
Shortest Paths with Single-Point Visibility Constraint

Ramtin Khosravi∗ Mohammad Ghodsi†

Department of Computer Engineering

Sharif University of Technology

Abstract

This paper studies the problem of finding a shortest path between two points in presence
of single-point visibility constraints. In this type of constraints, there should be at least one
point on the output path from which a fixed viewpoint is visible. The problem is studied in
various domains including simple polygons, polygonal domains, and polyhedral surfaces. The
method is based on partitioning the boundary of the visibility region of the viewpoint into a
number of intervals. This is done from the combinatorial structure of shortest paths from source
and destination to the points on the boundary. Our result for the case of simple polygons is
optimal with O(n) time bound. The running time for the cases of polygonal domains, convex
and non-convex polyhedral surfaces are O(n2), O(n2), and O(n3) respectively.

Keywords: computational geometry, shortest path, visibility.

1 Introduction

Finding a shortest path between two points is a basic problem in computational geometry and has
many applications in different areas such as motion planning and navigation. The problem has been
studied over various geometric domains such as simple polygons [1], polygonal domains [2, 3], and
polyhedral surfaces [4, 5, 6]. Also, several variations exist depending on the metric used for computing
distances, and different constraints applied to the solution path. Examples of such restrictions are
curvature constraints [7], or altitude constraints [8]. The visibility constraints are less studied so
far. In this type of constraints, the path is required to satisfy some visibility properties, e.g. the
entire or parts of the path should be visible from a given viewpoint. Applications for this constraint
are mainly in communication systems where direct visibility is needed, or in guarding problems. An
example of a motion planning problem combined with visibility constraints can be found in [9] in
which the problem of locating a continuously-moving target using a group of guards moving inside
a simple polygon is studied.

Single-point visibility constraint requires the path to include at least one point from which a
given viewpoint is visible. In this paper, we study the problem of finding a shortest path with
single-point visibility constraint in several domains, including simple polygons, polygonal domains,
and polyhedral surfaces. The algorithms we propose for the cases of simple polygons and polygonal
domains run in O(n) and O(n2) time bounds respectively. The authors have studied the case of
polyhedral surfaces in [10] and proposed an algorithm with O(n2 log n) and O(n3 log n) time bounds
for convex and non-convex cases respectively. The extra O(n) factor in the latter case comes from
the fact that the visibility region for a viewpoint on a non-convex surface has O(n) components of
O(n) edges. In this paper, we improve the time bound for both cases. We do this for the convex
case by a more accurate analysis of the previous algorithm to obtain a running time of O(n2). Also,
an improvement to the algorithm for the non-convex case yields a O(n3) time bound.

For the case of simple polygons, the authors have studied a more general version of the problem
in which the goal is to find the shortest path in presence of polygon meet constraints [11]. In this
type of problem, the path is constrained to have non-empty intersection with a target polygon inside
the input simple polygon. The problem is solved in O(n) time where n is the number of vertices in

∗ramtin@mehr.sharif.edu
†ghodsi@sharif.edu

1



both target and input polygons. Visibility constraints can be viewed as a special case of polygon
meet constraints if we consider the visibility polygon of the viewpoint as the target polygon. So, the
problem studied in this paper for the case of simple polygons is solvable by the method of [11], but
the case is included in this paper too to show how the general approach presented to solve the other
two cases can be used to solve the case of simple polygons. Note that this approach solves the case
for simple polygons in a more simple way by considering special properties of visibility polygons.

If we have to visit multiple viewpoints during motion along the path, we face a related problem
called TSP with Neighborhoods in which multiple polygonal regions, called neighborhoods, are given
and the goal is to find a tour that visits every neighborhood. The problem is NP-hard [12], and
several approximation algorithms have been presented for different cases [13, 14, 15]. Recently, Dror
et. al [16] have presented an algorithm for the problem of finding a shortest path that visits k given
convex polygons in a given order. Also, they have shown that the problem is NP-hard for the case
of non-convex polygons.

The approaches used in this paper for different domains have similar structure, so we formulate
them in a generic form in section 2, then discuss issues specific to the cases of simple polygons,
polygonal domains, and polyhedral surfaces in sections 3, 4, and 5 respectively.

2 The General Approach

In this section, we consider the general approach for finding a shortest path between two points
with the constraint that at least one point on the path is visible from a given viewpoint. Let P be
the geometric domain of the problem under consideration. We consider P as a set of points, Vp as
the visibility region of the given viewpoint p ∈ P, and Bp as the boundary of Vp. In all domains
considered in this paper, Bp consists of a number of line segments. The set P − Vp consists of a
number of connected sets of points, called invisible regions of the domain.

We call a path between two points s and t in P a p-visible path if it has non-empty intersection
with Vp. Our goal is to compute a shortest path p-visible path between s and t. Note that in
polygonal domains and polyhedral surfaces, there may be no “unique” shortest path between two
points, so there may be several shortest p-visible paths between s and t in those cases. In our
algorithms, we concentrate on finding one of these paths. Let q be the first point visible from p,
when walking along a shortest p-visible path from s to t. Obviously, q lies somewhere on Bp, and
the subpaths from s to q and from q to t are locally optimal. So, our problem reduces to finding a
point q with this property.

The main idea of the algorithm is to partition Bp into a set of intervals such that for each interval
I, we can easily find the point q(I) ∈ I whose total shortest distance to s and t is minimum among
all points on I. Then q is the one with the minimum total shortest distance.

To do this, we use the notion of interval of optimality previously used in works on this topic [4].
A connected set of points I on Bp is an interval of optimality with respect to a point x ∈ P, if the
shortest paths from x to any point inside I have a fixed combinatorial structure. We denote the set
of all such intervals by Lx. When it is clear from the context, we may use “interval” instead of the
term “interval of optimality”. To partition Bp, we compute Ls and Lt and merge the endpoints of
the intervals in the two sets to obtain a set of intervals denoted by Ls,t (Fig. 1).

Intervals in Ls (resp. Lt) can be found by intersecting Bp with the edges of the shortest path map
of s (resp. t), although computing the entire set of intervals may not be necessary. For the case of
polyhedral surfaces, we use a subdivision of the surface giving the same information as the shortest
path map for the two dimensional cases.

Based on the above definitions, we sketch the generic algorithm for computing a shortest p-visible
path between s and t as the following:

1. Compute Bp (or the relevant portion of it).

2. Compute the set Ls,t on the relevant subset of Bp.

3. For each interval I ∈ Ls,t, find the point q(I) which has the minimum total distance from s

and t.

4. Let q be the point with the minimum total distance from s and t among {q(I) : I ∈ Ls,t}.

2



Vp

u

s

v

t

q I

Figure 1: In two dimensional domains, an interval of optimality I ∈ Ls,t (shown with heavy solid
line) is a connected subset of Bp such that shortest paths from s (resp. t) to its points passes through
u (resp. v) as the last vertex. q(I) ∈ I is the point with minimum total shortest path distance to s

and t.

z

p

x
y

e

Figure 2: A simple polygon with a viewpoint p inside it. The shaded area is Vp and there are six
invisible regions in the polygon. The shortest path between x and z is already p-visible while the
shortest p-visible path between x and y touches e and returns.

5. Report a shortest path from s to q appended by a shortest path from q to t.

The first two steps in the above algorithm depend on the specific geometric domain of the problem,
which we consider in the succeeding sections.

3 Simple Polygons

For the case of simple polygons, many shortest path problems have linear algorithms due to the fact
that there is exactly one “taut-string” between any two points in a simple polygon that can be found
using dual of a triangulation for the polygon, which is a tree. In the method presented by Guibas
et al. [1], one can construct the shortest path map of a given source point using a DFS traversal of
the mentioned tree. The method maintains a funnel-like structure during this traversal to construct
the shortest path map. We will consider how to use this structure to find the intervals of optimality
on the relevant portion of Bp in linear time.

In this case, P is supposed to be a simple polygon with n edges. Bp is also a simple polygon
whose edges are extensions of segments connecting p to the vertices of P visible from p. Hence, each
edge of Bp decomposes P into two parts, one contains Vp and the other is an invisible region (Fig.
2). If either s or t lies inside or on the boundary of Vp, the shortest path between s and t is already
p-visible. The same is true if s and t lie in two different invisible regions (like the points x and z in
Fig. 2). This is due to the fact that the only way for the path to exit from an invisible region is
to cross an edge of Vp. So, we can assume that the points s and t are both in one invisible region.
We name this invisible region W . Note that testing the above conditions can be done in O(n) total
time.

Based on the above assumption, we can restrict the computations to the relevant portion of Bp

3



a

u1

u2

u3

u4

w1

w2

w3

e

Figure 3: Intervals of optimality on the edge e obtained by running a shortest path algorithm in the
polygon W .

which is a single edge e common to Vp and W . It can be easily verified that in this case, the shortest
p-visible path does not enter Vp and just touches Vp and returns (like the path between x and y in
Fig. 2). The reason is obvious, since we can take a shortcut along e between the point that the path
enters Vp and the point that it exits from. So, our problem is to find the set of intervals of optimality
on the edge e.

Since the shortest path does not exit W , we can find the intervals on e easily using the shortest
path algorithm of [1] to construct the shortest path map of a simple polygon. We consider W as the
input polygon to the mentioned algorithm with s as the source point. During the DFS traversal, we
finally visit the boundary edge e (Fig. 3). Assuming the funnel-like structure maintained during the
traversal has the form [ul, ul−1, . . . , u1, a, w1, . . . , wk] at that time with a = u0 = w0 as its cusp (thus
e = ulwk), the rays emanating from ui (resp. from wi) and passing through ui+1 (resp. through
wi+1) partition e into k + l− 1 intervals. Each interval has the property that the last polygon vertex
on the shortest paths from s to all of its points is the same. These intervals form the set Ls.

Computing the set Ls,t for this case is easy now. We have to compute Ls and Lt using the
method mentioned above, and a merging process is required to obtain Ls,t from the computed
intervals. Assuming the shortest Euclidean distances from s and t to all vertices of P have already
been computed, we have the following lemma:

Lemma 3.1 Let I be an interval in Ls,t. One can find the point q(I) on I with minimum total
distance to s and t in constant time.

Proof. I has the property that the last vertices of the shortest paths from s and t to an arbitrary
point on I are the same for all points of I. Let u (resp. v) be the last vertex on shortest paths
form s (resp. t) to the points of I. To find q(I), we can reflect v about the line supporting I and
connect the reflected point to u. If the segment obtained in this way intersects I, the intersection
point will be q(I). Otherwise, q(I) will be one of the endpoints of I depending on which side of I

lies the intersection point between the segment and the line supporting I. 2

Based on the above discussions, the following steps are taken to compute the shortest p-visible
path in a simple polygon:

1. If p is visible from either s or t, report the shortest path between s and t.

2. Compute the visibility polygon of p (Vp).

3. Compute the invisible regions in which s and t lie.

4. If the invisible regions of s and t are different, report the shortest path between s and t,
otherwise, name the invisible region in which both s and t lie, as W .

5. Run the shortest path algorithm in the simple polygon W twice, assuming s and t as the source
point each time. As the result of this step, the following information is generated:

• Shortest distances from both s and t to every vertex of P, and

4



s t

p

Figure 4: The shortest p-visible path between s and t (shown with dots) crosses part of Vp (light-
shaded) while s and t are in one invisible region and the shortest path between them (dashed line)
does not cross Vp. Dark shaded polygons are obstacles.

• The two sets Ls and Lt.

6. Compute Ls,t by merging the endpoints of the intervals in Ls and Lt.

7. For each interval I ∈ Ls,t find the point q(I) which has the minimum total distance from s and
t. Let q be the point among all q(I) that has the minimum total distance.

8. Report the shortest path from s to q appended by the shortest path from q to t.

To analyze the running time of the algorithm, observe that the check in step 1 of the above
algorithm can be easily done in linear time. The visibility polygon computation in step 2 can be
done using the linear time algorithm of Lee [17, 18]. To compute the invisible region in which s (resp.
t) lies (step 3), we can traverse the boundary of the invisible region, starting from the intersection of
the ps (resp. pt) directed half-line and the boundary of P. This can be done in linear time assuming
that we have the vertices of P in order. Step 5 is calling the shortest path algorithm of Guibas et
al. [1] twice and can be done in O(n) time. Since the funnel structure is stored in a finger search
tree [19] which is based on the B-tree data structure, we can obtain the sorted list of intervals in
Ls and Lt both in O(n) time. Therefore, Ls,t can be computed in linear time (step 6). Finally, the
minimum point q can be computed in O(n) time according to lemma 3.1. Each step of the algorithm
uses at most O(n) space, hence the overall algorithm needs linear time and space. Thus, we have
the following result for the case of simple polygons:

Theorem 3.1 Given a pair of points s and t and a viewpoint p inside a simple polygon, the shortest
p-visible path from s to t inside the polygon can be computed in O(n) time and O(n) space.

4 Polygonal Domains

In this case, P is supposed to be a polygonal domain with total number of n edges. The problem is
to find a shortest obstacle-avoiding p-visible path between s and t. We assume that the domain is
bounded by a given simple polygon with a number of (simple, non-overlapping) polygonal obstacles
inside. By free space we mean the set of points inside or on the bounding polygon minus the interior
of the obstacles. The shortest path map of the free space can be computed using the algorithm of
Hershberger and Suri [3] in the worst-case optimal time O(n log n) using O(n log n) space, where n

is the total number of vertices of the domain. The subdivision can be used to answer single-source
shortest path queries using classic point-location algorithms in logarithmic time.

As stated earlier, the main challenge in a particular domain is to find the set of intervals of
optimality efficiently. Taking the same approach as the case of simple polygon, we must find the
invisible region in which s and t lie (W ), and run a shortest path algorithm (such as [3]) to construct
the shortest path map of W and take the intervals made on the edges common to W and Vp. However,
unlike the case of simple polygons, the boundary between W and Vp may consist of more than one
edge. So, there may be cases that the only shortest p-visible path between s and t enters Vp from one
edge and exit from another, while s and t both lie in one invisible region W and the only shortest
path between them lies completely inside W (Fig. 4).

Based on the above observation, we use the general approach presented in Section 2 without
major modifications for the case of polygonal domains. To compute Ls and Lt, we compute the

5



f 2

3
f

e1
e

2

e3

ek

f 1

f
k

f
k+1

s
t

Figure 5: Shortest path from s to t unfolded along its edge sequence

shortest path map of the domain twice with respect to the points s and t, and find the intersections
of the two maps with Bp. To find the intersections, we can use known algorithms for subdivision
overlay such as the algorithm of Finke and Hinrichs [20] which solves the problem in optimal time
O(n + k) where k is the number of intersections which is O(n2) in the worst case. So, the method
computes Ls and Lt in O(n2) time. Note that to compute Ls,t, we have to merge the endpoints
of the intervals in Ls and Lt which requires having the intervals in each set in sorted order. The
algorithm of Finke and Hinrichs produces the output subdivision in a quad view data structure [21]
which allows ordered traversal of the intervals in Ls or Lt using the operations provided for traversal
of vertex rings and edge rings in the output subdivision.

Now we analyze the running time of the algorithm in this case. Computing the visibility polygon
can be done using the optimal algorithm of Heffernan and Mitchell [22] which requires O(n+h log h)
time (h is the number of obstacles in the domain which is O(n) in worst case). Constructing the
shortest path maps takes O(n log n) time and the same space. Computing Ls and Lt is done in
O(n2) based on the preceding lemma. Finally, the minimum point q can be computed in O(n2) time,
since the size of Ls,t is O(n2), and the property stated in lemma 3.1 holds in this case too. Thus, we
have the following result for the case of polygonal domains:

Theorem 4.1 Given a pair of points s and t and a viewpoint p inside a polygonal domain, a shortest
p-visible path from s to t inside the free space can be computed in O(n2) time and the same space.

5 Polyhedral Surfaces

In this section, we consider the geometric domain of polyhedral surfaces, i.e. P is the surface of a
polyhedron. In the case of convex polyhedra, Vp is a connected region whose boundary consists of
O(n) edges of P. In non-convex case, Vp is a set of possibly disconnected regions of total complexity
of O(n2). As the complexity of the visibility region of a point on a (possibly non-convex) poly-
hedron is quadratic in size of the polyhedron and the algorithms for finding the visibility map are
superquadratic in general [23], we assume the visibility region of the point to be seen is determined
through a preprocessing stage and focus on finding a shortest p-visible path.

The problem of finding a shortest path between two points on the surface of a polyhedron is well
studied. Especially Chen and Han [5] present a method for building a subdivision of the surface
which can be used for finding a shortest path from a fixed source to a given query point efficiently.
The subdivision can be built in O(n2) time. The best known algorithm for finding the shortest
paths on polyhedral surfaces is [6] which finds a shortest path in O(n log2 n) using the wavefront
propagation method.

5.1 Shortest Paths on a Polyhedron

We briefly review the related terminology borrowed from [4]. Two faces f and f ′ are said to be
edge-adjacent if they share a common edge e. A sequence of edge-adjacent faces is a list of one or
more faces F = (f1, f2, . . . , fk+1) such that fi is edge-adjacent to fi+1 (sharing a common edge ei).
We refer to the (possibly empty) list of edges E = (e1, e2, . . . , ek) as an edge sequence and to the
vertex of face f1 opposite e1 as the root of E (Fig. 5).

Each face has a two dimensional coordinate system associated with it. If faces f and f ′ are
edge-adjacent sharing edge e, we define the planar unfolding of face f ′ onto face f as the image of
points of f ′ when rotated about the line through e into the plane of f such that the points of f ′

fall on the opposite side of e to points of f . Extending this notation, we say that we unfold an edge

6



a
b

c
d

y

x

Figure 6: ab is an interval in Lx and cb is an interval in Lx,y.

sequence E = (e1, e2, . . . , ek) as follows: Rotate f1 around e1 until its plane coincides with that of
f2, rotate f1 and f2 around e2 until their plane coincides with that of f3, continue in this way until
all faces (f1, f2, . . . , fk) lie in the plane of fk+1.

We say a path π connects the edge sequence E = (e1, e2, . . . , ek) if π consists of segments which
join interior points of e1, e2, . . . , ek (in that order). A path on P is called geodesic if it is locally
optimal and cannot be shortened by small perturbations. The following lemma characterizes such
paths:

Lemma 5.1 (Mitchell, Mount and Papadimitriou [4]) The general form of a geodesic path is a path
which goes through an alternating sequence of vertices and (possibly empty) edge sequences such that
the unfolded image of the path along any edge sequence is a straight line segment and the angle of the
path passing through a vertex is greater than or equal to π. The general form of an optimal path is
the same as that of a geodesic path, except that no edge can appear in more than one edge sequence
and each edge sequence must be simple.

5.2 Computing the Shortest p-Visible paths

Consider a maximal set of points on Bp whose shortest paths to a point x connect the same edge
sequence. Such points form an interval that belongs to Lx. The set Lx,y is defined similarly (Fig.
6).

To compute the set Lx we use a subdivision presented in [5] which decomposes the surface
to a number of regions such that a shortest path from x to a point inside one region has a fixed
combinatorial structure (i.e., connects the same edge-sequence). This subdivision plays a role similar
to shortest path map in two dimensions. To obtain the subdivision, we cut the surface of P along the
shortest paths from x to all of the vertices of P. The resulting surface can be laid out on a common
plane. The layout obtained in this manner is called the inward layout of P (also called star unfolding
[24]). The vertices of this polygon are the vertices of P together with the images of the source point
x under different unfoldings and the edges are shortest paths from the source to the vertices of P.
A subdivision of the inward layout can be obtained by constructing the Voronoi diagram on the
layout with respect to the images of the source point (Fig. 7). This subdivision has the property
that the points in the same region are closer to the corresponding image of the source than to other
images, and their shortest paths from the source pass through the same edge sequence. The set Lx

is obtained by intersecting Bp with the edges of the subdivision mentioned above considering x as
the source point.

To bound the number of intervals in Lx, observe that the subdivision has two kinds of edges that
are to be intersected with Bp: shortest paths to vertices (cuts) and the edges of the Voronoi diagram
(ridges). The number of these edges is O(n). In the convex case, the edges of Bp are edges of P
too, and may have O(n2) intersections with cuts and ridges in the worst case. In contrast, for the
non-convex polyhedra, Bp has O(n) components, each with O(n) edges, which are not necessarily
parts of the edges of P. In this case, each component may have O(n2) intersections with cuts and
ridges, resulting in O(n3) intersections in general. So, the size of Lx will be O(n2) in convex and
O(n3) in non-convex case. Note that it can be shown that these bounds are tight (Fig. 8 shows a
convex case).

7



s

s s s

s

s

ss

s

1 2
3

4

5

6
7

8

Figure 7: The inward layout of a box. Solid lines are the edges of the subdivision that are part
of polyhedron edges. Dashed lines are edges of the Voronoi diagram (ridges) and dotted lines are
shortest paths from images of the source to vertices (cuts).

p

(b)(a)

x

Figure 8: (a) A diamond polyhedron which has O(n) faces (b) Diamond polyhedron with a number
of faces added to it.

8



Table 1: Summary of time and space complexity of the algorithm in various domains

Domain Time Space

Simple Polygons O(n) O(n)
Polygonal Domains O(n2) O(n2)
Convex Polyhedral Surfaces O(n2) O(n2)
Non-convex Polyhedral Surfaces O(n3) O(n3)

For the non-convex case, the inward layout may overlap itself. The algorithm for computing
Voronoi diagram, in this case, is slightly different and is given in [5]. In this case, an interval in Lx

has the property that there is a vertex v of the polyhedron such that every shortest path from x to
a point on the interval passes through v as the last vertex, and the edge sequence from v to points
on the interval is the same. As the first part of the path is fixed among the points on interval, given
an interval I ∈ Ls,t, we can still find the point q(I) whose total distance from s and t is minimum in
constant time provided that when computing the intervals, we store the distance to pseudo-source
associated with the interval.

Following the general approach stated before, these steps are to be taken to compute a shortest
p-visible path between s and t:

1. If p is visible from either s or t, report a shortest Euclidean path between s and t.

2. Run a shortest path algorithm on the surface P twice, assuming s and t as the source point
each time, to find the shortest distance from both s and t to every vertex of P. As a result of
this step, two subdivisions of the surface are built with respect to s and t.

3. Compute the set Ls,t.

4. For each interval I ∈ Ls,t find the point q(I) which has the minimum total distance from s and
t. Let q be the point among all q(I) that has the minimum total distance.

5. Report a shortest path from s to q appended by a shortest path from q to t.

To analyze the running time of the algorithm, observe that the check in step 1 of the above
algorithm can be done in time proportional to the size of the visibility region which is less than
the time bounds stated for the whole algorithm. Computing the subdivisions with respect to s

and t takes O(n2) time for both cases (step 2). Analyzing step 3 (computing Ls,t) should be done
separately for the cases of convex and non-convex polyhedra.

For the convex case, Vp consists of one or more faces of the polyhedron, so its boundary consists
of polyhedron edges. Hence, for an arbitrary x, the size of Lx will be O(n2). Using the algorithm
of Chen and Han, we can find these intervals in O(n2) time, since the algorithm keeps track of the
intersection of shortest paths to vertices with the edges of the polyhedron. Furthermore, the intervals
obtained this way are in sorted order since the algorithm keeps the shortest paths to the vertices
sorted in angular order around the source point x. Hence, the total time to find Ls and Lt is O(n2)
in this case. Computing Ls,t is done by merging the endpoints of the intervals in Ls and Lt which
also needs O(n2) time.

For the non-convex case, Vp may be disconnected, with total complexity of O(n2) edges (not nec-
essarily parts of the edges of P). In this case, we cannot use the information about the intersections
between the edges of Bp with those of P obtained by the shortest path algorithm. To compute Lx,
we have to intersect the edges of Bp with cuts and ridges, yielding to maximum of O(n3) intervals.
This takes O(n3) time using the same method as the case of polygonal domains. Thus, finding Ls,t

can be done in O(n3) time.
Finally, the minimum point q can be computed in O(n2) (resp. O(n3)) time for the convex (resp.

non-convex) case. It can be easily verified that the space complexity of the algorithm is O(n2) (resp.
O(n3)). Thus, we have the following result for the case of polyhedral surfaces:

9



Theorem 5.1 Given a pair of points s and t, a viewpoint p, and the visibility region of the viewpoint
Vp on the surface of a polyhedron, a shortest p-visible path from s to t can be computed in O(n2)
time for the convex case and O(n3) for the non-convex case.

6 Conclusion

We studied the problem of finding a shortest path between two points with single-point visibility
constraint in various domains summarized in Table 1. The time bound for the first case is the same
as the bound for the standard shortest path problem (without constraint), so this bounds cannot
be improved any further. The case of polygonal domains and polyhedral surfaces may be improved
though. The case for polygonal domains can be studied further to see if it is not necessary to
construct the entire set of intervals of optimality. Also, it is possible to improve the case for the
polyhedral surfaces due to existence of the subquadratic algorithm of Kapoor [6] for finding shortest
paths on polyhedral surfaces that uses the wavefront propagation method.

There may be several extensions that can be considered. One extension is to use other metrics for
distance computations (e.g. link-distance or weighted region) while having the visibility constraints.
For some cases, it is possible to use the same framework as we used in the current paper, i.e.
constructing shortest path maps according to the metric used and finding the set of intervals of
optimality on the boundary. However, it is possible that for some metric, there may be more specific
and more efficient algorithms.

Another extension is to constrain the path to meet an arbitrary general region, not necessarily
a visibility region. Generalization of our algorithm to this case is straightforward for some domains
(e.g. polygonal domains), since we have not used special properties about visibility regions in those
domains. Other domains (e.g. simple polygons) require more study.

Acknowledgment: The authors would like to thank the anonymous referee for his/her valuable
comments.

References

[1] L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan. Linear-time algorithms
for visibility and shortest path problems inside triangulated simple polygons. Algorithmica,
2:209–233, 1987.

[2] J. S. B. Mitchell. Shortest paths among obstacles in the plane. Internat. J. Comput. Geom.
Appl., 6:309–332, 1996.

[3] J. Hershberger and S. Suri. An optimal algorithm for Euclidean shortest paths in the plane.
SIAM J. Comput., 28(6):2215–2256, 1999.

[4] J. S. B. Mitchell, D. M. Mount, and C. H. Papadimitriou. The discrete geodesic problem. SIAM
J. Comput., 16:647–668, 1987.

[5] J. Chen and Y. Han. Shortest paths on a polyhedron. Internat. J. Comput. Geom. Appl.,
6:127–144, 1996.

[6] S. Kapoor. Efficient computation of geodesic shortest paths. In Proc. 32th Annu. ACM Sympos.
Theory Comput., pages 770–779, 1999.

[7] J. D. Boissonnat, A. Cérézo, and J. Leblond. Shortest paths of bounded curvature in the plane.
Internat. J. Intell. Syst., 10:1–16, 1994.

[8] M. De Berg and M. Van Kreveld. Trekking in the alps without freezing or getting tired. Algo-
rithmica, 18:306–323, 1997.

[9] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. Mitchell, and T. M. Murali. Sweeping
simple polygons with a chain of guards. In Proc. 11th ACM-SIAM Sympos. Discrete Algorithms
(SODA’2000), pages 927–936, 2000.

10



[10] R. Khosravi, M. Ghodsi, and M. Taghdiri. Shortest point-visible paths on polyhedral surfaces.
In Proc. of the 10th International Conference on Computing and Information (ICCI’2000).
Unpublished.

[11] R. Khosravi and M. Ghodsi. Shortest paths in simple polygons with polygon-meet constraints.
Inform. Process. Lett., 91:171–176, 2004.

[12] J. Gudmundsson and C. Levcopoulos. Hardness result for TSP with neighborhoods. Technical
Report LU-CS-TR:2000-216, Department of Computer Science, Lund University, Sweden, 2000.

[13] C. Mata and J. S. Mitchell. Approximation algorithms for geometric tour and network design
problems. In Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 360–369, 1995.

[14] J. Gudmundsson and C. Levcopoulos. A fast approximation algorithm for TSP with neighbor-
hoods and red-blue separation. Lecture Notes in Computer Science, 1627:473–482, 1999.

[15] A. Dumitrescu and J. S. B. Mitchell. Approximation algorithms for TSP with neighborhoods
in the plane. In Symposium on Discrete Algorithms, pages 38–46, 2001.

[16] M. Dror, A. Efrat, A. Lubiw, and J. S. B. Mitchell. Touring a sequence of polygons. In Proc.
35th ACM Sympos. Theory Comput., 2003.

[17] D. T. Lee. Visibility of a simple polygon. Comput. Vision Graph. Image Process., 22:207–221,
1983.

[18] B. Joe and R. B. Simpson. Correction to Lee’s visibility polygon algorithm. BIT, 27:458–473,
1987.

[19] L. J. Guibas, E. McCreight, M. Plass, and J. Roberts. A new representation for linear lists. In
Proc. 9th Annu. ACM Sympos. Theory Comput., pages 49–60, 1977.

[20] U. Finke and K. Hinrichs. Overlaying simply connected planar subdivisions in linear time. In
Proc. 11th Annu. ACM Sympos. Comput. Geom., pages 119–126, 1995.

[21] U. Finke and K. H. Hinrichs. The quad view data structure: a representation for planar sub-
divisions. In Proc. 6th Sympos. Advances in Spatial Databases, number 951 in Lecture Notes
Comput. Sci., pages 29–46, 1995.

[22] P. J. Heffernan and J. S. B. Mitchell. An optimal algorithm for computing visibility in the
plane. SIAM J. Comput., 24(1):184–201, 1995.

[23] J. O’Rourke. Visibility. In J. E. Goodman and J. O’Rourke, editors, Handbook of Discrete and
Computational Geometry, chapter 25, pages 467–480. CRC Press LLC, 1997.

[24] P. K. Agarwal, B. Aronov, J. O’Rourke, and C. Schevon. Star unfolding of a polytope with
applications. Technical Report 031, Dept. Comput. Sci., Smith College, Northampton, MA,
July 1993.

11


