linear time algorithm for approximating TED
within a factor of at most O(~/n).

Theorem 7.4 [restated informally]. TED admits an 5(n) time algo-
rithm with approximation factor O(y/n).

4 FOREST EDIT DISTANCE

The forest edit distance problem extends the definition of edit dis-
tance to ordered forests. We use forest edit distance as an interme-
diary problem in our solution. Previous algorithms such as that of
Zhang and Shasha [39] also use it as a subproblem for solving tree
edit distance. In the forest edit distance problem (FED) the goal is
to transform the first forest into the second forest, using the basic
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Figure 8: The synchronous decomposition of T and T is illus-
trated in this example. For T with 9 nodes and A = 3, we par-
tition T into 3 parts of size A. This decomposition is shown
via rectangles for the representations.
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operations of TED. Additionally, we assume that we are given all
of the tree edit distances between any two pairs of nodes as input.
That is, for any pair of nodes u and u, ted(u, %) is available. Recall
that in ted(u, u) we assume that u is mapped to u.

Forest Edit Distance (FED)

Input: two ordered forests s and s of total size n and the ted’s
between any two pairs of nodes in s and s.

Output: a sequence of operations that transforms s into s with
the minimum length (fed(s, 5)).

In Section 4.1, we briefly review how the technique of [33] solves
FED in time O(n + dmax?) when the distance between the two
ordered forests is bounded by dmax. Based on this idea, in Section 4.2,
we provide a data structure FEDDS that for two given ordered
forests s and s, approximates the forest edit distance between any
two proper subforests of them. We use FEDDS in Section 5 to
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approximate the forest edit distance between several subforests
with a running time almost equal to the runtime of computing only
one fed.

4.1 An O(n + dmay’) Time Solution

In this section, we review the solution of [33] for solving FED for
two given ordered forests s and § of total size n with distance at
most dmax. We use this solution in Section 4.2 to build our data
structure for approximating the edit distances between subforests.
In the following, first we present a classic O(n?) time algorithm
for FED, and then we show how the time complexity improves to
O(n + dmax?) in the algorithm of [33]. Let m(i) and m(j) be the
indices of the matched parentheses of s[i] and s[j], respectively.
Recall that ted’s between all pairs of nodes are given. We com-
pute fed(s[1, i], 5[1, j])’s via a dynamic program with the following
update rule.

fed(s[1, i — 1], 5[1, j]) + isClosing(s[i])
fed(s[1, i), 5[1, j — 1]) + isClosing(5[;])
fed(s[1, m(i) — 1], 5[1, m(j) — 1])
+ted(s[m(i), i], sS[M()), j1)

ifi >0,
ifj >0,
if isClosing(s[i])
& isClosing(s[j]).

fed(s[1, i], 5[1, j]) = min

Using this update rule, we compute fed(s[1, i],5[1,;])’s for all
1<i<|s|and 1 <j < [§|. Finally, fed(s[1, i],s[1, j]) where i = |s]
and j = || is the forest edit distance between s and s. The running
time of this algorithm is O(n?).

It has been shown that ted reduces to almost O(n?) instances
of fed [39]. Hence, using this algorithm, we can compute the ted
between s and 5 in time O(n*). A more careful analysis improves
the time complexity to O(n?hh) [39], where h (k) is the height
of T (T). Also, note that FED is a generalization of the edit dis-
tance (ED) problem since we can convert an input of ED into an
input of FED. To do this, we replace any character with a pair of

parentheses with the same label. For example, ed (“tgcat”, “atect”) =
ttggccaatt aattcccctt

fed(*000007.“000007) = 3.

Landau and Vishkin [29] show how to solve ED in time O(n +
dmax?) when the size of the solution is bounded by dmax. For two
strings s and 5, they use the observation that if s[i + 1,i + t]
sj+1,j+t], thened(s[1,i],5[1,;]) = ed(s[1,i+¢],s[1,j+¢t]). They
use a suffix tree to compute the queries of the following type in
constant time: given two indices i and j of s and §, what is the
largest t such that s[i + 1,i +t] =s[j + 1,j + ¢].

Shasha and Zhang use a more in-depth and more technically
involved analysis of the same idea to present an algorithm for the
forest edit distance problem in time O(n + dmax?) [33]. In Appendix
A of the full version of the paper, we recapitulate some of the ideas
of their algorithm to solve FED in time O(n + dmax?).

THEOREM 4.1 (PROVED IN [33]). For two ordered forests s and s of
total size n, we can find their forest edit distance in time O(n+ dmax?),
where dmax is an upper bound on the solution size, and the tree edit
distances between nodes are given in the input.

Similar to [29], Shasha and Zhang [33] fill a (2dmax +1) X (dmax +
1) array in time O(dmay?) that has all the information of the n X n
dynamic programming table. This array for any k and d stores the
largest i such that fed(s[1, i], 5[1, i+k]) < d. Using this array, we can
find fed(s[1, i],5[1,]) for any i and j in time O(log dmax) by doing
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a binary search on the diagonal k = j — i to find fed(s[1, ], 5[1, j]),
if the distance is at most dmay or report fed(s[1, i],5[1,]) > dmax
if the binary search could not find it. In Section 4.2, we use Theo-
rem 4.1 to approximate the forest edit distances between all proper
subforests of the two ordered forests.

4.2 Forest Edit Distance Data Structure

In this section, we design a data structure for two ordered forests s
and s that approximates the forest edit distance between any two
proper subforests of them. We call this data structure FEDDS. Recall
that, for an ordered forest s, a subforest is the refined subsequence
of the corresponding substring of s. Also, recall that a subforest is
proper if no redundant closing parenthesis is present before the
refinement. For a 1+€ approximate solution (¢ > 0) the construction
of FEDDS takes time O((1/e3)n?), and then FEDDS can answer each
query in time 5(1).

We use k-bounded forest data structure, denoted by FEDDSy., as
an intermediate data structure. However, in Section 5, we directly
use FEDDS. Using FEDDS. constructed for two ordered forests
s and s, we can query an estimate of the fed between any two
proper subforests of s and s, if the distance is less than or equal to
k —20k, or find out that the solution is more than k. For an arbitrary
é > 0, FEDDS may have an additive error of up to 26k. The time
complexity of constructing FEDDSy, is O((1/8)?n?), and it answers
each query in time O(logk).

FEDDS reduces to FEDDSy by losing a small error. For an ar-
bitrary € > 0, we can construct FEDDS using a set of FEDDSy’s,
where k = (1+¢)? and 0 < i < log;, . n. By using a suitable &,
we can adjust the approximation factor of FEDDS to be 1 + €. The
construction of FEDDS, is as follows.

Let 1 < k < nbe a given integer and 6 be a given error threshold.
To construct FEDDSy for s and s, we create a set of marked points
for each of s and s consisting of indices divisible by | 5k]. Therefore,
we have O(n/8k) marked points in total. Afterward, for every two
marked points i and j in s and 5, respectively, we use the solution
of Theorem 4.1 to compute the fed between s[i, |s|] and 5[}, |5]].
Recall that by using the solution of Theorem 4.1, we compute a
two-dimensional O(k) x O(k) array which compactly stores all
the fed’s between forests s[i,i’]’s and s[j, j’]’s, for any i’ > i and
any j' > j, in cases where the distance is at most k. To answer a
query to approximate fed(s[i,i’], 5[j,j’]), we decrease each of i and
Jj to match one of the marked points. Then, we use the array we
computed for shifted i and j, which are now marked indices, and
output fed(s[i, i’],5[j, j’]). The number of shifts of each of i and j to
reach a marked point is at most 5k, which results in a total additive
error of at most 28k. In Lemma 4.2, we show that Algorithms 1 and
2 correctly construct and answer queries from FEDDS;. within the
desired time complexity and additive error.

LEMMA 4.2. Let § > 0 be an arbitrarily small constant. For two
ordered forests of total size n and an integer k > 0, Algorithm 1
constructs FEDDSy, in time O((1/6%)n?). Henceforth, Algorithm 2
approximates the forest edit distance between any two proper sub-
forests in time O(log k) within an additive error of 25k if the answer
is at most k — 26k, or reports that the distance is more than k.

As we discussed earlier, we use FEDDS}.’s with k = (1 + €)’ for
0 < i < logy,, ntoconstruct FEDDS. We set § = €/2(1+¢) to make
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Algorithm 1: construct FEDDS, (s, 5, k, §)

Data: two ordered forests s and s, an upper bound k on the
distance, and § > 0.
Result: FEDDS (s, 5).
1 fori=1tols|, in steps of i < i + |6k] do
2 for j =1 to|s|, in steps of j « j + |5k] do
3 L compute fed(s[i, |s|], 5[/, |s|]) for distances up to k,

store the O(k) X O(k) array, and call it fed; ;
Algorithm 2: query FEDDS([i, ir], U1, Jjr])
Data: two intervals associated with two proper subforests
t = s[i;,iy] and t = S[j, jr].
Result: fed(t, t) with an additive error of at most 25k if
fed(t,t) < k — 26k or reports that fed(t, t) > k.
find i, the index of the largest marked point in s less than or
equal to if;
find j, the index of the largest marked point in § less than or
equal to jj;

3 find the answer in the array of fed; ; if exists and return it;
otherwise, report fed(t, t) > k.

-

)

'S

the additive error be at most €. We describe the construction and
queries of FEDDS in Algorithms 3 and 4 and show their correctness
in Theorem 4.3.

Algorithm 3: construct FEDDS(s, 5, €)
Data: two ordered forests s and s, and € > 0.
Result: FEDDS(s, s).

10 «¢€/2(1+¢);

2 forke{l,1+e,...,(1 +6)1Og1+en} do

3 L construct FEDDSg (s, 3, k, 8)

Algorithm 4: query FEDDS([iy, ir], [j1, jr])
Data: two intervals associated with two proper subforests
t = s[i;,ir] and t = S[j, jr].
Result: fed(t, t) with an approximation factor of 1 + e.
1 use the suffix tree to check whether fed(t, t) = 0, and return 0
in this case;
2 forke{1,1+e¢,..

|

THEOREM 4.3. Let € > 0 be an arbitrarily small constant. For two
ordered forests s and s of total size n, knowing the ted’s between all
pairs of parentheses of s and s, Algorithm 3 constructs FEDDS in time
O(n?). Afterward, Algorithm 4 approximates the fed between any
two subforests of's and s in time O(1) within an approximation factor
of1+e.

., (1 + €)°81e ) do
query FEDDSg ([ij, ir], [j;,jr]) and return the answer if it
does not report fed(t, £)> k.
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5 A1+ e APPROXIMATION ALGORITHM FOR
TED

One challenge that we face here is the depth of the computation
and its effect on the approximation factor. More precisely, if the
approximation factor of each level is 1 + €’, the overall approxima-
tion factor that accumulates in each level would be 1 + ¢, where
€ = Q(he’). Here, h is the depth of the computation. Note that in a
naive approach, h can be as large as n.

In order to avoid this issue, we should have limited levels of
computation in our algorithm. Besides this issue, computing ted
for all node pairs one by one takes a total time of O(n*) since we
have O(n?) node pairs and computing the ted for each pair takes
time 6(n2). There is a huge gap between 5(n4) and the desired
O(n?) time. In what follows, we show how applying the heavy-light
decomposition of Sleator and Tarjan [34] enables us to overcome
these two difficulties. This technique has been used in many pre-
vious works such as [6, 17, 19, 20, 27, 35] to design algorithms for
trees of arbitrary height.

The heavy-light decomposition partitions the nodes of an or-
dered tree into a set of paths called spines. These spines may be
long paths; however, the decomposition ensures that in a path from
the root to any node (including leaves), we cross at most O(log n)
spines. We compute the ted’s between the nodes of two spines all
at once instead of computing the ted’s between every two nodes
individually. Consequently, we keep the approximation factor small
since the recursive depth of the computation is at most O(log n)
independent of the heights of the input trees. We also improve the
running time by constructing FEDDS once for the two spines and
querying it several times to approximate the ted’s between all pairs
of nodes of two spines. This approach along with other techniques
explained below helps us to keep the running time quadratic.

As mentioned, the main part of our algorithm is computing the
ted’s between the nodes of two spines, which we call spine edit
distance. For two spines S = (uy, ug,...) and S = (ug,ug,...), we
assume the ted’s between all pairs of nodes are given, except pairs
of nodes between spines S and S. In addition, using a bottom-up
approach ensures that when we want to compute the ted(u;, i),
we already know the ted’s between all of the deeper nodes in the
spines.

In the following, we briefly describe how our algorithm com-
putes ted(u;, #;). Let opt be an optimal solution of transforming
the subtree of u; to the subtree of ;. Note that by the definition
of ted, u; is transformed into #; in opt. Suppose the next node in
spine S after u; which is not deleted in opt is u;, and it is mapped
to a node w in the subtree of #;. Also, notice that w can be any
node in the subtree of u; and does not necessarily belong to spine
S. The cost of mapping u; and its subtree into ; and its subtree
consists of six parts:

(1) mapping node u; into node %; (their opening and closing
parentheses, excluding their inner parentheses),

(2) mapping the subforest of nodes before the opening paren-
thesis of u;s to the subforest of nodes before the opening
parenthesis of w,

(3) mapping the subtree of node u;- to the subtree of node w,
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(4) mapping the subforest of nodes after the closing parenthesis
of uj to the subforest of nodes after the closing parenthesis
of w,

(5) deleting the path between u; and u;, and finally

(6) inserting the path between #; and w.

Recall that previously in Section 3, we formulate these six parts
as ted(u;, uj) := ted(uy, w) + R+ C+L. Here, ted(u;, w) is denoted
by part (iii), R consists of parts (v) and (vi), C consists of parts (ii) and
(iv), and L consists of part (i). Moreover, in the example of Figure 6,
the cost of these six parts are 0, 1, 0, 1, 1, and 0, respectively.

In Section 5.2, we show how to compute the costs of all of these
six parts in O(1) time for fixed u;» and w. Moreover, we show how
to reduce the number of tuples (u;, 5, u;r, w)’s from 0(n*) to O(n?)
in order to reduce the time complexity to 6(n2).

Finally, in Section 5.3, we use the spine edit distance algorithm
to design our algorithm to approximate the tree edit distance of the
two input trees in time O(n?) within an approximation factor of
1+e.

5.1 Tree Decomposition

In this section, we define the heavy-light decomposition which we
use in Sections 5.2 and 5.3. The content of this section can be skipped
by the reader who is familiar with the heavy-light decomposition.
However, some of our notations may be different from previous
work. Let T be a tree, where u and v are two nodes of T, and v is
a child of u. We call an edge e = (u,v) heavy, if size(v) has the
maximum value among the children of u. In case of a tie, we choose
v to be the right-most child of u with this property. We call all other
edges light. We also define light and heavy nodes as follows. If a
node v is a child of a node u and they are connected via a heavy
edge, we call v heavy; otherwise, we call v light. Every node has
exactly one heavy child, except leaves which have no children. For
example, in Figure 9, edge (u1, uz) is heavy since size(uz) = 6 is
larger than size(u3) = 3 and size(us) = 1. Moreover, edge (u2, us)
is light since size(us) = 1 is less than size(ug) = 4. Similarly, node
uy is heavy, and node us is light. Now we define a spine as follows.
For any light node u, it has a unique heavy child unless u is a leaf.
We choose this heavy child and repeat the process until we end up
in a leaf. This process defines a path in the tree from u to a leaf. We
call this path (including u and the leaf) the spine of the light node
u.

Figure 9: The heavy-light decomposition of a tree.
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We iterate over all light nodes and find their spines. For example,
in Figure 9, the spines are (u1, ug, us, us, u11), (us), (410), (U3, u7, ug),
and (ug4). These spines partition the nodes of the tree into a number
of paths. The most important property of this decomposition is that
in any path from the root to any node, we pass through at most
O(log n) spines.

LEmMMA 5.1 (PROVED IN [34]). In a tree with a heavy-light decom-
position, every path from the root to any other node pass through at
most [log, n] + 1 spines.

In other words, along any path from the root to a leaf, there are
at most [log, n| light edges since we change the spine only when
we pass through a light edge. The number of nodes in the subtrees
is divided by at least a factor of two each time we traverse a light
edge. Therefore, we have at most |log, n| light edges in a path
from the root to any node. In Section 5.2, we show how heavy-light
decomposition helps us to solve the spine edit distance problem.

5.2 Spine Edit Distance
In this section, we solve spine edit distance for two spines S =

(u1, uz, .
We assume the tree edit distances between all node pairs of s and

..,up) and S = (uy,uz, ..., L_‘ﬁ) in s and s, respectively.
§ are given, except node pairs of S and S. Moreover, w.l.o.g. we
assume u7 and u; are the roots of s and s.

The first step in our algorithm is to use FEDDS to approximate
the fed’s between subforests of s and 5. However, constructing a
FEDDS for s and s is not possible since not all ted’s are known.
To resolve this issue, we construct two FEDDS’s instead of one
as follows. Suppose the opening and closing parentheses of uy,
which is the last node of S are s[i] and s[i + 1]. Note that since up,
is a leaf node of the first tree, its opening and closing parentheses
are consecutive in s. We construct one FEDDS between s[1, i] and
s, and another FEDDS between rev(s[i + 1, |s|]) and rev(s). Here,
rev reverses its input string. The reason for reversing strings is to
ensure that our queries for part (iv) consist of proper subforests.

In the following, we assume that the goal is to approximate
ted(u;, u;) for a node u; of S and a node #; of S. Let opt be an
optimal transformation with ted(u;, %;) operations. Moreover, since
we compute ted(u;, #;)’s in a bottom-up approach when we are
computing ted(u;, i), we already know ted(uy, uj)’sfori < i’ < h
and j < j’ < h. Therefore, we know all the ted’s between the nodes
of the subtree of u; and the nodes of the subtree of i, expect the
ted’s between u; and u; itself.

Note that in ted(u;, #;), u; is mapped to u; by definition. To
compute ted(u;, #;), we search for a u;, which is the first node
after u; in S which is not removed in opt. Node u;s is mapped to
some node in the subtree of u;, namely w. Recall that for a fixed
u;» and w, ted(u;, ;) is equal to the sum of these six parts:

(1) the cost of changing the label of u; to the label of u;j, if
necessary,

(2) the cost of mapping the subforest of nodes before the open-
ing parenthesis of u;s to the subforest of nodes before the
opening parenthesis of w,

(3) the cost of mapping the subtree of node u; to the subtree of
node w,
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(4) the cost of mapping the subforest of nodes after the closing
parenthesis of u;s to the subforest of nodes after the closing
parenthesis of w,

(5) the number of nodes between u; and u;; which are deleted,
and

(6) the number of nodes between #; and w which are inserted.

The time complexity of an algorithm implementing this method
without any additional ideas is Oc(n*), and its approximation factor
is 1 + €. To improve the time complexity, we apply two ideas. Our
first idea is based on Observation 5.1.

OBSERVATION 5.1. Let 7 be a transformation with at most dmax
operations from s intos. If = transforms s[i] into 5[j], then |i — j| <
2dmax-

Let d’ be the sum of the costs of all parts except part (iii) in
the optimal solution corresponding to ted(u;, #;). The first idea to
improve the time complexity is that for a fixed u; and u;, we have
at most O(d”) possibilities for either uj and w. To prove this upper
bound for u;s, note that we have a cost of i’ — i — 1 in part (v) for
removing all nodes in the path between u; and u;» on spine S. Since
we have at most d” operations in part (v),i+1 < i’ < i+d’+1holds.
Therefore, d’ + 1 is an upper bound on the number of possibilities
of u;s. In addition, we claim that for a fixed u;/, we have at most
0O(d’) possibilities for w. Based on Observation 5.1, and since the
cost of part (ii) is at most d’, we conclude that the last closing
parenthesis before the opening parentheses of w in § has at most
4d’ + 1 possibilities. Therefore, the opening parenthesis of w also
has at most O(d”) possibilities. This idea reduces our running time
from O(n*) to O(n2d’?) by reducing the number of possibilities of
i’ and w. The following idea reduces the number of possibilities of
i and j to improve the running time to 5(n2).

Moreover, in our algorithm, we directly use FEDDS’s instead
of just using FEDDS. We want to use a FEDDSy where k is near
d’ in the optimal transformation of the subtree of the subtree of
u; into the subtree of %;. Since we do not know the correct value
of d’, we try all values of {1,1+¢,...,(1 + e)logHe ™} as k. Then,
for a value of k where k/(1 + €) < d’ < k, we use FEDDS; to
estimate the cost of parts (ii) and (iv). Recall that, in FEDDS; we
mark a number of points, and for each query of two subforests, we
shift the starting indices to the left to match marked points. We
use the observation that these shifts do not change the outcome
of the query too much. Therefore, for two queries whose starting
points in both s and s are near the same marked points, FEDDSy
outputs an identical value. To improve the running time of our
algorithm, we use the same observation for computing ted’s. More
precisely, for a fixed k, when the opening and closing parentheses
of u; and u; differ slightly such that immediate marked points on
their right are the same, we claim that the corresponding ted values
are relatively close. Due to the nested nature of opening and closing
parentheses of nodes of spines, there are at most O(n/8k) - O(n/dk)
relatively different ted values for a specific k. For this reason, we
store ted(u;, #j)’s in a lookup table. Before computing a ted(u;, u;),
we check whether a close TED is already computed. If so, we get it
from the lookup table; otherwise, we compute it.

LEMMA 5.2 (SPINE EDIT DISTANCE). Let ¢ > 0 be an arbitrary
constant, and s and s be two trees of total size n. Moreover, let S and
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S two spines of s and s, respectively. If we have all the ted’s between
all pairs of nodes of s and 5 except between nodes of S and S, we can
compute ted’s between nodes of S and S in time O(n?), within an
approximation factor of 1 + €.

5.3 Our Algorithm

In this section, we use the spine edit distance algorithm of Sec-
tion 5.2 to find the desired approximation algorithm of TED be-
tween two trees. We can perform the algorithm of two spines for
all pairs of spines in a bottom-up approach. This way, we already
computed the ted’s between nodes that we need as prerequisites in
each step.

Note that ted(r,7) where r and 7 are roots of s and s, is not
necessarily equal to ted(s, §). The first one has an additional con-
dition that the root of the first tree should be mapped to the root
on the second tree. To compute ted(s, 5), we add a dummy root to
each of two input trees, which is enclosing each of s and s with
an additional pair of parentheses. Adding these dummy roots does
not change the tree edit distance, and there is an optimal solution
which maps the root of the first tree to the root of the second tree.
Our algorithm is shown in Algorithm 5.

Algorithm 5: our-ted(s, s, €)

Data: two trees s and s, and € > 0.
Result: ted(s, §) with an approximation factor of 1 + €.
1 add two dummy roots u, and #, on top of s and s, respectively;
2 heavy-light decompose s and s into spines;
3 for S in spines of s in a bottom-up order do
4 for S in spines of 5 in a bottom-up order do
5 run spine — edit — distance(s, s, S, S, €) using the
already stored distances and store new distances;

6 return ted(ur, u,);

THEOREM 5.3. For two ordered trees s and s of total size n, we can
compute their tree edit distance in time O(n®) with an approximation
factor of 1 + €.
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