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Abstract

Today, information retrieval is a common task for internet users. The huge size and heterogeneous
structure of the web has caused new problems for its users. In this immense resource of information, it
is exceedingly difficult for users to locate resources that are both high in quality and relevant to their
information needs. One of the main tasks of each search engine is providing users with these high
quality and relevant resources. Search engines use ranking algorithms in order to sort the documents
related to the user need.

For ranking web resources, several ranking methods have been introduced. In this paper, we
present the most famous web ranking algorithms and briefly explain their advantages and drawbacks.
We also propose a new algorithm for ranking web pages, which exploits hyperlink structure as well
as document contents for ranking resources, with the intent of overcoming the drawbacks of current
ranking algorithms.
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1 Introduction

Web is a set of unstructured information that is expanding with a high rate. Several studies have
estimated the size of the web, and while they report slightly different numbers, most of them agree that
there are more than a billion pages on the web.

In this huge and unstructured set of information, search engines face different difficulties. The search
engines receive queries and return a set of web pages as the result. If the query posed to the search engine
is a broad-topic query, we can expect to find thousands of relevant pages. The fundamental difficulty
here is the Abundance Problem: The number of pages that could be returned as relevant is too large for a
human user to digest [5]. Often users are not interested in all the relevant pages. Instead they want to
see the most authoritative or definitive pages first. To this end, search engines use ranking algorithms to
sort the pages they are going to return as the results of the queries.

Two main classes of algorithms are used for ranking web pages and documents. The first class uses
the traditional information retrieval algorithms that are changed to be used in web search engines, while
the second class is specifically designed for search engines.

The traditional information retrieval algorithms mostly use Boolean modeling or Vector-Space mod-
eling or an altered version of one of these algorithms for ranking the returned documents. In general,
these algorithms do not act successfully in ranking web pages, as they only use the text content of pages



for sorting them. What is neglected in these algorithms is that the web is more than a simple set of
documents: web is a set of linked documents. The ranking methods, which are designed specifically for
the web, use this property for ranking the web pages and documents.

2 Web Ranking Algorithms

The algorithms designed for ranking web pages again can be divided to two categories. The algorithms in
the first category rank the web pages once, offline and irrespective of the query. Search engines that use
these algorithms use specific methods (such as similarity search methods) to find the relative documents
to the query and use the ranks computed by the ranking algorithm for sorting these documents. The most
famous algorithm in this category is PageRank [4, 3], which is proposed by Page and Brin in Stanford
University and is used in Google [2] search engine. The algorithms in the second category rank pages
with respect to the query. The most important algorithm in this category is Kleinberg algorithm [5].

2.1 PageRank

PageRank is one the first and most successful algorithms designed for ranking web pages. The main idea
of the algorithm is: A link from page u to page v denotes that the creator of page u has in some measure
conferred authority on v. A page has a high rank if the sum of the ranks of its back links is high. A high
rank can be because of high number of back links or highly ranked back links.

The PageRank algorithms is designed as follows:

We assume page A has pages T4, - . . T, which point to it. The parameter d is a damping factor, which
can be set between 0 and 1. C'(A) is defined as the number of links going out of page A. The PageRank
of a page A is given as follows:

PR(A) = (1 — d) + d(PR(T1)/C(T1) + ... + PR(Tn)/C(Tn))

The PageRanks form a probability distribution over web pages, so the sum of all web pages’ PageRanks
will be one.

PageRank can be thought of as modeling the behavior of a random surfer. The random surfer simply
keeps clicking on successive links at random. The surfer periodically gets bored and jumps to a random
page. The probability that the random surfer visits a page is its PageRank.

2.2 Kleinberg Algorithm

Kleinberg proposed another algorithm for ranking pages. He suggested query specific ranking. Given
a query, Kleinberg algorithm finds authorities and hubs with respect to that query. Authorities are
good sources of contents, while hubs are good sources of links. Hubs and authorities exhibit a mutually
reinforcing relationship: A good hub is a page that points to many good authorities; A good authority is
a page that is pointed to by many good hubs. To find good authorities and hubs, Kleinberg first makes a
base set of pages to work with. The base set must be relatively small, rich in relevant pages and it must
contain many of the significant authorities. To find such a collection of pages, Kleinberg first collects
the highest ranked pages for the query from a text based search engine such as AltaVista [6]. Then he
increases the number of strong authorities in this graph by expanding this set along the links that enter
and leave it. Kleinberg associates an authority weight A[.] and a hub weight H[.] with each page. The
weights are calculated iteratively:
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The top ¢ authorities and top ¢ hubs are those pages that have the highest authority and hub weights
at the end of the algorithm.

2.2.1 Extensions to Kleinberg Algorithm

A number of drawbacks have been found in Kleinberg algorithm. Bharat and Henzinger[7] point out three
reasons that Kleinberg algorithm doesn’t work well in all situations: (1) Mutually reinforcing relationship
between hosts, (2) automatically generated links and (3) non-relevant nodes. Also a number of algorithms
have been proposed to overcome these difficulties. Bharat and Henzinger suggest eliminating non-relevant
nodes from the graph and regulating the influence of a node based on its relevance to the query topic.

Chakrabarti and Dom [8] have proposed an extension to Kelinberg algorithm. They weight the links
between pages based on the relevance of the text around the link and the query. The major idea is that
the text around the links to a page p is descriptive of the contents of p. They assign a weight w(p, q) to
each link from page p to page q and update the hub and authority weights using these weights.

In several other, other changes have been made to these algorithms.

3 Proposed Algorithm

The main advantage of PageRank algorithm over Kleinberg algorithm is its running time. In the PageR-
ank algorithm, the ranks of the pages are calculated once, offline. As a result, sorting the pages can be
done in a short time. In contrast, the Kleinberg algorithm has to send the query terms to a text-based
search engine, such as AltaVista, receive the search results, extend the root set to the base set again
using AltaVista and download all the pages in the base set.

PageRank, on the other hand, has its own drawbacks. In the PageRank algorithm, the heavily linked
pages often receive high rank, even for queries for which they have no authority. Besides, a page that is
considered important in one domain may not be important in other domains, regardless of the words in
its text.

In my work, I propose an algorithm that like PageRank can compute the ranks of pages in a short
time, but computes the ranks with respect to the query. To this end, I try to change the PageRank
algorithm to compute the ranks of pages with respect to the queries.

3.1 Basic Algorithm

Search engines that use PageRank as the algorithm for ranking the web pages and documents, have a
graph model of the whole web at hand. The web pages and documents are the nodes of the graph and
the links between the pages constitute the directed edges of the graph.

If we assume that we have the graph model of the web at hand, we can use similarity search algorithms
to find a number of pages related to the query topic. We use these pages as the root set of pages we are
going to apply our ranking algorithm on. If the number of pages is more than a threshold &, we choose



the first k& pages as the root set. Since we have found these pages using similarity search algorithms, we
are sure that the pages are somehow related to the query topic.

In the next step, we try to extend our root set to the base set of pages. We can use the idea of
Kleinberg algorithm for our extension. We add the pages that point to the pages of our root set and the
pages that are pointed to by the pages of the root set to achieve the base set. In the construction of the
base set, we add the restriction that each page S can add at most d pages (which have links to it) to the
base set. This restriction is essential, since we are trying to keep our base set small.

We use the induced subgraph of the graph model of the web over the nodes of our base set as the
subgraph we are going to compute the ranks on. Since we have assumed that we have the graph model
of the web, we can find the subgraph of the base set easily in a short time.

In our basic algorithm, we use the PageRank algorithm to compute the ranks of the the pages of the
base set.

3.1.1 Formal Model
In our basic algorithm, the rank of a page p with respect to query Q is defined as follows:

R"(p,Q) =(1_d)zw
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In this equation, R"(p, Q) is the basic rank of page p with respect to query @ in the n'* step, N, is
the number of outgoing links of page ¢ and FE is a vector over the web pages corresponding to a source
of rank.

The definition of ranks in this way corresponds to a random walk on graphs. The random surfer
traverses the graph as follows: In each step, the random surfer selects one of the outgoing links of
the current page with probability (1 — d) and jumps to a random page (with respect to the source
vector E) with probability d. In our basic algorithm, we define E to be uniform over all web pages
(V1<i<N,e; = %, N is the number of nodes in the base set).

It is fairly easy to show that:

Theorem: For each query Q and parameter d > 0, the basic algorithm finds a unique limiting
distribution R* for the ranks of pages, provided that each page has at least one outgoing edge.

3.2 Weighting Edges and Nodes of the Neighborhood Graph

For improving the performance of the proposed algorithm, we modify some aspects of the algorithm.
In the first step, we give weight to the links between pages, based on the similarity of the anchor text
of the link and the query topic.

3.2.1 Computing the Edge Weights

In general, the links that come out of a specific page are not equally important. In order to enter the
importance of links in computing the ranks of pages, we give weight to edges and use these weights when
computing the ranks of pages.

For weighting the edges, we use this basic rule: The text around a link which points to a page p is
descriptive of the contents of p. Note that the sources of these links are not in p, but they are in pages
which have links to p.



We give a positive weight Edge_wt(p,q) to each link between pages p and ¢q. The more the text
around the link is related to the query topic, the higher the Edge_wt(p, q) will be. In order to find the
edge weights, we define an anchor window for each link. An anchor window is a window of size 2B bytes,
B bytes in either side of the start point of the anchor text.

The weights of the edges can be computed using either of these two methods:

1. Suppose n(t) is the number of terms in the anchor window which match with the words of the
query. Then we have:
Edge_wt(p — q) = 1 + n(t)

2. We define the edge weight to be the text similarity of the anchor window and the query:
Edge_wt(p — q) = Similarity(Anchor _Window, Q)

On the other hand, if a number of links in one page in the first host all point to pages in a second
host, we give fractional edge weights to the outgoing links, so that we will not give undue weight to the
opinion of one person of organization. In cases where a number of links from pages in a first host all
point to a paper in a second host, we reduce edge weights in the same way.

3.2.2 Computing the Node Weights

The other modification we make in the algorithm is giving weights to pages and documents (nodes of the
subgraph) based on their relevance to the query topic. In this way, we can eliminate the nodes that are
in the base set, but are not relevant to the query. Besides, we can use these weights when we update the
ranks.

For weighting the nodes, we can use one of these two methods:

1. We use the similarity of the text of the page with the extended query! as the relevance weight:

Node_wt(p, Q) = Similarity(p, Q)

2. We use the anchor text of the links to find the relevance of the node to the query. To this end, we
concatenate the anchor texts of all links pointing to page p, and make the anchor document. We
use the similarity of this anchor document and the extended query as the relevance weight of the
node:

Node_wt(p, Q) = Similarity(Anchor_doc(p), Q)

3.2.3 Pruning nodes from the base set

In some cases, when extending the root set to the base set, unrelated pages are added to the neighborhood
graph. We can use the weights of the pages to prune these unrelated nodes. For pruning nodes, we first
find a threshold for the weights using one of these three ways:

1. Median weight: The threshold is the median of the weights of the nodes.
2. Root set median weight: The threshold is the median of the weight of the nodes in the root set.

3. Fraction of maximum weight: The threshold is a fixed fraction of the maximum weight (for example
max/10).

We eliminate those nodes of the base set whose weights are below the defined threshold.

1In most cases, the query topic is broader than the query itself. Therefore, we extend our query. In exact words, we
concatenate the first 1000 words of each document in the root set to make the extended query Q.
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Figure 1: Updating ranks using node and edge weights.

3.3 Updating ranks using edge and node weights

In the weighted subgraph, we compute the ranks of pages using weights of nodes and edges. When
updating ranks, we first multiply the weight of the node in its rank and then divide the new rank over
web pages. Given the page u and the pages that have links from u (vy,...,v,), the fraction of rank of
u that is given to v; is computed as: Rank(u) x Node_wt(u, Q) x Edge-wt(u — v;). See figure 1 as an
example.

3.3.1 Formal model

In our algorithm, we compute the rank of a page p with respect to query @ using this equation:

R"(p,Q) = (1—d) Y R"*(q,Q)Edge_wt(q — p)Node_wt(q, Q) + dE(p)

q—p

Where R"(p, Q) is the rank of page p with respect to query @ in step n, Edge_wt(q — p) is the relevance
of the text of anchor window with query @, Node_wt(q, Q) is the relevance weight of node ¢ with respect
to query @ and E is a source of rank. For each page p;, the entry of E corresponding to p; (e;) is the
similarity of text of p; and query @ (Similarity(p;, @)).

The final rank of page p with respect to query @ is defined as:

T = lim R"(p,Q)



3.3.2 Convergence of Ranks

In order to compute the ranks of pages, we construct a matrix corresponding to the weighted subgraph
of our query and multiply this matrix in the rank vector repeatedly until the ranks of pages converge to
a limit.

Suppose that query @ and parameter d > 0 are given. We construct matrix U as follows: In the first
step, if there is no edge from p; to p;, we set u;; = 0, otherwise we define u;; to be (1—-d) x Edge_wt(i — j).
Then for each node j, we add d x E(j) to each entry u;;, 1 <14 < n. In the last step, for each i, 1 <i <,
we multiply Node_wt(i, Q) in each entry u;;, 1 < j < n.

U is a square matrix whose entries are all positive. We will make use of this property of U to prove
the convergence of the ranks in the proposed algorithm.

In order to find the ranks of pages, we first define R° as a vector with unique entries. As a result, all
pages have equal ranks at the beginning. At each step we find the new ranks by multiplying the transitive
of matrix U in the previous vector of ranks. We repeat this task until the ranks converge to a limit:

R" = UTRn71
R* = lim R"
n—o0o

Theorem: With enough number of iterations, the ranks converge to a limit.

Proof: We use these to theorems to prove the convergence of ranks:

The Theorem of Perron[l]: If A is a positive matriz, there is a unique characteristic root of A,
A(A), which has greatest absolute value. This root is positive and simple, and its associated characteristic
vector may be taken to be positive.

Theorem[1]: Let ¢ be any non-negative vector. Then

v= lim A"(c)/A(A)"
n—oo
exists and is a characteristic vector of A associated with \(A), unique up to a scalar multiple determined
by the choice of ¢, but otherwise independent of the initial state c.

In our algorithm, U is a positive matrix (Vi,,u;; > 0). As n — oo, according to the theorem, the
asymptotic behavior of R(n) is given by the relation:

R(n) ~ \™y

where X is the Perron root and < is the characteristic vector associated with A. We know that v is a
positive vector which is a positive multiple of one particular normalized characteristic vector 6. The
normalization can be taken to be the condition that sum of the components totals n. The constant of
proportionality v and § is then determined by the values of the initial components of c.

What this means is that independent of the initial vector, as long as U is positive, as the number of
iterations increases, we approach a steady ranking in which the total ranks of pages grow exponentially,
but the proportions of ranks of various papers remain constant. The resulting vector is the ranking vector
we were looking for.O



4 Experimental Results

In order to test the proposed algorithm, we implemented a small model of it. We designed a small system
for searching the web, with our ranking algorithm as a part of it.

As described earlier, we had assumed that we have the graph model of web at hand. To this end, we
downloaded a small subset of the pages of the web and stored the pages in a local storage.

In order to test the proposed algorithm, we need a similarity search algorithm which returns the
related pages to the query topic. In our system, we used an implemented similarity search algorithm that
returns the result pages. We sort the pages with our ranking algorithm before proposing the results to
the user.

In order to store the web pages in a local storage, we used Webzip4.0 software. This software gets the
URL of a webpage as input and stores the pages that are up to a user defined level in a local storage. We
used http://citeseer.nj.nec.com/brin98anatomy.html as the start URL and saved pages up to five levels.

As our first query, we gave "PageRank” to the system. The first ten returned results were:

| Rank | URL | Topic

1 http://citeseer.nj.nec.com/ The PageRank Citation Ranking:
page98pagerank.html Bringing Order to the Web

2 http://citeseer.nj.nec.com/ | The PageRank Citation Ranking:
345917.html Bringing Order to the Web

3 http://citeseer.nj.nec.com/ Citation: The PageRank Citation
context/304344/345917.html | Ranking: Bringing Order to the Web

4 http://citeseer.nj.nec.com/ The Anatomy of a Large-Scale
brin98anatomy.html Hypertextual Web Search Engine

5 http://citeseer.nj.nec.com/ PageRank Computation and the
528165.html Structure of the Web

6 http://citeseer.nj.nec.com/ | Efficient Computation of PageRank
527984 .html

7 http://citeseer.nj.nec.com/ Topic-Sensitive PageRank
528512.html

8 http://citeseer.nj.nec.com/ Data Engineering
356233.html

9 http://citeseer.nj.nec.com/ | Using PageRank to Characterize
pandurangan(02using.html Web Structure

10 http://citeseer.nj.nec.com/ | The Intelligent Surfer: Probabilistic
460350.html Combination of Link and Content

Information in PageRank

If we study the result pages with care, we will see that the pages are relevant to the query in a good
extent. The first result (The PageRank Citation Ranking: Bringing Order to the Web) is the page which
describes the basic algorithm of PageRank. The other pages are those which propose extensions to the
basic algorithm, present methods for efficient computation of PageRank or use PageRank in different
applications of the web.



It can be seen that more important pages and the pages which are referred more are given higher
ranks. But there is no accurate metric for evaluation of the algorithm.

In order to ensure that our ranking algorithm ranks pages near reality, we tried to compare our
system’s output with Google’s results. In this comparison, we consider the average difference between
the ranks of two algorithms.

If we assume that Rg(P;, @) is the priority of P; in Google’s result, Rp(P;, @) is the priority of P; in
our algorithm and Pages is the list of returned pages, we define:

n

Dif ference = 1/nz |Rc (Pages[i]) — Rp(Pages[i])|

i=1

For our first query ("PageRank”), the difference for the first fifty results was 2.28. This result shows
that our algorithm finds the relative arrangement of pages well. Note that we didn’t expect the difference
to be zero. We compared our algorithm with Google, only to show that the results are not far from
reality.

We issued the second query as ”Focused Crawling”. The first ten results returned by our search
system were:

| Rank | URL | Title |

1 http://citeseer.nj.nec.com/ Focused crawling: a new approach to
chakrabarti99focused.html topic-specific Web resource discovery

2 http://citeseer.nj.nec.com/ Searching the Web
527114.html

3 http://citeseer.nj.nec.com/ Focused Crawling Using Context
9275140.html Graphs

4 http://citeseer.nj.nec.com/ Focused Crawling Using Context
diligentiOOfocused.html Graphs

5 http://citeseer.nj.nec.com/ Accelerated Focused Crawling through
chakrabarti02accelerated.html | Online Relevance Feedback

6 http://citeseer.nj.nec.com/ Distributed Hypertext Resource
chakrabarti99distributed.html | Discovery Through Examples

7 http://citeseer.nj.nec.com/ Topical Locality in the Web
271585.html

8 http://citeseer.nj.nec.com/ Evaluating Topic-Driven Web Crawlers
menczerQlevaluating.html

9 http://citeseer.nj.nec.com/ Background Readings for Collection
dlrg02background.html Synthesis

10 http://citeseer.nj.nec.com/ The Structure of Broad Topics on the
chakrabarti02structure.html Web

For this query, the average difference was 3.1 for our first fifty results.

As noted earlier, the goal of our proposed algorithm was overcoming the drawbacks of PageRank and

Kleinberg algorithms. Experiments show that we have achieved our goals.




The main goal of our algorithm was changing the PageRank algorithm, so that it will find the results
based on query topic. In PageRank, the algorithm finds the ranks once, offline and uses these ranks in or-
der to sort the query results. The advantage of our algorithm over PageRank is that it can find the ranks
based on queries. As a result, the relative arrangement of pages is not fixed as in PageRank algorithm. To
experiment this property, we issued the two queries ”PageRank, Rank, Ranking” and ”HITS, Kleinberg,
Rank, Ranking” to the search system. the two pages http://www.citeseer.nj.nec.com/page98pagerank.html
and http://citeseer.nj.nec.com/kleinberg97authoritative.html were in the results of both queries. In the
first query, page98pagerank.html had higher priority and in the second query, kleinberg97authoritative.html
was ranked higher.

5 Conclusion

In this paper, we introduced a new ranking algorithm, which exploits hyperlink as well as document
contents for ranking resources, with the intent of overcoming the drawbacks of current ranking algorithms.
We showed that our ranking algorithm converges. We also implemented a small model of our algorithm.
The results show that our method fulfills our goals.
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