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Abstract

We study a constrained version of the shortest path problem in simple polygons, in which the path must visit a given target
polygon. We provide a worst-case optimal algorithm for this problem and also present a method to construct a subdivision of
the simple polygon to efficiently answer queries to retrieve the shortest polygon-meeting paths from a single-source to the query
point. The algorithms are linear, both in time and space, in terms of the complexity of the two polygons.
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1. Introduction side the simple polygon (we call it tharget poly-
gon). We provide a worst-case optimal algorithm for

In a number of applications, like resource-collection this problem in terms o which is the total number
or guarding, it is required for a moving object to visit Of vertices in the simple polygon and the target poly-
a particular region of the domain during its motion to 9on. Furthermore, we show how to construct a subdi-
the destination. Examples include TSP with neighbor- Vision of the domain to answer single-source queries
hoods [4,5], watchman route problem [1,12], zookeep- {0 retrieve the shortest polygon-meeting distances in
er's problem [2,12], and safari route problem [11,13]. logarithmic time.
In this work, we study the problem of finding the short- A similar problem is studied in [9] where the do-
est path between two points inside a simple polygon main of the problem is a polygonal domain (polygon
while the path is constrained to visit (i.e., has non- With holes). The method is based on wavefront propa-
empty intersection with) a given polygonal region in- gation and employs extensions to the shortest path al-
gorithm of Hershberger and Suri [8]. The resulting al-
- gorithm works in optimal time Q: logn) and the same
CSD (Lr;iscvgolrgshza};%zfn supported by a grant from IPM School of gpace 4 is the total number of vertices in the polygo-
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runs faster. Also in [10], the problem of finding the Proof. Let #* be the shortest path betweerand,
shortest path between two points lying on the surface and = be an arbitrary path between and ¢ that
of a polyhedron is considered while the path is con- crossed . It is easy to see that is the same as* up
strained to meet the visibility region of some view- to avertex ofP at which it deviates fromr*, enters7,
point on the surface. Recently, Dror et al. [3] have and joinsz* once again. The space enclosed between
presented an algorithm for the problem of finding the the two paths lies completely insid& Sincer differs
shortest path that visit® given convex polygons in  z*, it has one or moreonvex bend$By convex bend
a pre-specified order. Also, they have shown that the we mean a bend that makes an angle less thafi 180
problem is NP-hard for the case of non-convex poly- insideP that of course may be shortcut insigle We
gons. can repeatedly shortcut the convex bends ofintil it
To find the shortest path constrained to visit the tar- has no intersection witfl . (Note that this happens at
get polygon, we use the property that the constrained some step, since the path will coincidé eventually.)
path has one of the two forms: either it is the same as Let Aabc be the triangle formed by the last shortcut
the (unconstrained) shortest path that already passedaken, where the segmenba and ac are replaced
through the interior of the target polygon, or it touches by bc. Obviously, either or bottha andac have non-
exactly one point on the boundary of the target poly- empty intersection with™ while b¢ does not. Consider
gon and bounces back. In the latter case, we computethe pointp on the part off insideAabc which has the
the relevant portion of the boundary as the set of points shortest perpendicular distance frém If we replace
that a constrained shortest path may visit for the first ba andac with bp and pc respectively, we obtain a
time (similar tofirst contact setn [3]). Using this set, path which does not entéf (only touches it atp)
we can find the point of contact efficiently. These con- and is shorter tham. This shows that ifz* does not
cepts are covered in Section 2. The algorithm runs in intersectZ, then any path that goes inside can be
O(n) time and is based on the shortest path algorithm shortened to another path which does nati
of Guibas et al. [6]. In Section 3, we show how to mod-
ify the method of Dror et al. [3] to construct a subdivi- Assume that the shortegt-meeting path between
sion of the polygon (hamed shortest polygon-meeting s and: does not enter the interior &f. If the path
path map) to answer single-source queries efficiently. visits the boundary in more than one point, then all of
This construction takes linear time and is asymptoti- the contacts occur at reflex vertices®f(otherwise,
cally faster than the method of [3] applied to the spe- the path can be shortened), and the path is the same
cial case of one target polygon. as the shortest path. So, the shortEsieeting path
has exactly one point in common with (namelyg).
Obviously, the two subpaths frosto ¢ and fromg to

2. Computing the constrained shortest path t are optimal. So, the entire path is easy to compute as
soon as we fing.
Let P be the input simple polygon and be To find ¢, we define the notion ajateas follows.
the boundary of the target polygon lying completely Consider the intervals on the boundary Bfwhen
inside’?. Assume that the total complexity fand7 intersected by the shortest path map of a ppiatP.

isn. Our goal is to compute the shortest path between a We pick those intervals that are visited for the first time
given source point and a destination pointn P such when walking along the shortest paths frprto points
that the intersection of the path afidis non-empty. inside’P and call thengatesof 7 with respect top,
We call such a pati-meeting.The following lemma or p-gates for short. It is easy to prove that the number
states a basic property of the shortest polygon-meetingof gates of7” with respect to any poinp € P is O(n)
paths that enables efficient computation of such paths.[9].

Itis also easy to see that the pointiefined above,
Lemma 2.1. In a simple polygorP, if the shortest belongs to both an-gate and a-gate. We take the
path between s and t does not intersect the interior intersection of the set of points argates and-gates
of the target polygor?, neither does the shortegt- and partition the result into a set of intervals ;,
meeting path betweenand:. according to the correspondinegate and-gate. For
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an intervall € L, ,;, computation of the poinf(/) € /
which has the minimum total shortest distances to
andr among all points inf takes constant timd: has

the property that the last vertices of the shortest paths
from s and ¢ to any point on/ are the same. Let

u (respectivelyv) be the last vertex on the shortest
paths forms (respectivelyt) to the points ofl. To

find ¢ (1), we can reflect about the line supporting

I and connect the reflected point#oIf the segment
obtained in this way intersects the intersection point
will be g(I). Otherwise,q(I) will be one of the £
endpoints ofl depending on which side df lies the

intersection point between the segment and the line rig 1 proof of Lemma 2.2. We cae — 7 along yz to obtain the
supporting/. Having the seL; ;, we can find the point  simple polygorZ.

q by taking minimum over the sé¢yy (1) | I € Ly ,}.
The main step in computing the séf ; is to
find the set ofs-gates and-gates efficiently as the

following lemma shows.

Note thatyz is a part of the shortest path fromto z.
Due to the fact that no two shortest paths intersgct,
does not intersect any shortest path to a gate.

To find the gates off, we run the shortest path
algorithm of [6] on7 ... This will partition7 into a set
of intervals which is a superset of the setpfjates.
Those intervals that belong to the cells of SE¥
with their roots as vertices ¢ (not 7") are the gates
of 7 with respect to the source poipt O

Lemma 2.2. Given a target polygofl inside a simple
polygonP, one can find the gates @f with respect to
a pointp € P in O(n) time.

Proof. To find the set ofp-gates, we choose among

a number of intervals obtained by intersectihgvith

the edges of SPkp). To avoid computation of the set

of all intervals, we consider the interior @f as an
obstacle and remove it from the free space and denote

The following theorem summarizes the result and
provides a time bound on the algorithm.

the result byZ =P — 7 which is a simple polygon
with exactly one hole. We make a cut ih along a

Theorem 2.1. Given a pair of pointss and ¢ and
a target polygon7 inside a simple polygomP, the

segment from its outer boundary to its inner boundary shortestZ -meeting path frora to ¢ inside the polygon

to obtain a simple polygon which has as a part of

its boundary. However, care must be taken to choose

can be found irO(n) time andO(n) space.

the cut segment so that it does not block a shortest Proof. In linear time, we can check whether either of

path from p to a point on a gate of . To find the
appropriate cut, we choose an arbitrary pairgn the
boundary of7 (Fig. 1). Using the standard shortest
path algorithm for simple polygons, we find the last
vertex v of P along the shortest path from to x.
The half line with endpoint passing throughh may
have several intersections with the boundary ofVe
take the farthest intersection from namelyy, and
cut7 along the half line frony away fromv until we
reach the boundary dP (at pointz). The result will
be a simple polygon which we narffe.. If we choose
anx that is not a vertex of andvx that is not co-
linear with any edges of (which is an easy task),
it is obvious that theyz cut is completely outsid& .

s ort lies inside7, or the shortest path between them
intersects7 . In these cases, the shortest Euclidean
path between and: is the answer. If and: and the
shortest path between them lie outsiiewe use the
shortest path algorithm of [6] to compute the shortest
distances to vertices ¢? from boths and¢. These
distances are needed in the final stage of the algorithm
to compute the shortesf-meeting distances. Also,
we compute the set of-gates and-gates using the
technique mentioned in Lemma 2.2. All these steps
can be done in Gr) time and space.

To merge the two sets of gates efficiently, we must
guarantee that the intervals in each set is in sorted
order on7 . This is possible if we make the recursive
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calls made during the DFS traversal in the shortest to points inP. R is astarburstwith sourceG; which
path algorithm sorted in some fixed direction (e.g., means that if we ignor@, each point in the plane is
clockwise). Since the funnel structure used in the reached by exactly one ray (the proof is given in [3]).
algorithm is stored in &inger search tre¢7], the list Associated withR is a subdivisionS® of the plane
of s-gates and-gates obtained can be arranged in a that groups together points reached by ray®dhat
sorted list in linear time. Thus, we can merge the end leave from the same vertex df,, or leave from the
points of the two sets of gates in(®), obtaining the same side of ap-gate (Fig. 2)S® imposes a decom-
setL, . The rest of algorithm is straightforward and position on the interior ofP into a number of cells,
can be done in linear time.O such that the shortegt-meeting path to all points in a
cell leavesZ from the same vertex af; or the same
side of ans-gate. We define theoot of a cell of this
3. Computing the shortest polygon-meeting path decomposition in the following way. If the cell corre-
map sponds to a vertex dfi,, that vertex is the root of the
cell. If the cell corresponds to angateg, we have two
We now consider the problem of constructing a cases depending on whether the paths to the points of
subdivision of the input polygof® such that for an  the cellpass througty or arereflectedoy g. In the first
arbitrary query pointc € P, the shortesZ -meeting  case, the root of the cell is the last vertex of the short-
path froms to x can be reported efficiently. We call  est paths froms to points ong and in the second case,
such a subdivision the shorteStmeeting path map of  the root is the mentioned vertex reflected abguin
P with respect tos (7-SPM for short). We study the  Fig. 2, the root of the cell containingis © which isv
problem in two cases depending @rbeing convex or reflected about the gate.

non-convex. To compute7 -SPM, we consider the cells of the
mentioned decomposition separately, and for each
3.1. Convex target polygon cell, construct its SPM with respect to the root of

the cell. Note that for the cells with roots other than
In this case, the problem can be considered as avertices of Gy, we have to add the triangle to the
special case of thgeneral touring polygons problem  cell which is obtained by connecting the root of the
(general TPP) studied by Dror et al. [3]. In that cell to the endpoints of the corresponding gate. In
problem, the goal is to find the shortest path between Fig. 2, to compute the map for the cell containing

two given points that visitsc convex polygons in we addAvbc to the cell. After computing the map
a given order. In its general form, the input to the

problem contains a number of polygonal regions
called fencesand the path is constrained such that
the subpath between any two consecutive polygons
should lie inside the corresponding fence. The running
time of the proposed algorithm is (@«2logn). For
k = 1 with 7 as the only polygon to be visited and
P as the fence for all parts of the path, we can obtain
7-SPM in Qnlogn) time. However, we show this
can be reduced to @). Since our method is closely
related to the mentioned work, we borrow the related
terminology from [3] and review some terms adapted
to the notation used in this paper.

Consider the source point and the target poly-
gon7. Let G, be the set of points osrgates of7 . It
can be easily verified that this set is a polygonal chain rig. 2. The structure of the shorteEtmeeting path map: the solid
(since7 is convex). We defingR as the set of rays  thin edges (fromS®) together with the dashed edges make the set
leaving points ofG; along shortesf -meeting paths  of edges of7 -SPM.
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using the standard shortest path algorithm, we discard This introduces new kind of edges which are bisector
the added triangle. Now,-SPM is obtained by taking  curves dividing portions ofP claimed by two or
the edges of the maps together with the edges of more parts ofG;. Also, having the set of-gates
the decomposition. The following theorem states that in sorted order along the boundary @f, does not
computing this subdivision takes linear time. imply that the intersections @® with 7 occur in the
same order. This requires an additional sorting process
Theorem 3.1. Given a source point and a convex which needs Q:logn) itself. In this case, we can use
target polygon7 inside a simple polygorP, the the algorithm presented in [9] to compufeSPM in
shortestZ -meeting path map with respectiaan be polygonal domains in G:logn) time.
computed irD(n) time andO(n) space.

Proof. To compute the map, we first compute the 4. Conclusion

set of s-gates on the boundary df. According to We presented an algorithm to find the shortest path
Lemma 2.2, this takes @) time. The method used  petween two points in a simple polygon constrained
guarantees that the set of gates are obtained in sortedg meet a polygonal region inside the simple polygon.
order. Thus, we can compute the edgesSSf in The algorithm runs in linear time and space in terms
sorted order in linear time. Assuming that we are of the complexity of the two polygons. Also, we gave

given the edges oP in sorted order, we can find the 5 method to compute a subdivision of the simple

decomposition ofP imposed byS® in O() time.  polygon in linear time to answer single source queries
We start by picking up the first ray and find its first jn |ogarithmic time.
intersection with the edges oP and traverse both Our work was main|y an app"ca’[ion of the short-

sequences of rays and edges in the same directionest path algorithm in simple polygons to a constrained
(The notion of direction must be defined precisely, but version of the problem. The problem is not much
we omit the details due to space limitations.) During harder than the unconstrained version as the algo-
the traversal, we consider two consecutive rays such asrithms are worst-case optimal. A modified version of
ri andri;1 assuming we have found the intersection the problem is to constrain the path to meet several tar-
of r; with the edgee;, which is the first edge in  get polygons in a fixed order. As Dror et al. [3] have
the sequence of edges that intersects the ray. (Noteshown, this problem is NP-hard for non-convex tar-
that this intersection is not necessarily a vertex of get polygons. For convex targets in a simple polygon,
decomposition, since the ray may be blocked by an one can immediately apply the algorithm of Dror et al.
edge that we visit later in our traversal.) We pick the consideringP as the fence for all parts of the path.
edges; i, eji2,... 0ne by one, and keep track of the
last edge that interseats until we find an edgey that
intersects; ;1. At this time, the last intersection of

is identified as a vertex of the decomposition and we
continue the process on the rays; andr; 2.

The computed decomposition hagnfaces with
the total complexity of @2). Computing the SPM for
all faces can be done in®@) total time and the same  References
space. Finally, these maps are merged into a single
subdivision in linear time. O
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