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Abstract 
 
Different structures are used in peer-to-peer networks  to represent their inherently distributed, self-organized, and decentralized memory 
structure. In this paper, a simple range-queriable distributed data structure, called RAQ, is proposed  to efficiently support exact match and 
range queries over multi-dimensional data. In RAQ, the key space is partitioned among the network with n nodes, in which each element has 
links to (log )O n  other elements. We will show that the look-up query for a specified key can be  done via (log )O n message passing. Also, 

RAQ handles range-queries in at most (log )O n  communication steps. 
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1. Introduction 
 
Distributed and peer-to-peer networks are significant 
components of recent research on networking. There is a 
simple idea behind the peer-to-peer networks: each node 
maintains its own index and searching mechanism compared 
to the traditional client-server architecture with global 
information. The significant growth in the scale of such 
networks, (e.g. Gnutella [4]), reveals the critical emerging 
need to develop decentralized searching methods.  

A peer-to-peer storage system can be considered as a 
large scale distributed decentralized data structure. We use 
the term Queriable Distributed Data Structure (QDS) to 
denote such a self-organized, decentralized, distributed, 
internet-scale structure which provides searching and data 
transferring services. New file sharing systems such as 
Scour, FreeNet, Ohaha, Kazaa and Jungle Monkey are 
examples QDS from current internet systems. In QDS, every 
node of the network is an element of the whole structure, 
which provides decentralized searching services over the 
data scattered among the nodes of the network. 

Distributed Hash Table (DHT) [15, 11] can be viewed as 
a QDS. In DHT systems, keys and data are stored in the 

nodes of the network using a hash function, in which data 
can be the addressing information (e.g. IP address of the 
server containing the data), rather than its actual data. 
Searching mechanism in these systems consists of two main 
phases: (1) hashing the key, and (2) querying the network to 
find the node that contains the key. This node handles the 
query by providing the actual data or its addressing 
information. 

Similarly, some other systems like SkipNet [6] are 
designed based on more theoretical data structures like skip 
graphs [2], allows more flexibility on the location of the data 
on the nodes of the network. In this paper, we propose RAQ, 
a range-queriable distributed data structure to handle exact 
match and range queries over multi-dimensional data 
efficiently. In RAQ, the key space is partitioned among the 
n  nodes of the network, in which each element has links to 

(log )O n  other elements of the network. We will show that the 

look-up query for a specified key can be done, in our 
structure, via (log )O n  message passing. The bound on the 

out-degree of the nodes and the exact-match query cost are 
both comparable to those in DHT systems like Chord [15], 
CAN [11], Pastry [13] and Viceroy [19]. 
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The main contribution of RAQ is that it is simple and can 
handle range-queries in multi-dimensional space. Our data 
structure supports such queries in at most (log )O n  

communication steps. Split the Space, Duplicate the Query is 
a novel approach used by the RAQ to resolve range-queries. 
This method anticipates the answer space of the query at the 
source and spreads the query only through the appropriate 
nodes by duplicating the query meanwhile each of the new 
queries addresses a reduced subspace. 

Most other QDS systems do not support multi-
dimensional range-queries, because they mostly use one-
dimensional key space. CAN [11] supports multi-
dimensional key space, but despite of its similarity to RAQ's 
basic structure, the out-degree of node and its routing cost 
depend on the dimension of the key space. For a 
d dimensional space, the average routing path length in CAN 
is 1/( / 4)( )dd n  hops and individual nodes maintain 

2d neighbors. This limitation forces the system to use 
hashing to reduce the dimension. But, since hashing destroys 
the logical integrity of the data, such systems cannot support 
range queries over multi-dimensional data efficiently. 

In this paper, we first overview the related works briefly, 
followed by the principal ideas and structures of RAQ. 
Query handling methods are discussed in sections section 5 
and section 6, followed by the algorithms for joining and 
leaving a node. 
 

2. Related Works 
 
Supporting range queries in QDS systems has been the 
subject of several recent works. In SWAM [3], for example, 
the key space is partitioned according to Voronoi 
Tesselation. By this property, and using links based on 
Small-World Phenomenon [8, 10], SWAM resolves k -
nearest-neighbor search and range queries via (log )O n R  

message passing, where R is the size of the answer. But, the 
number of links of each node grows exponentially with the 
dimension size [14]. 

Prefix Hash Tree is a solution proposed by Rantasamy et. 
al [12] to face  the problem of hashing used in DHTs that 
destroys the integrity of the data. Their approach is based on 
distributed trie. Given a query, this system attempts to 
recognize the longest prefix of the query that appears as a 
trie-node. The complexity of this operation is  

(log log log )O d n , where d is the size of the discrete 

domain. Gao and Steenkiste [5], present a QDS which relies 
on a logical tree data structure, the Range Search Tree (RST), 
to support range queries in one dimensional space. In this 
system, nodes in RST are registered in groups. To handle the 
range queries, queries are decomposed into a small number 
of sub-queries where the cost depends on the load factor of 
the data and query capacity of the nodes in the network. 

 

 

Figure 1. The partition tree,
2P , on the left corresponds to the 

points on the right.  

3. Partition Tree 
 

We have n points in our d -dimensional space. Partition 
Tree,

dP , is the main data structure used in RAQ. Similar to 

the data structure used in [11], 
dP  partitions the d-

dimensional space, so that in the final level, each region has 
only one point. Each internal vertex of the tree corresponds 
to a region in space, and the root represents the whole space. 
Each pair of the sibling vertices divide their parent region 
into two parts, and each leaf represents an undivided region 
called a cell, each corresponds to one single point in that 
region. Figure 1 portrays the partitioning of 

2P . 

Each vertex x  is assigned a label to specify the region 
space of x . We define 

1 1 2 2 ( ) ( )(( , ),( , ), ,( , ))label r x r xx p d p d p d   

where: 
 r x : The distance of xfrom the root of the tree. 

ip : The plane equation that partitions the current     region 

into two parts. 

id : Determines one side of the plane
ip . 

1 1 ( ) 1 ( ) 1( ) (( , ), ,( , ))label r x r xparent x p d p d  

1 1 ( ) ( )( ) (( , ), ,( , )),label r x r xsibling x p d p d  Where 
id  is the opposite 

side of  d .i         

,labelroot  i.e. the empty string. 

We treat the labels as strings. The expression 
1 2l l means 

that 
1l  is a prefix of

2l , | |l  represents the size of l  (i.e. the 

number of ( , )i ip d  pairs) and   is the concatenation operator. 

Also, 
def

[ ] { | }labell x V l x   where l  is a label and V  is the vertex 

set of the partition tree. Obviously, for a vertex x , | | ( )labelx r x . 

 

4. Design Principle of RAQ 
 
RAQ is a structure on the nodes of a network. Each node 
maps to one point in the d  dimensional search space. A 
partition tree Ptree is constructed over the points and thus 
each node corresponds to a single cell. We say that a node 
owns its cell and is responsible for providing data to the 
queries targeting any point in that cell. Since there is a one-
to-one map between nodes and the leaf points of the partition 
tree, we use them interchangeably. So, for example, we 
assume having labels for each node. 

Moreover, each node has several links to other nodes of 
the network. Each link is basically the addressing 
information of the target node which can be its IP address. 
The links are established based on the partition tree 
information and the following rule. 

Connection Rule: Consider node x  and its label 

1 1 2 2(( , ),( , ), ,( , ))label k kx p d p d p d  . The connection rule of node 

ximplies that xis connected to exactly one node in each of 
these | |labelx  sets: 

1 1 1 1 2 2 1 1 2 2[(( , ))],[(( , ),( , ))], ,[(( , ),( , ), ,( , ))]k kp d p d p d p d p d p d    

For example, in Figure1, node 1 is connected to one node 
in each of these sets: {2}, {4}, {6, 7, 8}. We will show that 
the join and leave mechanisms guarantees the maintenance 
of connection rule over the network. 
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Lemma 1. An arbitrary chosen vertex has link to (log )O n  

other nodes in the network. 
It is important to note that the partition tree is not directly 

maintained by the elements of RAQ; given the coordinates 
and the labels of the leaves, all information of the partition 
tree can be uniquely obtained, and these are the only data 
which are maintained by the nodes of the network. In fact, 
the partition tree is the virtual data structure of RAQ. 

It is obvious that Ptree is a balanced tree with the height 
of (log )O n  when it is first constructed. We will argue that this 

property holds even in the dynamic environment where the 
nodes join and leaves the network. 

 

5. Exact Match Query 
 

In RAQ, exact-match queries are of the form Exact-
Query(target, metadata). The value of target is the 
coordinate of the point that is searched for and \emph{meta-
data} contains the data to be used after the query reaches the 
target. Note that the queries aim to reach the target and the 
responses vary in the different cases. As mentioned, the 
target of a query is a node whose region contains the query 
target point.  

We say, a point p  matches a label l  at levelk , if k  is the 

greatest value of i  such that the subspace induced by a vertex 

x  with 1 1 2 2(( , ),( , ), ,( , ))label i ix p d p d p d  . Contain p and 
labelx l  

In other words, say l   represents a leaf y  in Ptree. Then, x  

is the lowest common ancestor of y  and the node 

containing p . 

Lemma 2. Suppose node x  receives a query targeting 
point p  and pmatches

labelx  at levelk . If | |labelk x  then the cell 

of x  contains p . Otherwise, x  has a link to a node y so that 

labely   matches p  at a level greater thank . 

Proof: Let 
1 1 ( ) ( )(( , ), ,( , ))label r x r xx p d p d  . If  k  x_ label ,  

then, obviously, xcontains p . If not, from the connection 

rule, we know that x is linked to a node y  with 

1 1 1 1(( , ), ,( , ))k k labelp d p d y   . Therefore, according to the 

definition, p   matches 
labely  at a level not less than 1k .   

Now, the algorithm for exact match routing becomes 
clear. Once the query Q is received by a node x , if xcontains 

the target point, then we have done. Otherwise, x  sends the 
query via a link to a node y  with a label that matches the 

target point at a higher level. This will continue until the 
query reaches the target. 

Theorem 1 The exact match query resolves via (log )O n  

message passing. 
Proof: Suppose the target of query Q is the node x . From 

lemma 2, Q will reach to xin at most | |labelx  steps and 

| | (log )labelx O n . So, the routing operation is 

 

6. Range Query 
 

We assume that a range query Q is of the form Range-

Query(label, pivot, func, 
1d , 

2d , metadata) where  label 

implies that Q must be sent only to the nodes xso that 

labellabel x , we denote the label of Q by  Q_ label . The initial 

value of 
labelQ   is set to empty string.  The value of pivot is the 

coordinate of the point that the distances are measured from, 
and func is the distance function. 

The above range query means that Q  should be sent to 

every node in the network with the distance of 
1 2d d d   

from pivot.  func can be any distance function F with the 
following characteristic: Given a point p , a hyper-cubic 

subspace S  and a distance d , let { |A x x S    and ( , ) }F x p d . 

The problem of whether or not A is empty must be 
computable. For example,  F   can be 

pL  -norm function, in 

which case the answer space of Q is 1/
1 2{ | ( ( ) ) }p p

i ix d p x d   . 

To handle the range queries, we use split the space, 
duplicate the query method, or split-duplicate for short. 
Suppose that node x  receives a range query Q and 

1 1 ( ) ( )(( , ), ,( , )). ,label r x r x label labelx p d p d Obviously Q x    . If
label labelQ x , 

then x  itself will give the appropriate response. Otherwise, 
we iterate the following sequence of operations: 

 Duplicate Q and name the results as 
1Q  and

2Q . 

Set
1 | | 1 | | 1( , )
label label l lQ Q p d    and

2 | | 1 | | 1( , )
label label l lQ Q p d   . 

 If the answer space of Q has intersection with the 

subspace induced by 
2label

Q , then send 
2Q  via the link to node 

y  where 
2label labelQ y . Note that by the connection rule, y  

exits. 
 Iterate split-duplicate operation subsequently on 

1Q , 

while the split subspace has intersection with the answer 
space. 

Lemma 3. If node x  receives range query
1Q , then 

1Q will 

be routed to all nodes y  where
label labelQ y , and the intersection 

of the cell of y  and answer space of 
1Q is not empty. 

Proof: We prove this by backward induction on | |labelQ . If 

| | | |label labelQ x , then obviously 
label labelQ x   thus the induction 

basis holds.  
Suppose that x  receives the query and the induction 

hypothesis holds for  k  x_ label .  If 
label labelQ x  then x  is the 

only target of the query and we are done. Otherwise, two 
new queries are generated by the algorithm, while the second 
query 

2Q  is sent to its adjacent node via an appropriate link, 

if the subspace induced by 
2label

Q   has nonempty intersection 

with the answer space. The size of the labels of these new 
queries is increased by one. Thus, by the induction 
hypothesis, Q will be routed to all nodes z  with 

label labelQ z  

where the cell of z  has a nonempty intersection with the 
answer space. The union of the induced spaces of these 
labels covers the whole space of

labelQ .  The claim is therefore 

correct. 
Theorem 2. RAQ resolves range queries in at most 

(log )O n  communication steps. In other words, a query will 

be received by a target node by crossing (log )O n  intermediate 

hops. 
Proof: As we mentioned, the basic-queries enters the 

system by initializing its label to an empty string. By 
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lemma3, the range-query will be received by all nodes whose 
cells have nonempty intersections with the query answer 
space. In each communication step, the size of the query 
label is increased at least by 1. Thus, when a node receives a 
query, the distance to the source must be (log )O n , or 

equivalently the size of the label. 
 

7. Joining and Leaving 
 

In this section, we describe the joining and leaving   
mechanism and demonstrate the validity of our claim in 
section 4 that the partition tree remains balanced all the time. 

Suppose that node xwants to join to the network. x  
chooses a fairly random point p , in the space and finds yone 

of the active nodes in the network. Several mechanisms can 
be adopted for the arriving node to find an active node; we 
assume that RAQ uses the same mechanism as in CAN [11]. 

Sending an exact match query by y  to find the node z  

whose cell contains p . z  divides its cell into two parts, with 

one containing the corresponding point of z  and the other 
includes p . We assume that x   possess the cell containing p . 

This is just a simple insertion into the partition tree. This is 
done by updating the labels of p$x$ and p$z$. Since we are 

not directly maintaining this tree, this update is sufficient. 
The connections are now updated to follow the given 

connection rule: xchooses one random point in each of the 
subspaces induced by the labels specified by the connection 
rule. For each of these points, say r , z  routes an exact match 
query to find the node that owns r . Consequently, x  
establishes a connection link to this node. of E and F from a, 
the vertices b and c can be removed. 

Theorem 3.  Join operation is done via 2(log )O n  message 

passing.  
Proof:  The arriving node finds its region by an exact 

match query. By lemma 1, the arriving node has to create 
(log )O n  connections. Establishing each connection is done by 

a exact-match lookup, via (log )O n  message passing. 

Therefore, the whole operation is completed by 2(log )O n  

message passing. 
 

7.1. Leaving Mechanism 
 
Let x  be the node that wants to leave the network. After x  
leaves the network, its sibling in Ptree will maintain the 
region once belonged to x . From Ptree viewpoint, leaving is 
just a simple deletion of a leaf in a binary tree, so 

labelz  and 

thus Ptree  will be updated easily. The difficult part is 
updating the connection links of the nodes that have links to 
x . To handle this issue Departure links or for short dlinks, 
are defined below. 

In RAQ, node b   maintains addressing information of a , 
or a dlink to a , when node a  establishes a connection link to 
nodeb . When bdecides to leave the network, it sends a 
message to each of the nodes referred to by its dlinks.  In the 
following, we denote d-degree of b  as the number its dlinks. 

Theorem 4.  The expected value of d-degree is (log )O n . 

Proof: Here we argue the validity of our claim. From the 
mechanism described above to establish a connection link, 

and from the dynamic structure of the network where the 
nodes frequently join to and leave the network, we can fairly 
conclude that the probability that a node v has a link to a 
node u  is equal to the probability that u  has a link tov.  We 
avoid discussing the uncomplicated details of this claim, due 
to the lack of space. Accordingly, [ ] [ ]degree d degreeE v E v  for an 

arbitrary node v in the network. 
Theorem 4. 
By lemma 1 and theorem 4, each nodes of the network 

maintains the addressing information of (log )O n nodes of the 

network. 
Consider the time when x  is to leave the network. x  

sends a departure message to all of its nodes on its dlink. As 
mentioned, every connection in RAQ is a link to a subspace, 
each of the nodes that receives this departure message, 
chooses a new random point, say p , in the corresponding 

subspace and sends an exact match query via x  to establish a 
new connection link to the node that possesses p . After these 

operations, x  will peacefully leaves the network and the 
connection rule of RAQ is maintained. 

Theorem 4. The leave operation is done via 2(log )O n  

message passing. 
Proof: According to theorem 4, (log )O n  links must be 

updated. Each update is performed by (log )O n   message 

passing, thus the total number of message passing is 2(log )O n . 

According to the discussion, arriving nodes are 
distributed all over the space.  Thus, the partition grows 
uniformly and remains balanced. Uniform distribution of the 
nodes also implies that the nodes leave the network randomly 
in the entire space. We can thus conclude that the claimed 
proposition about the balancing of the partition tree is valid. 
 

8. Conclusion 
 
In this paper we presented RAQ, a range-queriable 
distributed data structure for  peer-to-peer networks to 
organize the multidimensional data it holds, and to efficiently 
support exact and range queries on the data. Our structure is 
easy to implement and use (log )O n   memory space for each 

of its $n$ nodes. The exact match query can be performed, as 
in other works, by (log )O n   message passing. The main 

contribution of this paper is that the structures broadcast the 
range query to the target nodes within at most (log )O n   link 

traversing steps. We showed that all properties of RAQ can 
be maintained when nodes join the network or leave it.  

We are currently working on other extensions of the 
RAQ model, including its probabilistic model to reduce the 
complexity of the degree of the nodes in the network. We 
also intend to validate our results through experimental 
evaluation with real data. Other ideas can be to design a fault 
tolerant model to handle different faults such as the situation 
the nodes abruptly leave the network or abstain to handle the 
queries temporarily. Load balancing is another important 
property of the RAQ to look at. In this case, we are going to 
study the situations that the data points are not uniformly 
distributed in the search space; also, the computing power of 
the nodes of network are different. Further works on these 
topics are underway. 
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