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Abstract

We study a constrained version of the shortest path problem in simple polygons, in which the path must visit a give
polygon. We provide a worst-case optimal algorithm for this problem and also present a method to construct a subd
the simple polygon to efficiently answer queries to retrieve the shortest polygon-meeting paths from a single-source to
point. The algorithms are linear, both in time and space, in terms of the complexity of the two polygons.
 2004 Elsevier B.V. All rights reserved.
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In a number of applications, like resource-collect
or guarding, it is required for a moving object to vis
a particular region of the domain during its motion
the destination. Examples include TSP with neighb
hoods [4,5], watchman route problem [1,12], zooke
er’s problem [2,12], and safari route problem [11,1
In this work, we study the problem of finding the sho
est path between two points inside a simple polyg
while the path is constrained to visit (i.e., has no
empty intersection with) a given polygonal region
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this problem in terms ofn which is the total numbe
of vertices in the simple polygon and the target po
gon. Furthermore, we show how to construct a sub
vision of the domain to answer single-source que
to retrieve the shortest polygon-meeting distance
logarithmic time.

A similar problem is studied in [9] where the d
main of the problem is a polygonal domain (polyg
with holes). The method is based on wavefront pro
gation and employs extensions to the shortest pat
gorithm of Hershberger and Suri [8]. The resulting
gorithm works in optimal time O(n logn) and the same
space (n is the total number of vertices in the polyg
nal domain and the target polygon). The problem
study in this paper is a special case of the mentio
problem, and for the case of convex target polyg

.
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runs faster. Also in [10], the problem of finding the
shortest path between two points lying on the surface
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Proof. Let π∗ be the shortest path betweens and t ,
and π be an arbitrary path betweens and t that
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of a polyhedron is considered while the path is c
strained to meet the visibility region of some vie
point on the surface. Recently, Dror et al. [3] ha
presented an algorithm for the problem of finding
shortest path that visitsk given convex polygons in
a pre-specified order. Also, they have shown that
problem is NP-hard for the case of non-convex po
gons.

To find the shortest path constrained to visit the
get polygon, we use the property that the constrai
path has one of the two forms: either it is the same
the (unconstrained) shortest path that already pa
through the interior of the target polygon, or it touch
exactly one point on the boundary of the target po
gon and bounces back. In the latter case, we com
the relevant portion of the boundary as the set of po
that a constrained shortest path may visit for the fi
time (similar tofirst contact setin [3]). Using this set,
we can find the point of contact efficiently. These co
cepts are covered in Section 2. The algorithm run
O(n) time and is based on the shortest path algori
of Guibas et al. [6]. In Section 3, we show how to mo
ify the method of Dror et al. [3] to construct a subdiv
sion of the polygon (named shortest polygon-mee
path map) to answer single-source queries efficien
This construction takes linear time and is asympt
cally faster than the method of [3] applied to the s
cial case of one target polygon.

2. Computing the constrained shortest path

Let P be the input simple polygon andT be
the boundary of the target polygon lying complete
insideP . Assume that the total complexity ofP andT
is n. Our goal is to compute the shortest path betwe
given source points and a destination pointt in P such
that the intersection of the path andT is non-empty.
We call such a pathT -meeting.The following lemma
states a basic property of the shortest polygon-mee
paths that enables efficient computation of such pa

Lemma 2.1. In a simple polygonP , if the shortest
path between s and t does not intersect the inte
of the target polygonT , neither does the shortestT -
meeting path betweens andt .
crossesT . It is easy to see thatπ is the same asπ∗ up
to a vertex ofP at which it deviates fromπ∗, entersT ,
and joinsπ∗ once again. The space enclosed betw
the two paths lies completely insideP . Sinceπ differs
π∗, it has one or moreconvex bends. By convex bend
we mean a bend that makes an angle less than◦
insideP that of course may be shortcut insideP . We
can repeatedly shortcut the convex bends ofπ , until it
has no intersection withT . (Note that this happens a
some step, since the path will coincideπ∗ eventually.)
Let �abc be the triangle formed by the last shortc
taken, where the segmentsba and ac are replaced
by bc. Obviously, either or bothba andac have non-
empty intersection withT whilebc does not. Conside
the pointp on the part ofT inside�abc which has the
shortest perpendicular distance frombc. If we replace
ba andac with bp andpc respectively, we obtain
path which does not enterT (only touches it atp)
and is shorter thanπ . This shows that ifπ∗ does not
intersectT , then any path that goes insideT can be
shortened to another path which does not.�

Assume that the shortestT -meeting path betwee
s and t does not enter the interior ofT . If the path
visits the boundary in more than one point, then al
the contacts occur at reflex vertices ofP (otherwise,
the path can be shortened), and the path is the s
as the shortest path. So, the shortestT -meeting path
has exactly one point in common withT (namelyq).
Obviously, the two subpaths froms to q and fromq to
t are optimal. So, the entire path is easy to comput
soon as we findq .

To find q , we define the notion ofgateas follows.
Consider the intervals on the boundary ofT when
intersected by the shortest path map of a pointp ∈ P .
We pick those intervals that are visited for the first tim
when walking along the shortest paths fromp to points
insideP and call themgatesof T with respect top,
or p-gates for short. It is easy to prove that the num
of gates ofT with respect to any pointp ∈ P is O(n)

[9].
It is also easy to see that the pointq defined above

belongs to both ans-gate and at-gate. We take the
intersection of the set of points ons-gates andt-gates
and partition the result into a set of intervalsLs,t ,
according to the correspondings-gate andt-gate. For
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an intervalI ∈ Ls,t , computation of the pointq(I) ∈ I
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andt among all points inI takes constant time:I has
the property that the last vertices of the shortest p
from s and t to any point onI are the same. Le
u (respectivelyv) be the last vertex on the shorte
paths forms (respectivelyt) to the points ofI . To
find q(I), we can reflectv about the line supportin
I and connect the reflected point tou. If the segment
obtained in this way intersectsI , the intersection poin
will be q(I). Otherwise,q(I) will be one of the
endpoints ofI depending on which side ofI lies the
intersection point between the segment and the
supportingI . Having the setLs,t , we can find the poin
q by taking minimum over the set{q(I) | I ∈ Ls,t }.

The main step in computing the setLs,t is to
find the set ofs-gates andt-gates efficiently as th
following lemma shows.

Lemma 2.2. Given a target polygonT inside a simple
polygonP , one can find the gates ofT with respect to
a pointp ∈P in O(n) time.

Proof. To find the set ofp-gates, we choose amon
a number of intervals obtained by intersectingT with
the edges of SPM(p). To avoid computation of the se
of all intervals, we consider the interior ofT as an
obstacle and remove it from the free space and de
the result byT = P − T which is a simple polygon
with exactly one hole. We make a cut inT along a
segment from its outer boundary to its inner bound
to obtain a simple polygon which hasT as a part of
its boundary. However, care must be taken to cho
the cut segment so that it does not block a shor
path fromp to a point on a gate ofT . To find the
appropriate cut, we choose an arbitrary pointx on the
boundary ofT (Fig. 1). Using the standard shorte
path algorithm for simple polygons, we find the la
vertex v of P along the shortest path fromp to x.
The half line with endpointv passing throughx may
have several intersections with the boundary ofT . We
take the farthest intersection fromv, namelyy, and
cutT along the half line fromy away fromv until we
reach the boundary ofP (at pointz). The result will
be a simple polygon which we nameT c. If we choose
an x that is not a vertex ofT andvx that is not co-
linear with any edges ofT (which is an easy task)
it is obvious that theyz cut is completely outsideT .
Fig. 1. Proof of Lemma 2.2. We cutP − T alongyz to obtain the
simple polygonT c .

Note thatyz is a part of the shortest path fromp to z.
Due to the fact that no two shortest paths intersectyz

does not intersect any shortest path to a gate.
To find the gates ofT , we run the shortest pat

algorithm of [6] onT c. This will partitionT into a set
of intervals which is a superset of the set ofp-gates.
Those intervals that belong to the cells of SPM(p)

with their roots as vertices ofP (not T ) are the gates
of T with respect to the source pointp. �

The following theorem summarizes the result a
provides a time bound on the algorithm.

Theorem 2.1. Given a pair of pointss and t and
a target polygonT inside a simple polygonP , the
shortestT -meeting path froms to t inside the polygon
can be found inO(n) time andO(n) space.

Proof. In linear time, we can check whether either
s or t lies insideT , or the shortest path between the
intersectsT . In these cases, the shortest Euclide
path betweens andt is the answer. Ifs andt and the
shortest path between them lie outsideT , we use the
shortest path algorithm of [6] to compute the short
distances to vertices ofP from both s and t . These
distances are needed in the final stage of the algor
to compute the shortestT -meeting distances. Also
we compute the set ofs-gates andt-gates using the
technique mentioned in Lemma 2.2. All these st
can be done in O(n) time and space.

To merge the two sets of gates efficiently, we m
guarantee that the intervals in each set is in so
order onT . This is possible if we make the recursi
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calls made during the DFS traversal in the shortest
path algorithm sorted in some fixed direction (e.g.,
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to points inP . R is astarburstwith sourceGs which
means that if we ignoreP , each point in the plane is

]).

-
,
a

e-
e

ts of

ort-
e,

e
ach
of
an
e

he
In

p

d
set
clockwise). Since the funnel structure used in
algorithm is stored in afinger search tree[7], the list
of s-gates andt-gates obtained can be arranged in
sorted list in linear time. Thus, we can merge the e
points of the two sets of gates in O(n), obtaining the
setLs,t . The rest of algorithm is straightforward an
can be done in linear time.�

3. Computing the shortest polygon-meeting path
map

We now consider the problem of constructing
subdivision of the input polygonP such that for an
arbitrary query pointx ∈ P , the shortestT -meeting
path froms to x can be reported efficiently. We ca
such a subdivision the shortestT -meeting path map o
P with respect tos (T -SPM for short). We study th
problem in two cases depending onT being convex or
non-convex.

3.1. Convex target polygon

In this case, the problem can be considered a
special case of thegeneral touring polygons problem
(general TPP) studied by Dror et al. [3]. In th
problem, the goal is to find the shortest path betw
two given points that visitsk convex polygons in
a given order. In its general form, the input to t
problem contains a number of polygonal regio
called fencesand the path is constrained such th
the subpath between any two consecutive polyg
should lie inside the corresponding fence. The runn
time of the proposed algorithm is O(nk2 logn). For
k = 1 with T as the only polygon to be visited an
P as the fence for all parts of the path, we can obt
T -SPM in O(n logn) time. However, we show thi
can be reduced to O(n). Since our method is closel
related to the mentioned work, we borrow the rela
terminology from [3] and review some terms adap
to the notation used in this paper.

Consider the source points and the target poly
gonT . Let Gs be the set of points ons-gates ofT . It
can be easily verified that this set is a polygonal ch
(sinceT is convex). We defineR as the set of ray
leaving points ofGs along shortestT -meeting paths
reached by exactly one ray (the proof is given in [3
Associated withR is a subdivisionSR of the plane
that groups together points reached by rays ofR that
leave from the same vertex ofGs , or leave from the
same side of ans-gate (Fig. 2).SR imposes a decom
position on the interior ofP into a number of cells
such that the shortestT -meeting path to all points in
cell leavesT from the same vertex ofGs or the same
side of ans-gate. We define theroot of a cell of this
decomposition in the following way. If the cell corr
sponds to a vertex ofGs , that vertex is the root of th
cell. If the cell corresponds to ans-gateg, we have two
cases depending on whether the paths to the poin
the cellpass throughg or arereflectedby g. In the first
case, the root of the cell is the last vertex of the sh
est paths froms to points ong and in the second cas
the root is the mentioned vertex reflected aboutg. In
Fig. 2, the root of the cell containings is v̄ which isv

reflected about the gatebc.
To computeT -SPM, we consider the cells of th

mentioned decomposition separately, and for e
cell, construct its SPM with respect to the root
the cell. Note that for the cells with roots other th
vertices ofGs , we have to add the triangle to th
cell which is obtained by connecting the root of t
cell to the endpoints of the corresponding gate.
Fig. 2, to compute the map for the cell containings,
we add�v̄bc to the cell. After computing the ma

Fig. 2. The structure of the shortestT -meeting path map: the soli
thin edges (fromSR ) together with the dashed edges make the
of edges ofT -SPM.
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using the standard shortest path algorithm, we discard
the added triangle. Now,T -SPM is obtained by taking
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the edges of the maps together with the edges
the decomposition. The following theorem states t
computing this subdivision takes linear time.

Theorem 3.1. Given a source points and a convex
target polygonT inside a simple polygonP , the
shortestT -meeting path map with respect tos can be
computed inO(n) time andO(n) space.

Proof. To compute the map, we first compute t
set of s-gates on the boundary ofT . According to
Lemma 2.2, this takes O(n) time. The method use
guarantees that the set of gates are obtained in s
order. Thus, we can compute the edges ofSR in
sorted order in linear time. Assuming that we a
given the edges ofP in sorted order, we can find th
decomposition ofP imposed bySR in O(n) time.
We start by picking up the first ray and find its fir
intersection with the edges ofP and traverse both
sequences of rays and edges in the same direc
(The notion of direction must be defined precisely,
we omit the details due to space limitations.) Duri
the traversal, we consider two consecutive rays suc
ri and ri+1 assuming we have found the intersect
of ri with the edgeej , which is the first edge in
the sequence of edges that intersects the ray. (
that this intersection is not necessarily a vertex
decomposition, since the ray may be blocked by
edge that we visit later in our traversal.) We pick t
edgesej+i , ej+2, . . . one by one, and keep track of th
last edge that intersectsri , until we find an edgeek that
intersectsri+1. At this time, the last intersection ofri
is identified as a vertex of the decomposition and
continue the process on the raysri+1 andri+2.

The computed decomposition has O(n) faces with
the total complexity of O(n). Computing the SPM fo
all faces can be done in O(n) total time and the sam
space. Finally, these maps are merged into a si
subdivision in linear time. �
3.2. Non-convex target polygon

In this case, the set of raysR defined above is no
longer a starburst, which means there may be po
in P that can be reached by more than onelocally
shortestT -meeting paths which leaveT differently.
.

more parts ofGs . Also, having the set ofs-gates
in sorted order along the boundary ofT , does not
imply that the intersections ofSR with P occur in the
same order. This requires an additional sorting proc
which needs O(n logn) itself. In this case, we can us
the algorithm presented in [9] to computeT -SPM in
polygonal domains in O(n logn) time.

4. Conclusion

We presented an algorithm to find the shortest p
between two points in a simple polygon constrain
to meet a polygonal region inside the simple polyg
The algorithm runs in linear time and space in ter
of the complexity of the two polygons. Also, we ga
a method to compute a subdivision of the sim
polygon in linear time to answer single source que
in logarithmic time.

Our work was mainly an application of the sho
est path algorithm in simple polygons to a constrain
version of the problem. The problem is not mu
harder than the unconstrained version as the a
rithms are worst-case optimal. A modified version
the problem is to constrain the path to meet several
get polygons in a fixed order. As Dror et al. [3] ha
shown, this problem is NP-hard for non-convex t
get polygons. For convex targets in a simple polyg
one can immediately apply the algorithm of Dror et
consideringP as the fence for all parts of the path.
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