
CCCG 2019, Edmonton, Canada, August 8–10, 2019

A MapReduce Algorithm for Metric Anonymity Problems

Sepideh Aghamolaei∗ Mohammad Ghodsi† Hamid Miri

Abstract

We focus on two metric clusterings namely r-gather and
(r, ε)-gather. The objective of r-gather is to minimize
the radius of clustering, such that each cluster has at
least r points. (r, ε)-gather is a version of r-gather clus-
tering with the extra condition that at most nε points
can be left unclustered (outliers).

MapReduce is a model used for processing big data.
In each round, it distributes data to multiple servers,
then simultaneously processes each server’s data.

We prove a lower bound 2 on the approximation fac-
tor of metric r-gather in MapReduce model, even if an
optimal algorithm for r-gather exists. Then, we give a
(3+ε)-approximation algorithm for r-gather in MapRe-
duce which runs in O(1

ε) rounds. Also, for (r, ε)-gather,
we give a (7 + ε)-approximation algorithm which runs
in O(1

ε) MapReduce rounds.

1 Introduction

Privacy is a fundamental concern in publishing data [7]
or providing input to untrusted programs [19]. One of
the privacy-preserving methods is k-anonymity [20, 9],
where given a set of records in a table, the goal is to
change some of the attributes from some of the records
such that for any record there exist at least k− 1 other
equal records and the maximum distance between the
modified and the original records is minimized. Con-
stant factor approximation algorithms for k = 2, 3 [1]
and O(log k)-approximation exists for general k [18].

When records are points in a metric space, the prob-
lem is called r-gather [2]. Aggarwal et al [2] introduced
a version of k-anonymity where records are points in a
metric space. They proved metric r-gather has no 2-
approximation algorithm assuming P 6= NP , and they
gave a 2-approximation algorithm for this problem. Ene
et al [12] proved the lower bound 1.8 for Euclidean r-
gather.

If we allow nε points to be left unclustered (out-
liers), the problem is called (r, ε)-gather and has a 4-
approximation algorithm [2].
r-gather is formally defined in Definition 1.1. In the

rest of the paper, we denote {1, 2, · · · , n} with [n].

∗Department of Computer Engineering, Sharif University of
Technology, aghamolaei@ce.sharif.edu
†Department of Computer Engineering, Sharif University of

Technology, ghodsi@sharif.edu

Definition 1.1 r-Gather problem clusters n points
p1, · · · , pn in a metric space into a set of clusters cen-
tered at C ⊂ {p1, · · · , pn}, such that each cluster has at
least r points. The objective is to minimize the maxi-
mum radius among the clusters (R).

• ∀i ∈ [n],∃c ∈ C, d(pi, c) ≤ R,

• ∀c ∈ C, |{pi : i ∈ [n], d(pi, c) ≤ R}| ≥ r.
Some closely related problems are k-center with lower

bound (Euclidean [12]) or both lower and upper bounds
[11, 4] on the number of points in each cluster. In these
problems, the number of clusters (k) and the minimum
number of points in each cluster (r) are given and the
goal is to minimize the radius (R). General frameworks
for using sequential algorithms in MapReduce via core-
sets [5, 14] do not directly work for r-gather, since the
points of a cluster might be distributed among many
servers. Aghamolaei and Ghodsi [3] proved that for k-
center the black box algorithm of these algorithms can
be replaced by a covering algorithm (coreset). Run-
ning our algorithms to compute the coreset, and then
applying of these general frameworks with a sequential
algorithm at the last step extends our results to θ(nk)-
balanced k-center and k-center with lower bound on the
number of points in each cluster.

In this paper we give constant factor approximation
algorithms for r-gather and (r, ε)-gather in MapReduce
model. We summarize the results in Table 1.

Table 1: Summary of results. ‘+’ denotes the combina-
tion of algorithms. We assume k ≤ n/p, for p servers.

Conditions Rounds App. Refs
r-gather:

lower bound ≥ k 2 Thm. 1
- 2 16 Alg. 5
- O(1

ε) 3 + ε Alg. 4
(r, ε)-gather O(1

ε) 7 + ε Alg. 7
k-center:
balanced O(1) 160 [11]+[5]

θ(nk)-balanced O(1) 96 + ε Alg. 4 + [5]
lower-bounded O(1) 6 + ε Alg. 4+ [14]
lower bound ≥ k 2 Thm. 1
with outliers:

- O(1
ε) 7 + ε Alg. 7 (r = 1)

- 2 13 [16]
doubling dim. 2 2 + ε [8]

30th Canadian Conference on Computational Geometry, 2019

2 Preliminaries

2.1 MapReduce

In the MapReduce model [10], data is distributed among
a set of independent servers. A MapReduce algorithm
runs in several rounds. In each round, servers process
their data locally and simultaneously. At the end of each
round, they communicate with each other by sending a
subset of their data to other servers. Two main theoreti-
cal models for MapReduce are MapReduce Class (MRC)
[15] and Massively Parallel Communication (MPC) [6].

In the MPC model, there are p servers, each with
memory m = O(N

p1−ε) bits of data, where N is the in-

put size and ε ∈ [0, 1] is a parameter of the model. The
complexity of MPC algorithms is measured in the num-
ber of rounds and the communications between servers.

2.2 k-Center

Given a set of points, k-Center chooses k points as cen-
ters minimizing the maximum distance from each point
to its nearest center. We use Greedy Min-Max (GMM)
[13] for computing a 2-approximation of metric k-center
(algorithm 1), and a modification of it that adds centers
until all points are covered using radius R (algorithm 2).

Algorithm 1 GMM-k

Input: a set of points S, the number of clusters k
Output: a set of centers T , the cluster sizes {nc}c∈T
1: T = an arbitrary point p ∈ S
2: for i = 2, · · · , k do
3: find a point p ∈ S \T maximizing mint∈T d(p, t)
4: T ← T ∪ {p}
5: end for
6: assign each point to its nearest center from set T
7: nc = the number of points assigned to c
8: return T, {nc}c∈T

Algorithm 2 GMM-R

Input: a set of points S, the radius of clustering R
Output: a set of centers T , the cluster sizes {nc}c∈T
1: dist =∞, T = an arbitrary point p ∈ S
2: while dist ≥ R do
3: find a point p ∈ S \T maximizing mint∈T d(p, t)
4: T ← T ∪ {p}
5: dist← mint∈T d(p, t)
6: end while
7: assign each point to its nearest center from set T
8: nc = the number of points assigned to c
9: return T, {nc}c∈T

A 4-approximation k-center algorithm in MapReduce
[17] is shown in algorithm 3. We slightly modify the
algorithm to keep the order of centers as they are found.

Algorithm 3 Preprocess

Input: points in Pi for i ∈ [p]
Output: k centers

. parallel in all servers
1: Ti = the centers returned by GMM-k (Pi) for i ∈ [p]
. sequential in one server

2: T = (c1, · · · , ck) = the centers in the order found
by GMM-k (∪pi=1Ti)

3: return T

3 Lower Bound

In this section we give a lower bound for approximation
factor of r-gather clustering in the MapReduce model.

Theorem 1 There are no α-approximation r-gather
clusterings in MPC for α < 2, k > log n, where k is
the number of clusters.

Proof. Let G be a graph whose vertices are grouped
into 2k subsets called Ai ∈ A for i ∈ [k] and Bi ∈ B for
i ∈ [k]. Each subset in A has l ∈ [r2 , r) points and each
subset Bi ∈ B has at least r

2 points. Points inside each
Ai ∈ A have distance 1 from each other and points in
Bi ∈ B have distance 2. For each Ai and Bi, for i ∈ [k],
there is an optimal center in set Ai called oi that has
distance 1 from all points of Bi. All other edges have
weight 2. So the radius of r-gather is 1 if and only if Ai
and Bi, for i ∈ [k], become clusters and oi is selected
as the center, as depicted in Figure 3. Also, assume
all subsets Ai ∈ A are in the same server and each of
subsets Bi ∈ B is in a different server excluding the one
containing subsets of A.

Let ALG be an r-gather algorithm. Since for each
i ∈ [k] points of Ai and Bi are not in the same server,
ALG cannot find oi knowing only A. To find oi ∈ Ai,
ALG needs all points of Ai and at least one point of Bi
to be in the same server. Since ALG cannot differentiate
between the points of Bj ∈ B without knowledge of A,
in the worst case, ALG has to send all points of Ai to
all servers to find oi, which takes one MPC round. This
will only give one point oi, if |Ai| = θ(m). So finding
the k optimal points requires at least k rounds. �

1

o1

A1

oi Ai

1

∈ B1

∈ Bi

1

1

1
2

2

i 6= 1

i 6= 1

Figure 1: Lower-bound for r-gather (Theorem 1)

CCCG 2019, Edmonton, Canada, August 8–10, 2019

4 r-Gather in MapReduce

We propose an algorithm (Algorithm 4) for r-gather.
It first finds an lower bound on the optimal radius R
using Bounds(P) subroutine, which computes a 16-
approximation algorithm for r-gather (algorithm 5).

Then it multiplies the lower bound by factor 1 + ε
and tests the resulting radius with an r-gather decider
algorithm Decider(R,P) (algorithm 6) that finds an
r-gather of radius 3R if an r-gather or radius R exists,
otherwise it returns FAIL.

Algorithm 4 r-Gather 3-approximation

Input: P a set of points distributed in servers
Output: clusters
1: UB = Bounds(P), R = UB

16
2: while R ≤ UB do
3: if Decider(R,P) returns FAIL then
4: R← (1 + ε)R
5: else
6: return the output of Decider(R,P)
7: end if
8: end while

4.1 r-Gather Bounds

Algorithm 5 finds a constant factor approximation for
r-gather. Assume the value of k is selected such that
pk2 ≤ m and k is greater than the number of clusters
in the optimal r-gather. Preprocess() is algorithm 3.

Algorithm 5 Bounds

Input: points in Pi for i ∈ [p]
Output: r-gather clusters
1: T = Preprocess({Pi}i∈[p])
2: send T to all servers
. parallel in all servers:

3: C = ∅, j = 1
4: for j ∈ [k] do
5: C ← C ∪ {cj}
6: assign points to their nearest center in C
7: n(i, c, j) = the sizes of clusters centered at c ∈ C
8: end for
9: send n(i, c, j) to one server for i ∈ [p], j = [k], c ∈ T
. sequentially in one server:

10: find the minimum k′ ∈ [k] such that exists a center
c ∈ T ,

∑p
i=1 n(i, c, k′) < r

11: return {c1, · · · , ck′−1}

Lemma 2 In algorithm 5, each cluster has at least r
points.

Proof. According to line 10 of the algorithm, k′ is the
first step that the number of points assigned to a center

becomes less than r. So, in step k′ − 1 each center in
{c1, · · · , ck′−1} has at least r points. �

Theorem 3 Algorithm 5 is a 16-approximation for r-
gather.

Proof. Based on Lemma 2, each cluster has at least r
points.

Consider a point s that was reassigned at step k′. Let
ci be the center of the cluster that contained s at step
k′−1. Since points are assigned to their nearest centers,
we have d(cj , s) ≤ d(ci, s), and using triangle inequality
d(ci, cj) ≤ d(ci, s) + d(cj , s). So, d(ci, cj) ≤ 2d(ci, s).

Each point ci ∈ C covers all points of the optimal
cluster containing ci, with radius 2R∗, where R∗ is the
radius of the optimal r-gather of S, i.e. d(ci, s) ≤ 2R∗.
Putting the two previous inequalities together gives the
bound d(ci, cj) ≤ 4R∗.

GMM-k adds the farthest point as a center each time,
so the cluster containing cj has the maximum radius R′

among the clusters. Let ck be the nearest center to
cj , i.e. d(ck, cj) ≤ d(ci, cj) for all i 6= k. Since cj is
assigned to its nearest center, R′ = d(ck, cj). So, we
have R′ ≤ 4R∗.

Algorithm 3 is a 4-approximation for k-Center, soR ≤
4R′, where R is the radius of k-Center from first round.
The last two inequalities yield R ≤ 4R′ ≤ 16R∗. �

In algorithm 5, for each server we send k2 points to
one server, so we have pk2 ≤ m points in total. Since
we had condition pk2 ≤ m, algorithm 5 follows the con-
straints of MPC model.

4.2 r-Gather Decider

r-Gather decider takes R as input and gives an r-gather
clustering with radius 3R if an r-gather with radius R
exists, otherwise it returns FAIL. Assume we have the
order of centers added by GMM-k algorithm used in
r-gather bounds algorithm.

4.2.1 Cluster Re-assignments via Max. Flow

Two sets of clusters D and S with the number of points
assigned to them, and R an upper bound for the radius
of clustering are given. For each p ∈ D ∪ S we denote
the number of points assigned to p with np. The goal is
to re-assign the points of set S to centers of clusters in
D using a flow network.

Definition 4.1 Consider the graph G = (V,E) with
V = {s, t} ∪ D ∪ S and E = Es ∪ Em ∪ Et, where
Es, Em, Et are defined as follows:

• Es = {(s, v, r − nv) | v ∈ D}

• Em = {(u, v, nv) | u ∈ D, v ∈ S, d(u, v) ≤ R}

• Et = {(u, t, nu) | u ∈ S}

30th Canadian Conference on Computational Geometry, 2019

and where (u, v, c) denotes an edge from vertex u to ver-
tex v with capacity c.

Let MaxFlow(D,S, {nc}c∈D∪S ,R) be the function
that if the max. flow of G in the flow network of Def-
inition 4.1 is less than

∑
(u,v,c)∈Es c, returns (FAIL, ∅)

and otherwise returns (SUCCESS, {(u, v, c) ∈ Em}).
Figure 2 shows the original clustering, the flow net-

work and the clusters after re-assignment.

Algorithm 6 Decider

Input: points in Pi for i ∈ [p], radius R
Output: r-gather clustering or FAIL

. parallel in all servers
1: Ti, {nc}c∈Ti = GMM-R (Pi, R) for i ∈ [p]
2: send Ti for i ∈ [p] to one server
. sequentially in one server:

3: D = centers with ≥ r points assigned to it
4: S = centers with < r points assigned to it
5: for cs ∈ S do
6: N(cs, R) = centers in radius of R of cs
7: if all centers c ∈ N(cs, 2R) are in S then
8: D ← D ∪ {cs}
9: end if

10: end for
11: (flag, E) = MaxFlow(D,S, {nc}c∈D∪S , 2R)
12: if flag = FAIL then
13: return FAIL
14: end if
15: send E to all servers
16: according to E, assign points to centers in D

. parallel in all servers
17: return centers in set D and their assigned points

4.2.2 Analysis

Lemma 4 In algorithm 6, each cluster has at least r
points.

Proof. In the flow network of definition 4.1, there is an
edge with capacity r − ncd from node s to every center
cd ∈ D . From the definition of MaxFlow(., ., ., .) we
know the max. flow is r|D| −

∑
c∈D nc, which means cd

is assigned r−ncd new points. Since cd had ncd existing
assigned points, in total it has r assigned points. �

Theorem 5 Algorithm 6 is 3-approximation.

Proof. By lemma 4 in the solution of the algorithm,
each cluster has at least r points.

According to definition 4.1 each center cd ∈ D has
edges to centers cs ∈ S within radius of 2R. So cs only
can gets new points from cs at distance at most 2R.
From line 1 of algorithm 6 for each point p assigned to
cs we have d(cs, p) ≤ R. By triangle inequality we have
d(cd, p) ≤ d(cd, cs) + d(cs, p) ≤ 3R.

From line 8 of the algorithm we know for each cs ∈ S
there exists a center cd ∈ D within distance of 2R. By
the triangle inequality, all assigned points of cs can be
covered by cd with radius at most 3R. So all of the input
points can be covered with dense centers with radius at
most 3R. �

In algorithm 6, for each server we send k points to one
server, so we have pk points in total. Since we had the
condition pk2 ≤ m, algorithm 6 runs in MPC model.

4.3 Analysis

Theorem 6 Algorithm 4 takes O(1
ε) rounds in MapRe-

duce and gives a (3 + ε)-approximation for r-gather.

Proof. According to algorithm 4, r-gather 3-
approximation algorithm runs r-gather bounds once at
line 1. By theorem 3, we know r-gather bounds takes
2 rounds in MapReduce model. In algorithm 4 line
2, each while iteration runs algorithm 6 one time. By
theorem 5, we know r-gather decision takes 2 rounds
in the MapReduce model. In line 2 while statement
iterates at most O(1

ε) so total algorithm takes O(1
ε)

rounds in the MapReduce model.
Let R be the greatest radius which r-gather decision

algorithm returns FAIL. So we have R ≤ R∗ ≤ R(1 +
ε) where R∗ is the optimal radius of clustering. By
theorem 5 we know r-gather decision with R(1 + ε) as
input returns a r-gather clustering with radius 3R(1+ε).
So we have 3R(1+ε) ≤ 3R∗(1+ε) and the approximation
factor is 3 + ε.

By theorems 3 and 5 we know algorithms 5 and 6 runs
in MPC model. So algorithm 4 runs in MPC model
too. �

5 (r, ε)-Gather in MapReduce

In this section, we provide an algorithm which takes the
optimal radius R as input and finds a (r, ε)-gather clus-
tering of radius 7R if one exists, or returns FAIL other-
wise. Also, we give an algorithm to find the lower bound
and upper bound for the radius of clustering (algorithm
8 denoted by (r, ε) − GLB(.)), which we then use with
a 7-approximation algorithm as its decision subroutine
to solve the problem.

Algorithm 7 (r, ε)-Gather

Input: P a set of points distributed in servers
Output: clusters
1: R = (r, ε)−GLB(P)
2: while algorithm 9 (R,S) returns FAIL do
3: R← (1 + ε)R
4: end while
5: return the output of algorithm 9

CCCG 2019, Edmonton, Canada, August 8–10, 2019

d1 d2
s1

s2

s3
54

3

7 6

3
3

s t

S

D

4d1

d2

s1

s2

5

4

s3

r − 7

r − 6

3

5

4
32

d1 d2

s1

s2

s3

1

1

1010

2

2

1

(a) (b) (c)

Figure 2: (a) a clustering, (b) the network flow of (a), and (c) a reassignment of points to centers for r = 10

5.1 (r, ε)-Gather Lower-Bound ((r, ε)-GLB)

The inputs are a set of points distributed among the
servers and a parameter ε which means at most nε points
can be left unclustered. Assume we select k such that
pk2 ≤ m, and k is greater than the number of clusters in
the optimal (r, ε)-gather. In the first round of algorithm
9, we use algorithm 3.

Algorithm 8 (r, ε)-GLB

Input: points in Pi for i ∈ [p]
Output: lower bound for (r, ε)-gather clustering
1: T = Preprocess with inputs Pi for i ∈ [p]
2: send centers in T to all servers
. parallel in all servers

3: C = ∅
4: for j ∈ [k] do
5: C ← C ∪ {cj}
6: each point assigns to the nearest center c ∈ C
7: Rc = radius of the cluster centered at c
8: n(i, c, R, j) = the number of input points within

distance R of c in server i
9: end for

10: collect set C with {n(i, c, Rc, j)} and {n(i, c, Rc2 , j)}
for i ∈ [p], j ∈ [k], c ∈ C
. sequential in one server

11: CT = ∅, L = ∅
12: for j ∈ [k] do
13: n(c,R, j) =

∑p
i=1 n(i, c, R, j) for c ∈ CT

14: CT ← CT ∪ {cj}
15: if n(cj , Rc, j) < r then
16: L← L ∪ {cj}
17: end if
18: if

∑
c∈L n(c, Rc2 , j) > nε then

19: break
20: end if
21: end for
22: R = minc∈CTRc
23: return R

4

Lemma 7 The value returned by algorithm 8 is a lower
bound within a constant factor of the optimal radius of
(r, ε)-gather.

Proof. In line 18 of algorithm 8 the algorithm termi-
nates if the points assigned to the centers in L become
more than nε. Let outlier candidates (set OC) be the
set of centers in L and their assigned points. Since
|OC| > nε, there is a point p ∈ OC that must be clus-
tered. Suppose the nearest center to p is a center called
c, then we have d(c, p) ≤ Rc

2 . Since c ∈ L, we know c
does not have r points within radius of Rc. For each
point q outside the radius Rc around c, by triangle in-
equality, we have d(c, q) ≤ d(c, p) + d(p, q). So we have
Rc ≤ Rc

2 + d(p, q) and Rc
2 ≤ d(p, q). So p does not have

more than r points within radius Rc
2 . We know in any

(r, ε)-gather clustering with radius R′ each point can
cover all points of its cluster with radius 2R′. Since p
must be clustered in the optimal (r, ε)-gather clustering,
the cluster contains p cannot have radius less than Rc

4 .

So we have R∗ ≥ Rc
4 where R∗ is the optimal radius. �

5.2 (r, ε)-Gather Decision

The inputs are R the radius of (r, ε)-gather clustering
and ε a parameter which indicates at most nε points
can be left unclustered. (r, ε)-Gather decision algorithm
gives an (r, ε)-gather with radius 7R if there exists a
(r, ε)-gather clustering with radius R and returns FAIL
otherwise.

Lemma 8 All the points that are clustered in the op-
timal (r, ε)-gather will also be clustered by (r, ε)-gather
decision algorithm.

Proof. Based on line 6 of algorithm 9, centers that do
not have r points within radius of 3R of themselves are
outliers. Let c be a center which has been removed as
an outlier, and p be a point assigned to c, so p has been
removed as an outlier, too. Let q be any point such
that d(c, q) ≥ 3R. Because of triangle inequality, we
have d(c, q) ≤ d(c, p) + d(p, q). Line 1 of the algorithm

30th Canadian Conference on Computational Geometry, 2019

Algorithm 9 (r, ε)-Gather Decision

Input: points in Pi for i ∈ [p], radius R
Output: (r, ε)-Gather clustering or FAIL

. parallel in all servers
1: Ti, {nc}c∈Ti = GMM-R (Pi, R)
2: assign points in Pi to their nearest center in Ti
3: collect sets Ti with {nc}c∈Ti
. sequentially in one server:

4: for c ∈ ∪pi=1Ti do
5: N(c,R) =set of centers within radius of R of c
6: remove c and its assigned points as outliers if∑

q∈N(c,3R) nq < r
7: end for
8: D = ∅, S = ∅, U = ∪pi=1Ci
9: for cu ∈ U do

10: NU (c,R) = U ∩N(c,R)
11: n(NU (c,R)) =

∑
t∈NU (c,R) nt

12: if n(NU (cu, 3R)) ≥ r then
13: U ← U \NU (cu, 3R)
14: D ← D ∪ {cu}
15: S ← S ∪ (NU (cu, 3R) \ {cu})
16: end if
17: end for
18: (flag, E) = MaxFlow(D,S, {nc}c∈D∪S , 3R)
19: if flag = FAIL then
20: return FAIL
21: end if
22: send E to all servers

. parallel in all servers
23: according to E assign points of assigned to S to

centers in D
24: assign all of points assigned to centers in U to their

nearest center in D
25: return centers in set D and their assigned points

guarantees d(c, q) ≤ R, so 3R ≤ R+d(p, q) and d(p, q) ≥
2R. This means in any (r, ε)-gather, points p and q
cannot belong to the same cluster. Since c does not have
r points within distance 3R of itself, no point within
distance R of c can be clustered in the optimal (r, ε)-
gather. �

Theorem 9 The approximation factor of (r, ε)-gather
is 7.

Proof. In the flow network of line 18, there are only
edges between dense centers cd ∈ D and sparse centers
cs ∈ S such that d(cd, cs) ≤ 3R. So cd can only get new
points from points cs ∈ S with distance at most 3R from
cd. Let p be a point assigned to cs, so d(cs, p) ≤ R.
By triangle inequality we have d(cd, p) ≤ d(cd, cs) +
d(cs, p) ≤ 4R. So all centers cs ∈ S and their assigned
points can be clustered with radius 4R with cd as center.

For each unclustered center cu ∈ U , since cu was not
removed at line 6, we know cu has at least r points

within distance 3R of itself. Since cu remained an
unclustered center, from line 12 we know there are less
than r unclustered points within distance 3R of cu. So
there exists at least one sparse center cs ∈ S within
distance 3R of cu. From line 15 we know there exists a
dense center in distance of at most 3R of cs. By triangle
inequality we have d(cd, cu) ≤ d(cd, cs)+d(cs, cu) ≤ 6R.
Let p be a point assigned to cu, so using triangle inequal-
ity we have d(cd, p) ≤ d(cd, cu) + d(cu, p) ≤ 7R. �

We send at most k points per server to take their
union in one server, which is at most pk points in total.
Since we had the assumption pk2 ≤ m, algorithm 9
follows the memory constraints of the MPC model.

5.3 Analysis

Theorem 10 Algorithm 7 takes O(1
ε) rounds in

MapReduce and gives (r, ε)-gather clustering with ap-
proximation factor 7 + ε.

Proof. According to algorithm 7, (r, ε)-gather 7-
approximation algorithm runs (r, ε)-GLB once at line 1.
From algorithm 8, we know (r, ε)-GLB takes 2 rounds in
the MapReduce model. By theorem 5, we know (r, ε)-
gather decision takes 2 rounds in the MapReduce model.
In line 2 of the algorithm, the while loop iterates at most
O(1

ε log OPT
LB) times, for LB = (r, ε)−GLB(P). So, the

total round complexity of the algorithm is O(1
ε).

Let R be the maximum radius for which (r, ε)-gather
decision algorithm returns FAIL. So we have R ≤ R∗ ≤
R(1 + ε) where R∗ is the optimal radius of clustering.
By theorem 5, we know (r, ε)-gather decision algorithm
with R(1 + ε) as input returns a (r, ε)-gather clustering
with radius 7R(1+ε). So we have 7R(1+ε) ≤ 7R∗(1+ε)
and the approximation factor is 7 + ε. �

6 Conclusion and Open Problems

We solved two minimum radius covering problems with
lower bounds on the number of members in a clus-
ter, and gave a constant factor approximation for these
problems in MapReduce. While most MapReduce ca-
pacitated clustering algorithms are based on linear pro-
gramming, we used an algorithm based on maximum
flow.

Improving the round complexity or the approxima-
tion factor of our algorithm remains an open problem.
Also, removing the assumption that k ≤ m will make
our algorithm more scalable.

Finding similar results for other clusterings with `p-
based costs such as k-means and k-median is also inter-
esting.

CCCG 2019, Edmonton, Canada, August 8–10, 2019

References

[1] G. Aggarwal, T. Feder, K. Kenthapadi, R. Mot-
wani, R. Panigrahy, D. Thomas, and A. Zhu. Ap-
proximation algorithms for k-anonymity. Journal
of Privacy Technology (JOPT), 2005.

[2] G. Aggarwal, R. Panigrahy, T. Feder, D. Thomas,
K. Kenthapadi, S. Khuller, and A. Zhu. Achieving
anonymity via clustering. ACM Transactions on
Algorithms (TALG), 6(3):49, 2010.

[3] S. Aghamolaei and M. Ghodsi. A composable
coreset for k-center in doubling metrics. In 30th
Canadian Conference on Computational Geometry
(CCCG), 2018.

[4] S. Ahmadian and C. Swamy. Approximation algo-
rithms for clustering problems with lower bounds
and outliers. In 43rd International Colloquium on
Automata, Languages, and Programming (ICALP
2016). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2016.

[5] M. Bateni, A. Bhaskara, S. Lattanzi, and V. Mir-
rokni. Distributed balanced clustering via mapping
coresets. In Advances in Neural Information Pro-
cessing Systems (NIPS), pages 2591–2599, 2014.

[6] P. Beame, P. Koutris, and D. Suciu. Commu-
nication steps for parallel query processing. In
Proceedings of the 32nd ACM SIGMOD-SIGACT-
SIGAI symposium on Principles of database sys-
tems, pages 273–284. ACM, 2013.

[7] C. Benjamin, M. Fung, K. Wang, R. Chen, and
P. Yu. Privacy-preserving data publishing: A sur-
vey of recent developments. ACM Computing Sur-
veys, 42(4):1–53, 2010.

[8] M. Ceccarello, A. Pietracaprina, and G. Pucci.
Solving k-center clustering (with outliers) in
mapreduce and streaming, almost as accurately
as sequentially. arXiv preprint arXiv:1802.09205,
2018.

[9] D. J. De Witt, R. Ramakrishnan, et al. Mondrian
multidimensional k-anonymity. In Proc. of the 22nd
IEEE International Conference on Data Engineer-
ing (ICDE), 2006.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified
data processing on large clusters. Communications
of the ACM, 51(1):107–113, 2008.

[11] H. Ding, L. Hu, L. Huang, and J. Li. Capacitated
center problems with two-sided bounds and out-
liers. In Workshop on Algorithms and Data Struc-
tures, pages 325–336. Springer, 2017.

[12] A. Ene, S. Har-Peled, and B. Raichel. Fast clus-
tering with lower bounds: No customer too far, no
shop too small. arXiv preprint arXiv:1304.7318,
2013.

[13] T. F. Gonzalez. Clustering to minimize the max-
imum intercluster distance. Theoretical Computer
Science, 38:293–306, 1985.

[14] P. Indyk, S. Mahabadi, M. Mahdian, and V. S.
Mirrokni. Composable core-sets for diversity and
coverage maximization. In Proceedings of the 33rd
ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 100–108.
ACM, 2014.

[15] H. Karloff, S. Suri, and S. Vassilvitskii. A model
of computation for mapreduce. In Proceedings of
the twenty-first annual ACM-SIAM symposium on
Discrete Algorithms, pages 938–948. SIAM, 2010.

[16] G. Malkomes, M. J. Kusner, W. Chen, K. Q. Wein-
berger, and B. Moseley. Fast distributed k-center
clustering with outliers on massive data. In Ad-
vances in Neural Information Processing Systems,
pages 1063–1071, 2015.

[17] J. McClintock. Parallel algorithms for k–center
clustering. In 4TH ANNUAL DOCTORAL COL-
LOQUIUM, page 33, 2016.

[18] H. Park and K. Shim. Approximate algorithms for
k-anonymity. In Proceedings of the 2007 ACM SIG-
MOD international conference on Management of
data, pages 67–78. ACM, 2007.

[19] I. Roy, S. T. Setty, A. Kilzer, V. Shmatikov, and
E. Witchel. Airavat: Security and privacy for
mapreduce. In NSDI, volume 10, pages 297–312,
2010.

[20] P. Samarati and L. Sweeney. Protecting privacy
when disclosing information: k-anonymity and its
enforcement through generalization and suppres-
sion. Technical report, technical report, SRI In-
ternational, 1998.

